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Abstract

Tensile simulations with open ends between two solid adherends have been performed for coarse-grained,

highly crosslinked polymer networks modeling epoxy systems. The open boundary and the presence of

corners dramatically alters the fracture behavior. In contrast to systems with periodic boundaries, the failure

strain decreases with increasing system size. This decrease greatly reduces the difference between simulation

and experiment. In the open geometry, the sides of the polymer network neck inward forming wedge shaped

corners where the crack initiation occurs. The deformation of the open ends is constrained by the minimal

paths in the network connecting the two adherends. The crack initiation in the corners is consistent with

a diverging stress in the corners according to fracture mechanics. The local stress in the corners becomes

large well before failure, but in the direction parallel to the interface due to the deformation of the corners

into the wedge shape.
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The mechanics of polymer adhesives is intrinsically multiscale involving the bonding of one

material to another at the molecular scale and the stresses applied at the macro scale [1-3]. Poly-

meric adhesives are the preferred bonding method for many applications, because they produce

excellent interfacial bonds and dissipate stresses on larger scales. In particular, epoxies are highly

crosslinked polymer networks preferred in structural applications. Understanding the molecular

mechanisms of fracture in such systems is a complex challenge of connecting molecular structure

over multiple length scales with mechanical behavior. Linear elasticity theory gives a connection

between the local stress at a corner between the adhesive and the adherend and the thickness of

the adhesive [4, 5]. This stress is singular of the form Kr', where K is the stress intensity factor

and A < 1 is a function of the Poisson's ratio [4, 5]. Moreover, K diverges with increasing thick-

ness h of the adhesive as h1-2 [6]. This has important practical consequences as it indicates that

flaws at corners are especially prone to failure. To understand the connection between the macro-

scopic stress and molecular scale deformations in polymer adhesives, treatment of systems with

open surfaces and corners needs to be done.

To address the above issues, molecular dynamics simulations of a model epoxy system bonding

together two solid surfaces with open sides and corners have been performed. The effect of system

size on fracture for a model epoxy is examined and connections are made between the molecular

scale interfacial dynamics with the system's stress-strain curves. Significant system size depen-

dence of fracture initiation and failure is found. These results have significant implications on the

nature of the underlying physical phenomena and in performing comparisons between simulation

and experiments on epoxies.

Our previous simulations on coarse-grained, highly crosslinked polymer networks modeling

epoxies calculated stress-strain behavior for the network betweeen two parallel plates with peri-

odic boundary conditions on the sides [7-9]. Unexpectedly, very large failure strains were found

even though the network was highly crosslinked with very short strand lengths. In experiments on

much larger epoxy adhesives, the failure strains are near 0.1 for tensile and are up to about 0.3 for

compression [10, 11]. The expectation was that the short strands in an epoxy could only be strained

a small amount before bond breaking. The simulations found that the strands have a compact struc-

ture that requires a large strain to unfold and does so without stressing the bonds. Consequently,

a long plateau regime in the stress-strain curves occurs while the strands are being unfolded and

pulled taut. Because the strands are compact, the minimal path length through the network from

one surface binding site to the another site on the opposite surface is greater than twice the plate
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separation [7]. Only at these large strains, do the strands become sufficiently taut and the stress

increase ultimately causing bond breaking and failure. The failure strain in these systems without

open sides did not vary signifcantly as a function of system size.

More recently there have been a range of simulations of epoxies [12]. Liu et al. have developed

multiscale techniques for curing and construction of the network structure [13]. Atomistic models

have been developed and mechanical properties such as the elastic moduli calculated [12, 14-18].

The failure strains for the atomistic simulations of Yang et al. are also large at about 1.0 [17]. Yang

and Qu developed a coarse-grained model of an epoxy from atomistic simulations, which like our

previous results gives very large failure strains [19].

Local elastic moduli have been calculated for simpler systems and shown to be connected to

critical deformations [20-24]. The nucleation of cavities in a uncrosslinked polymer glass under

tensile strain has been shown to be where the local elastic moduli are large [23]. Simulations

of simpler amorphous solids have found that classical nucleation theory can be used to describe

cavitation and similar behavior has been seen in glassy polymers [24]. Given the similarities in the

models, the cavitation that occurs in the epoxy tensile simulations during the long plateau of the

stress-strain curve should have the same origin [7, 19]. Calculation of the local stress in a corner has

not been done for polymers, but the rise of the corner stress with system size on the atomic scale has

been seen in simulations of a crystal at very low temperatures [25]. To minimize the fluctuations

in the local stress, the simulations had to be performed for crystals and at temperatures close to 0.

In polymeric systems, yielding typically occurs limiting the application of linear elasticity, but the

concept of large stress in corners is expected to hold and is examined in this work.

The model of highly cross-linked polymer networks is the based on earlier work [7-9]. The

polymers are treated as bead-spring molecules. The initial system is a mixture of two molecules. A

two bead molecule represents the resin (Bisphenol A) which we label as molecule A. In this work,

we introduce a more complicated crosslinker (molecule B) that models the T403 crosslinker as

shown in Fig. 1, which has a central bead with three arms of length 2, 1 and 2 beads corresponding

to the average lengths of each arm. The three terminal beads on the arms can each form two

additional bonds with molecule A, which can form one additional bond for each of its beads. The

number of cross-linkers in the system is determined by stoichiometry.

All beads interact through the standard Lennard-Jones (LJ) potential with a cutoff at 2.5d [26].

U Lj(r) = 4u0 [(
d )12 d )61 
— — 
( 

—
r

(1)
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FIG. 1. Schematic of the molecular components of the model epoxy. Molecule A is the coarse-grained

represenation of Bisphenol A (molecule C). Molecule B is the coarse-grained representation of the T403

crosslinker (molecule D). The terminal beads have two open bonds on the T403 representing the NH2 ter-

minal group.

where r is the separation distance, u0 represents the LJ energy and d represents the size of a bead.

The masses of all the beads are taken to be equal, the time unit is T and all quantities will be in LJ

units. The traditional notation of o- and E as the stress and strain, respectively, is used.

The geometry of the system starts with a stoichiometric liquid mixture of the two components

between two rigid, solid surfaces. Each solid surface is composed of two fcc (111) layers perpen-

dicular to the z-direction with a near neighbor spacing in the layer of 1.204d. Periodic boundary

conditions are imposed in the y-direction; the size of the simulation cell in this direction is 28d for

all systems. The width in the x-direction w and the separation of the surfaces h varies with the

system (see Table I). The h/w ratio is about 10 in all cases so that the central region should not be

influenced by the sides.

The polymeric system is composed initially of a stoichiometric mixture of the two molecules

between two solid surfaces. The starting liquid extends to about 5d from the open ends of the

surfaces. In the x-direction the system is open except during equilibration of the liquid mixture of

the two components, when a wall potential is used to confine the liquid. After equilibration, the

wall potential is removed and bonding to the surfaces and crosslinking of the liquid occurs as in

previous simulations [8]. The crosslinking simulation time is long enough such that at least 95%

of the possible bonds are formed. Crosslinking is performed slightly above the glass transition

temperature. The systems is then cooled to 0.3u0 (below the glass transition temperature) and a

simulation run until the thickness of the system reaches a steady state under a load (OA u0/d3) on

the top surface mimicking atmospheric pressure. Tensile simulations are performed by pulling the
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TABLE I. Systems

index

1 513600 40.4 417.1

2 1975200 76.1 834.2

3 7747200 149.0 1668.3

4 17316000 222.3 2502.5

5 30681600 295.0 3366.6

top surface at a constant velocity of 0.001 dIT. For system 2, the pull velocity was verified to

be slow enough that there are not resolvable differences in the stress-strain curves compared to

10-4d/T.

The stress-strain behavior is shown in Fig. 2 for the system sizes given in Table I. The data has

been boxcar smoothed. A clear dependence on h occurs in the stress-strain behavior at large strain,

3.0

2.0
rn

1.0

0.0
0.0 0.5 1.0

strain
1.5

FIG. 2. The stress-strain curves as a function of system size for systems 1-5. Colors are black, blue, red,

magenta and green for systems 1 to 5, respectively.

but the low strain behavior has similar behavior. The yield stress peak is identical for all systems.

For sufficiently large systems where the surfaces (including sides) are not affecting the bulk, the

yield behavior should be independent of size, since the dynamics of the beads at small strains is

local. The yield stress is 2.85 ticid3, and the yield strain Ey is 0.073. For a wide range of E > Ey,

the behavior is similar for all systems with the larger systems having smaller fluctuations. In this

regime, there is a long plateau in the stress at about 2.2 uo/d3. From previous work [7, 8], this
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plateau region is where the strands are being straightened by the tensile stress and very few of the

the bonds are being strained. Because the tensile pull is increasing the volume, voids are forming

on the molecular scale (see Fig. 3). At larger E, the stress rises because bonds are being stretched.

At this point, a distinct size dependent behavior does occur. The rise in the stress is rather small

in the largest systems remaining well below ay, while the smallest system has a maximum stress

greater than o-y. The failure strain E f is calculated as the strain value at which the stress is half the

maximum. Clearly, the failure strain E f decreases as a function of system size.

The critical difference from the present work and past fracture simulations is the explicit treat-

ment of the open sides and corners. The mode of fracture initiation is distinct due to the open

boundary. Examination of images of the system as a function of strain show that in all systems, a

crack forms in one (or two) of the corners as shown in Fig. 3 (see also the Supplement for images

of all systems). The strain at which the crack appears Ec is determined from visual inspection of

the images of the dynamics. Fig. 4 shows the dependence on h of So E f and Ep, the strain at the

peak stress. Note that the E p are the same as Ec given the uncertainty in both values, except for the

smallest system. This equality is to be expected, since once the crack starts the stress also begins

to be relieved and decreases.

111111• 11•11
FIG. 3. Images of left half of system 3 at various £ showing crack formation at corner and contraction of

side. Void formation is also visible for £ > O. From top to bottom £ = 0, 0.50, 0.95 and 1.00.

The extrapolations in Fig. 4 have significant implications. For large h the extrapolation of Ec

implies cracks will form at zero strain for h near 550d [27]. This extrapolation comes from linear

least squares fits to E f and Sc. The extrapolation to E f —> 0 occurs near h = 800d. If we use d =1

nm as an estimate of the bead size, then all these thicknesses are below a micron. These results

imply that a major source of the difference between simulations of highly crosslinked polymer and
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FIG. 4. The failure (solid squares), (second) maximum peak stress (open circles) and crack initiation (open

squares) strains as a function of the adhesive thickness (h). The lines are separate least squares fits to each

data set, with the dotted line for the Ep data and the solid lines for the other two.

experiments is the geometry and system size. The data implies that the failure strains in simu-

lations for system sizes typical in experiments could easily be in the range seen in experiments.

Directly comparing to experiments on adhesives on the submicron scale is limited by the sparse

experimental data available on such thin systems due to inherent measurement challenges [28].

An intriguing point is that this h-dependence implies the existence of a new length scale. The

extrapolations of Ec and E f are expected to break down, as new physical phenomena ought to occur

as Ec approaches Ey let alone O. Thus, there must be a thickness h* , where the decreasing Ec stops or

changes. This h* will be indicative a structural length scale that is significant in understanding large

scale deformation in highly crosslinked polymer networks. Unfortunately, resolving this issure

requires larger simulations than we can do.

In previous work on systems without open sides, we found the failure strain was correlated with

the minimal paths in the network from bottom surface to the top surface, and this connection was

the determining factor of the the large failure strains [7]. In the present systems, there is a difference

in behavior between the sides and the center. In the center of the system, the behavior is similar

to the early simulations, as the structure of the strands is similar to previous works. The minimal

path lengths in the center written as a strain, Emp h — 1 are in the range 1.30 to 1.33. The

minimal paths near the edges are slightly shorter (Env =, 1.26), since the paths do not have complete

freedom of direction that exists at the center, but this is not a source of the h dependence.

As Fig. 3 shows the shape of the sides changes with strain as the cohesive forces try to maintain
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the equilibrium density by contracting the polymer network from the sides, i.e. necking. The shape

at the corners becomes an acute wedge that extends over a relatively long length as the side contract

in. The minimal paths near the sides are stretched along a curved path, which is longer than the

straight path for the central minimal paths. The paths near the sides are thus much more stretched at

a given strain than paths in the center are. The minimal paths at the sides will become taut at lower

strains than at the center because of the curved paths at the sides. The length of side as a function

of E was calculated (for a range of strains a parabola is a good fit to the shape). The dependence of

the side shape and length as a function of strain has an interesting connection with Emp (see Supp.

Fig. S3). For E < 0.55 the amount of inward necking increases monotonically and is independent

of the h. At larger E the amount of necking decreases. This transition occurs when the side length

approaches the minimal path length of the sides. Thus, at the sides there is a much larger strain than

in the middle of the system and it saturates at Emp. Once the strain along the sides approaches close

to the Emp the minimal paths along the side are almost taut and the degree of necking reverses to

keep the side contour length constant. However, neither E f nor E, are correlated with this transition

which is constant with respect to h.

In order to get a better understanding of the fracture dynamics, the location of individual bond

breaking in the systems as a function of E was examined. Bond breaking starts well below Ec in

two regions: in the voids and at the sides (see Fig. S9). Within the voids, the bond breaking is

sporadic spatially and does not accumulate into a crack. However at the sides and particularly the

corners, the number of broken bonds increases with strain and does result in cracks. As a function

of h, the total number of broken bonds is monotonically increasing at E = 0.50, which is below Ec

for all h. A concentration of bond breaking in the corners implies there is a concentration of stress

there.

The local stress was calculated using the local virial with voronoi volumes [29]. However,

calculating the local stress encounters various limitations. The fluctuations in stress are large even

when dealing with the whole system or surface. At the level of a smaller grid, the fluctuations

will be even larger. We calculated the stress binned into bins of size 4d x 4d in the xz-plane. At

E = 0, the stress is effectively uniform with no indication of high stress in the corners. However,

as the strain increases, clear stress concentration in the corners is exhibited in o-xx as shown in

Fig. 5. Large values of o-z, occur not in the corners but in the middle of the sides. These high

stresses and their direction correlate with necking geometry and bond breaking discussed above.

The contraction of the sides results in a wedge shaped geometry in the corners, with the bonds
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FIG. 5. The local stresses o-z, (top) and cr,„ (bottom) for system 3 at E = 0.50.

being primarily strained in the x-direction. Thus the corners have large axx. The network at the

middle of the sides is also strained by the tension, but at this location the strain is the z-direction.

Thus the middle of the sides have large o-zz. We note that within the system the nanovoiding also

give pockets of large o-zz in the interior.

These tensile simulations of a coarse-grained highly crosslinked polymer system with open sides

have produced several important results. The failure stain decreases substantially as the system size

is increased, showing that system size and boundary conditions are critical. Extrapolating this size

effect implies that systems with thickness of less than a micron will have failure strains similar to

observed in experiments. Thus, a major source of the large difference in failure strains between

simulation and experiment has been identified. Moreover, the results imply the existence of a

crossover, where the failure strain stops decreasing with system size, and this crossover corresponds

to an important length scale in the polymer adhesive system that has not be characterized. As in

experiments the open sides result in the stresses that cause bond breaking to localize predominantly

in the corners. Crack initiation is found to occur in the corners as would be expected from linear

elastic fracture mechanics, although with such large strains the system is not in the linear regime.

Future simulations will address larger systems to observe the transition in E f (h) and to determine

the structural feature(s) that determine the transition.
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FIG. Sl. The left side density contour at 0.5 6-3 as a function of h at E = 0.5.

SUPPLEMENT

The shape of the neck region as a function of system size can be well described by the density

contours at the sides. In Fig. S1 the contours of the left side at E = 0.5 is shown for all five

systems. The shape of the corner is shown to be similar for all cases. More specifically, the slope

of the wedge shape is identical. The extent of the inward necking increases with h.

At intermediate values of the strain, this side shape can be well fit by a parabola as shown in

Fig. S2. In these cases, the length of the side can be quite accurately calculated. In cases where the

shape deviates from a parabola, the length has been determined from the two bounding parabolic

fits. The uncertainty that results in this method is small enough not to impact the points made in

the main text.

The dependence of the side shape as a function of strain for system 3 is given in Fig. S3. The

main features are that the inward extent increases with strain to about E = 0.60, which is shown in

green. By this strain, the length of the side has reached the minimal path length of the network at

the sides. At larger strains, the inward extent decreases so that the total side length remains about

constant. For system 3 this behavior continues to much larger strains before a crack forms in the

corner.
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FIG. S2. The left side density contour at 1.0 6-3 for systems 3 and 5 at E = 0.5 showing parabolic fits (green)

to the sides.
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FIG. S3. Strain dependence of the left side for system 3. E = 0.33, 0.415, 0.50, 0.60(green), 0.75 and 0.83

(red). Some contours away from the side show up at the two largest strains due to void formation at these

large strains.
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Figures S4-S8 show images of all the systems at different strains. The dark regions are where

cavities have formed.
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FIG. S4. Images of system 1 at various E showing crack formation at corner and contraction of side.
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FIG. S5. Images of system 2 at various E showing crack formation at corner and contraction of side.
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FIG. S6. Images of system 3 at various £ showing crack formation at corner and contraction of side.
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FIG. S7. Images of system 4 at various £ showing crack formation at corner and contraction of side.
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FIG. S8. Images of system 5 at various E showing crack formation at corner and contraction of side.
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FIG. S9. Images showing broken bonds (red) and surfaces (gray) as a function of strain for system 3. e = a)

0.50 b) 0.67 c) 0.83 d) 0.95 e) 1.00.

The location of broken bonds as a function of strain for system 3 are shown in Fig. ??. Bond

breaking does start well before Ec, but initially it is mostly isolated bonds. An accumulation of

bond breaking in the corners and along the sides occurs as the strain approaches Ec, and finally a

crack forms once sufficient bond breaking in the corner occurs.
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