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Abstract

Tensile simulations with open ends between two solid adherends have been performed for coarse-grained,
highly crosslinked polymer networks modeling epoxy systems. The open boundary and the presence of
corners dramatically alters the fracture behavior. In contrast to systems with periodic boundaries, the failure
strain decreases with increasing system size. This decrease greatly reduces the difference between simulation
and experiment. In the open geometry, the sides of the polymer network neck inward forming wedge shaped
corners where the crack initiation occurs. The deformation of the open ends is constrained by the minimal
paths in the network connecting the two adherends. The crack initiation in the corners is consistent with
a diverging stress in the corners according to fracture mechanics. The local stress in the corners becomes
large well before failure, but in the direction parallel to the interface due to the deformation of the corners

into the wedge shape.
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The mechanics of polymer adhesives is intrinsically multiscale involving the bonding of one
material to another at the molecular scale and the stresses applied at the macro scale [1-3]. Poly-
meric adhesives are the preferred bonding method for many applications, because they produce
excellent interfacial bonds and dissipate stresses on larger scales. In particular, epoxies are highly
crosslinked polymer networks preferred in structural applications. Understanding the molecular
mechanisms of fracture in such systems is a complex challenge of connecting molecular structure
over multiple length scales with mechanical behavior. Linear elasticity theory gives a connection
between the local stress at a corner between the adhesive and the adherend and the thickness of
the adhesive [4, 5]. This stress is singular of the form Kr*~!, where K is the stress intensity factor
and A < 1 is a function of the Poisson’s ratio [4, 5]. Moreover, K diverges with increasing thick-
ness h of the adhesive as !~ [6]. This has important practical consequences as it indicates that
flaws at corners are especially prone to failure. To understand the connection between the macro-
scopic stress and molecular scale deformations in polymer adhesives, treatment of systems with

open surfaces and corners needs to be done.

To address the above issues, molecular dynamics simulations of a model epoxy system bonding
together two solid surfaces with open sides and corners have been performed. The effect of system
size on fracture for a model epoxy is examined and connections are made between the molecular
scale interfacial dynamics with the system’s stress-strain curves. Significant system size depen-
dence of fracture initiation and failure is found. These results have significant implications on the
nature of the underlying physical phenomena and in performing comparisons between simulation

and experiments on epoxies.

Our previous simulations on coarse-grained, highly crosslinked polymer networks modeling
epoxies calculated stress-strain behavior for the network betweeen two parallel plates with peri-
odic boundary conditions on the sides [7-9]. Unexpectedly, very large failure strains were found
even though the network was highly crosslinked with very short strand lengths. In experiments on
much larger epoxy adhesives, the failure strains are near 0.1 for tensile and are up to about 0.3 for
compression [10, 11]. The expectation was that the short strands in an epoxy could only be strained
a small amount before bond breaking. The simulations found that the strands have a compact struc-
ture that requires a large strain to unfold and does so without stressing the bonds. Consequently,
a long plateau regime in the stress-strain curves occurs while the strands are being unfolded and
pulled taut. Because the strands are compact, the minimal path length through the network from

one surface binding site to the another site on the opposite surface is greater than twice the plate
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separation [7]. Only at these large strains, do the strands become sufficiently taut and the stress
increase ultimately causing bond breaking and failure. The failure strain in these systems without
open sides did not vary signifcantly as a function of system size.

More recently there have been a range of simulations of epoxies [12]. Liu et al. have developed
multiscale techniques for curing and construction of the network structure [13]. Atomistic models
have been developed and mechanical properties such as the elastic moduli calculated [12, 14-18].
The failure strains for the atomistic simulations of Yang et al. are also large at about 1.0 [17]. Yang
and Qu developed a coarse-grained model of an epoxy from atomistic simulations, which like our
previous results gives very large failure strains [19].

Local elastic moduli have been calculated for simpler systems and shown to be connected to
critical deformations [20-24]. The nucleation of cavities in a uncrosslinked polymer glass under
tensile strain has been shown to be where the local elastic moduli are large [23]. Simulations
of simpler amorphous solids have found that classical nucleation theory can be used to describe
cavitation and similar behavior has been seen in glassy polymers [24]. Given the similarities in the
models, the cavitation that occurs in the epoxy tensile simulations during the long plateau of the
stress-strain curve should have the same origin [7, 19]. Calculation of the local stress in a corner has
not been done for polymers, but the rise of the corner stress with system size on the atomic scale has
been seen in simulations of a crystal at very low temperatures [25]. To minimize the fluctuations
in the local stress, the simulations had to be performed for crystals and at temperatures close to 0.
In polymeric systems, yielding typically occurs limiting the application of linear elasticity, but the
concept of large stress in corners is expected to hold and is examined in this work.

The model of highly cross-linked polymer networks is the based on earlier work [7-9]. The
polymers are treated as bead-spring molecules. The initial system is a mixture of two molecules. A
two bead molecule represents the resin (Bisphenol A) which we label as molecule A. In this work,
we introduce a more complicated crosslinker (molecule B) that models the T403 crosslinker as
shown in Fig. 1, which has a central bead with three arms of length 2, 1 and 2 beads corresponding
to the average lengths of each arm. The three terminal beads on the arms can each form two
additional bonds with molecule A, which can form one additional bond for each of its beads. The
number of cross-linkers in the system is determined by stoichiometry.

All beads interact through the standard Lennard-Jones (LJ) potential with a cutoff at 2.5d [26].
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FIG. 1. Schematic of the molecular components of the model epoxy. Molecule A is the coarse-grained
represenation of Bisphenol A (molecule C). Molecule B is the coarse-grained representation of the T403

crosslinker (molecule D). The terminal beads have two open bonds on the T403 representing the NH, ter-

minal group.

where r is the separation distance, u, represents the LJ energy and d represents the size of a bead.
The masses of all the beads are taken to be equal, the time unit is 7 and all quantities will be in LJ
units. The traditional notation of ¢ and € as the stress and strain, respectively, is used.

The geometry of the system starts with a stoichiometric liquid mixture of the two components
between two rigid, solid surfaces. Each solid surface is composed of two fcc (111) layers perpen-
dicular to the z-direction with a near neighbor spacing in the layer of 1.204d. Periodic boundary
conditions are imposed in the y-direction; the size of the simulation cell in this direction is 284 for
all systems. The width in the x-direction w and the separation of the surfaces A varies with the
system (see Table I). The 4 /w ratio is about 10 in all cases so that the central region should not be
influenced by the sides.

The polymeric system is composed initially of a stoichiometric mixture of the two molecules
between two solid surfaces. The starting liquid extends to about 5d from the open ends of the
surfaces. In the x-direction the system is open except during equilibration of the liquid mixture of
the two components, when a wall potential is used to confine the liquid. After equilibration, the
wall potential is removed and bonding to the surfaces and crosslinking of the liquid occurs as in
previous simulations [8]. The crosslinking simulation time is long enough such that at least 95%
of the possible bonds are formed. Crosslinking is performed slightly above the glass transition
temperature. The systems is then cooled to 0.3u,, (below the glass transition temperature) and a
simulation run until the thickness of the system reaches a steady state under a load (0.1u,/d*) on

the top surface mimicking atmospheric pressure. Tensile simulations are performed by pulling the
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TABLE I. Systems

index N h w
1 513600 40.4 417.1
2 1975200 76.1 834.2
3 7747200 149.0 1668.3
4 17316000 222.3 2502.5
5 30681600 295.0 3366.6

top surface at a constant velocity of 0.001 d/z. For system 2, the pull velocity was verified to
be slow enough that there are not resolvable differences in the stress-strain curves compared to
10%d /.

The stress-strain behavior is shown in Fig. 2 for the system sizes given in Table I. The data has

been boxcar smoothed. A clear dependence on A occurs in the stress-strain behavior at large strain,
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FIG. 2. The stress-strain curves as a function of system size for systems 1-5. Colors are black, blue, red,

magenta and green for systems 1 to 5, respectively.

but the low strain behavior has similar behavior. The yield stress peak is identical for all systems.
For sufficiently large systems where the surfaces (including sides) are not affecting the bulk, the
yield behavior should be independent of size, since the dynamics of the beads at small strains is
local. The yield stress is 2.85 u,/d>, and the yield strain €, 1s 0.073. For a wide range of € > ¢,
the behavior is similar for all systems with the larger systems having smaller fluctuations. In this

regime, there is a long plateau in the stress at about 2.2 u,,/ d?. From previous work [7, 8], this
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plateau region is where the strands are being straightened by the tensile stress and very few of the
the bonds are being strained. Because the tensile pull is increasing the volume, voids are forming
on the molecular scale (see Fig. 3). At larger €, the stress rises because bonds are being stretched.
At this point, a distinct size dependent behavior does occur. The rise in the stress is rather small
in the largest systems remaining well below ¢, while the smallest system has a maximum stress
greater than o . The failure strain €, is calculated as the strain value at which the stress is half the
maximum. Clearly, the failure strain € P decreases as a function of system size.

The critical difference from the present work and past fracture simulations is the explicit treat-
ment of the open sides and corners. The mode of fracture initiation is distinct due to the open
boundary. Examination of images of the system as a function of strain show that in all systems, a
crack forms in one (or two) of the corners as shown in Fig. 3 (see also the Supplement for images
of all systems). The strain at which the crack appears €, is determined from visual inspection of
the images of the dynamics. Fig. 4 shows the dependence on A of €, € 7 and Ey the strain at the
peak stress. Note that the ¢, are the same as £, given the uncertainty in both values, except for the
smallest system. This equality is to be expected, since once the crack starts the stress also begins

to be relieved and decreases.

FIG. 3. Images of left half of system 3 at various € showing crack formation at corner and contraction of

side. Void formation is also visible for € > 0. From top to bottom £ = 0, 0.50, 0.95 and 1.00.

The extrapolations in Fig. 4 have significant implications. For large h the extrapolation of €,
implies cracks will form at zero strain for A near 550d [27]. This extrapolation comes from linear
least squares fits to £, and €,. The extrapolation to £, — 0 occurs near 2 = 800d. If we use d =1
nm as an estimate of the bead size, then all these thicknesses are below a micron. These results

imply that a major source of the difference between simulations of highly crosslinked polymer and
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FIG. 4. The failure (solid squares), (second) maximum peak stress (open circles) and crack initiation (open
squares) strains as a function of the adhesive thickness (4). The lines are separate least squares fits to each

data set, with the dotted line for the £y data and the solid lines for the other two.

experiments is the geometry and system size. The data implies that the failure strains in simu-
lations for system sizes typical in experiments could easily be in the range seen in experiments.
Directly comparing to experiments on adhesives on the submicron scale is limited by the sparse

experimental data available on such thin systems due to inherent measurement challenges [28].

An intriguing point is that this A-dependence implies the existence of a new length scale. The
extrapolations of £, and ¢ , are expected to break down, as new physical phenomena ought to occur
as £, approaches y let alone 0. Thus, there must be a thickness 4*, where the decreasing €, stops or
changes. This 4" will be indicative a structural length scale that is significant in understanding large
scale deformation in highly crosslinked polymer networks. Unfortunately, resolving this issure

requires larger simulations than we can do.

In previous work on systems without open sides, we found the failure strain was correlated with
the minimal paths in the network from bottom surface to the top surface, and this connection was
the determining factor of the the large failure strains [7]. In the present systems, there is a difference
in behavior between the sides and the center. In the center of the system, the behavior is similar
to the early simulations, as the structure of the strands is similar to previous works. The minimal

path lengths in the center written as a strain, €,,, = P,;,/h — 1 are in the range 1.30 to 1.33. The

m
minimal paths near the edges are slightly shorter (¢, ~ 1.26), since the paths do not have complete

freedom of direction that exists at the center, but this is not a source of the 4 dependence.

As Fig. 3 shows the shape of the sides changes with strain as the cohesive forces try to maintain
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the equilibrium density by contracting the polymer network from the sides, i.e. necking. The shape
at the corners becomes an acute wedge that extends over a relatively long length as the side contract
in. The minimal paths near the sides are stretched along a curved path, which is longer than the
straight path for the central minimal paths. The paths near the sides are thus much more stretched at
a given strain than paths in the center are. The minimal paths at the sides will become taut at lower
strains than at the center because of the curved paths at the sides. The length of side as a function
of € was calculated (for a range of strains a parabola is a good fit to the shape). The dependence of
the side shape and length as a function of strain has an interesting connection with €, (see Supp.
Fig. S3). For € < 0.55 the amount of inward necking increases monotonically and is independent
of the h. At larger € the amount of necking decreases. This transition occurs when the side length
approaches the minimal path length of the sides. Thus, at the sides there is a much larger strain than
in the middle of the system and it saturates at £,,,,. Once the strain along the sides approaches close
to the €,,,, the minimal paths along the side are almost taut and the degree of necking reverses to
keep the side contour length constant. However, neither € , nor e, are correlated with this transition

which is constant with respect to A.

In order to get a better understanding of the fracture dynamics, the location of individual bond
breaking in the systems as a function of € was examined. Bond breaking starts well below €, in
two regions: in the voids and at the sides (see Fig. S9). Within the voids, the bond breaking is
sporadic spatially and does not accumulate into a crack. However at the sides and particularly the
corners, the number of broken bonds increases with strain and does result in cracks. As a function
of h, the total number of broken bonds is monotonically increasing at € = 0.50, which is below &,
for all 4. A concentration of bond breaking in the corners implies there is a concentration of stress

there.

The local stress was calculated using the local virial with voronoi volumes [29]. However,
calculating the local stress encounters various limitations. The fluctuations in stress are large even
when dealing with the whole system or surface. At the level of a smaller grid, the fluctuations
will be even larger. We calculated the stress binned into bins of size 4d X 4d in the xz-plane. At
€ = 0, the stress is effectively uniform with no indication of high stress in the corners. However,
as the strain increases, clear stress concentration in the corners is exhibited in o, as shown in
Fig. 5. Large values of o,, occur not in the corners but in the middle of the sides. These high
stresses and their direction correlate with necking geometry and bond breaking discussed above.

The contraction of the sides results in a wedge shaped geometry in the corners, with the bonds
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FIG. 5. The local stresses ¢, (top) and o, (bottom) for system 3 at € = 0.50.

being primarily strained in the x-direction. Thus the corners have large o,,. The network at the
middle of the sides is also strained by the tension, but at this location the strain is the z-direction.
Thus the middle of the sides have large o,,. We note that within the system the nanovoiding also

give pockets of large o, in the interior.

These tensile simulations of a coarse-grained highly crosslinked polymer system with open sides
have produced several important results. The failure stain decreases substantially as the system size
is increased, showing that system size and boundary conditions are critical. Extrapolating this size
effect implies that systems with thickness of less than a micron will have failure strains similar to
observed in experiments. Thus, a major source of the large difference in failure strains between
simulation and experiment has been identified. Moreover, the results imply the existence of a
crossover, where the failure strain stops decreasing with system size, and this crossover corresponds
to an important length scale in the polymer adhesive system that has not be characterized. As in
experiments the open sides result in the stresses that cause bond breaking to localize predominantly
in the corners. Crack initiation is found to occur in the corners as would be expected from linear
elastic fracture mechanics, although with such large strains the system is not in the linear regime.
Future simulations will address larger systems to observe the transition in € (k) and to determine

the structural feature(s) that determine the transition.
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FIG. S1. The left side density contour at 0.5 ¢~> as a function of 4 at e = 0.5.

SUPPLEMENT

The shape of the neck region as a function of system size can be well described by the density
contours at the sides. In Fig. S1 the contours of the left side at € = 0.5 is shown for all five
systems. The shape of the corner is shown to be similar for all cases. More specifically, the slope
of the wedge shape is identical. The extent of the inward necking increases with A.

At intermediate values of the strain, this side shape can be well fit by a parabola as shown in
Fig. S2. In these cases, the length of the side can be quite accurately calculated. In cases where the
shape deviates from a parabola, the length has been determined from the two bounding parabolic
fits. The uncertainty that results in this method is small enough not to impact the points made in
the main text.

The dependence of the side shape as a function of strain for system 3 is given in Fig. S3. The
main features are that the inward extent increases with strain to about € = 0.60, which is shown in
green. By this strain, the length of the side has reached the minimal path length of the network at
the sides. At larger strains, the inward extent decreases so that the total side length remains about
constant. For system 3 this behavior continues to much larger strains before a crack forms in the

corner.
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FIG. S2. The left side density contour at 1.0 63 for systems 3 and 5 at € = 0.5 showing parabolic fits (green)

to the sides.
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FIG. S3. Strain dependence of the left side for system 3. € = 0.33,0.415,0.50, 0.60(green), 0.75 and 0.83
(red). Some contours away from the side show up at the two largest strains due to void formation at these

large strains.
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Figures S4-S8 show images of all the systems at different strains. The dark regions are where

cavities have formed.

0.00

FIG. S4. Images of system 1 at various € showing crack formation at corner and contraction of side.
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FIG. S5. Images of system 2 at various € showing crack formation at corner and contraction of side.
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FIG. S6. Images of system 3 at various € showing crack formation at corner and contraction of side.
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FIG. S7. Images of system 4 at various € showing crack formation at corner and contraction of side.
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FIG. S8. Images of system 5 at various € showing crack formation at corner and contraction of side.
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FIG. S9. Images showing broken bonds (red) and surfaces (gray) as a function of strain for system 3. € = a)

0.50b) 0.67 ¢) 0.83 d) 0.95 e) 1.00.

The location of broken bonds as a function of strain for system 3 are shown in Fig. ??. Bond
breaking does start well before €., but initially it is mostly isolated bonds. An accumulation of
bond breaking in the corners and along the sides occurs as the strain approaches €, and finally a

crack forms once sufficient bond breaking in the corner occurs.
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