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Abstract
Chemical attribution signatures (CAS) associated with different synthetic routes used for the 

production of Russian VX (VR) were identified. The goal of the study was to retrospectively 

determine the production method employed for an unknown VR sample. Six different production 

methods were evaluated, carefully chosen to include established synthetic routes used in the past for 

large scale production of the agent, routes involving general phosphorus-sulfur chemistry pathways 

leading to the agent, and routes whose main characteristic is their innate simplicity in execution.  

Two laboratories worked in parallel and synthesized a total of 37 batches of VR via the six synthetic 

routes following predefined synthesis protocols. The chemical composition of impurities and 

byproducts in each route was analyzed by GC/MS-EI and 49 potential CAS were recognized as 

important markers in distinguishing these routes using Principal Component Analysis (PCA). The 49 

potential CAS included expected species based on knowledge of reaction conditions and pathways 

but also several novel compounds that were fully identified and characterized by a combined analysis 

that included MS-CI, MS-EI and HR-MS. The CAS profiles of the calibration set were then analyzed 

using partial least squares discriminant analysis (PLS-DA) and a cross validated model was 

constructed. The model allowed the correct classification of an external test set without any 

misclassifications, demonstrating the utility of this methodology for attributing VR samples to a 

particular production method. This work is part one of a three-part series in this Forensic VSI issue of 

a Sweden-United States collaborative effort towards the understanding of the CAS of VR in diverse 

batches and matrices. This part focuses on the CAS in synthesized batches of crude VR and in the 

following two parts of the series the influence of food matrices on the CAS profiles are investigated.
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1. Introduction
The use of chemical warfare agents (CWA) for acts of terrorism is a demanding issue of current 

relevance to society. A recent example is the assassination of an individual at the international 

airport in Kuala Lumpur, Malaysia, by means of the nerve agent VX [1]. The continuous reports of 

chemical attacks in Syria are further evidence that analytical science targeted at CWA identification 

and attribution can provide forensic value to this field [2]. Another indicator is the fact that the 

Organization of the Prohibition of Chemical Weapons (OPCW) has encouraged an increase of the 

scientific input on CWA forensics by the Member States [3]. In armed conflicts between countries, 

which historically has been an arena of chemical weapon use, there is little need for forensic 

information since the identity of the perpetrator of such an attack often is known from the start.

However, in today’s asymmetrical conflicts and terrorist acts involving CWAs against civilian targets 

forcibly raise important questions such as the identity of the perpetrator, the location for production 

of the given CWA and the method for its manufacture.

Chemical attribution profiling of confiscated material or samples collected at a crime scene 

where a CWA has been used is bound to provide important forensic information to contribute to 

finding answers to the questions raised. The profiling is based on unique composition of chemical 

attribution signatures (CAS) that originate during the manufacture of the CWA and consists of 

reaction byproducts, residual starting materials and other chemical markers specific to a synthetic 

pathway [4] [5]. CAS of chemical warfare agents are yet to achieve the high degree of development 

and characterization exhibited by those in the field of illicit drugs (e.g. amphetamine) [6]. Partial 

responsibility for this underdevelopment in the field of CWA forensics can be attributed to the fact 

that only small quantities of authentic samples are available for research and the complicated nature 

of handling and analyzing highly toxic chemicals that require special laboratory setups and regulatory 

approvals. Forensic investigation of CWA has been described in the literature [7] [8] [9] [10] [11] [12]

[13] [14] [15] [16] [17] [18], however, no forensic analysis on the chemical attribution for the 

production of Russian VX (VR) is to our knowledge yet published. Prior studies of VR have focused on 

chemical verification analysis, i.e. aiming to prove the use or presence of the compound [19] [20] [21]

[22]. The choice of VR as a model substance, out of the numerous VX-analogues covered by the 

chemical weapons convention, was motivated by the lack of characterization of this specific 

substance.

In the present study, VR (Fig. 1) was produced in parallel by two laboratories using six different 

synthesis routes that were carefully selected to cover the broadest possible range of production 

methodology for this material. All VR batches were exchanged and then analyzed separately by both 

laboratories for chemical composition of impurities and byproducts using Gas Chromatography-Mass 

Spectrometry (GC/MS). Based on the accumulated data, CAS profiles were extracted and modeled 

employing PLS-DA with the goal of attribution of VR batches to their synthetic origin (i.e. route). The 

profiling methodology described herein was undertaken with the goal of establishing it as a general 

approach for chemical forensic analysis to allow implementation at most analytical laboratories. This 

work is part one of a three-part series in this Forensic VSI issue of a Sweden-United States 

collaborative effort towards the understanding of the chemical attribution signatures of VR in diverse 

batches and matrices. This part focuses on the CAS in synthesized batches of crude VR and in the 

following two parts of the series the influence of food matrices on the CAS profiles are 

investigated[23] [24].

2. Material and method



2.1. Safety

All nerve agents, VR included, are highly toxic compounds. Appropriate protective measures must be 

taken in order to ensure that neither personnel nor the environment come into contact with these

chemicals. All labware that has come in contact with VR must be thoroughly decontaminated (e.g. 

bleach decontamination) after use and the waste disposed off properly. The synthesis of CWAs is 

restricted by international agreements (Chemical Weapons Convention) and if the appropriate 

authorizations are not in place the work will be considered criminal.

2.2. Study design

VR was synthesized using six different production methods and then analyzed for CAS using GC/MS. 

Each synthesis was performed at two separate laboratories with at least two replicates per 

laboratory, except route 2. Samples from individual batches as well as the raw data from the analysis 

of the samples were exchanged between the laboratories giving four combinations of data (i.e. VR 

produced at Lawrence Livermore National Laboratory (LLNL) and analyzed at LLNL, VR produced at 

LLNL and analyzed at Swedish Defence Research Agency (FOI), VR produced at FOI and analyzed at 

FOI and VR produced at FOI and analyzed at LLNL). All routes do not have all four combinations of the 

data (Table 1). Based on GC/MS data, CAS profiles were extracted and modeled using PLS-DA with 

the aim to link VR samples to their synthetic route of origin.

2.3. Synthesis

In order to minimize variation introduced by deviations in the chemicals employed for the synthetic 

routes, all chemicals (e.g. starting materials, reagents and solvents) were procured from Sigma 

Aldrich by both laboratories where possible. The same article number was used by both laboratories 

when ordering chemicals to ensure the same quality. In order to minimize variations among the 

synthetic routes arising from the laboratories carrying them out, identical preparation protocols

were established and agreed upon. Important reaction features such as temperatures, reaction 

times, solvents and reagents were standardized in order to prevent the unavoidable generation of 

variability when comparing samples arising from a given synthetic route. 

A number of factors were taken into consideration when deciding which production methods for VR 

to evaluate. Routes that historically have been used for large scale production of VR were 

immediately included in our overall assessment. In addition, routes that yield the nerve agent using

steps involving general phosphorus-sulfur chemistry transformations were included in this study as 

these represent ways that perpetrators possessing limited resources or chemistry background may 

use. In the end, it was concluded that six routes (Fig. 2) would adequately cover the different 

production methods for VR. As outlined in Figure 2, all the routes begin with commercially available 

phosphorus-containing starting materials, rather than elemental phosphorus, as this represents the 

most likely manner in which the nerve agent will be synthesized. Each route comprised two to four 

different and subsequent chemical reactions or chemical transformations. No complete isolation of 

the intermediates were performed, only fairly simple purifications such as extractions etc. were 

achieved. The conversion of the intermediates in each individual reaction step were estimated from 

NMR spectra and GC-MS chromatograms in order to facilitate the calculation of the amounts of 

reagent needed for the following reactions. NMR was not used for identification of CAS.

A graphic presentation of the main starting materials of the six synthetic pathways is presented in 

Fig. 2. Only chemical precursors listed by the OPCW and isobutyl alcohol have been included in the 

figure as these compounds are known precursors of VR and information on their use for this purpose 

is available in the open literature [25].  Reaction details such as solvents, temperatures, reagent

stoichiometry and yields that are important for VR production have deliberately been omitted in 



order to prevent their unlawful employment and hinder proliferation. For reaction details please 

contact the authors for guidance and associated references. The number of reagents used for each

route and the number of steps in each route have been added in an effort to describe the complexity 

of the productions. 

In total, 37 batches of VR were synthesized at the two laboratories by several chemists. Four of these 

batches were produced following Route 1, three following Route 2, six following Route 3, and eight 

each following Routes 4-6.

2.4. Sample preparation

Samples were prepared from each individual synthesis step but only samples arising from the final 

synthetic step, the one yielding VR, were used in the profiling of CAS and subsequently in the PLS-DA 

predictions (Table 1). The remaining samples were used to determine the conversion of

intermediates and to track the origin of certain CASs. Samples were prepared by withdrawing 2 µL of 

the reaction mixture and diluting it to 1000 µg/mL with dichloromethane (DCM, Supra Solv, Merck, 

Damstadt, Germany). From these, dilutions to 100 µg/mL (DCM) samples were performed. The same 

lot of DCM was used for dilution of all samples within each laboratory. An aliquot of each 1000

µg/mL sample was also derivatized for analysis of polar compounds as follows: 50 µL sample was 

added to a mixture of 395 µL DCM and 50 µL of BSTFA ((N,O-bis(trimethylsilyl)trifluoroacetamide) + 

1% TMCS (trimethylchlorosilane)) (Thermo Scientific, Bellefonte, PA, USA), then 5 µL of a 

derivatization control compound (4-Tetrahydrothiopyranyl-d3-methylphosphonic acid, 1000 µg/mL) 

was added. The derivatization was conducted at 60 oC for 60 min. NMR samples were prepared by 

withdrawing 2 µL of the reaction mixture and diluting it to 1000 µg/mL using CDCl3 or D2O. Samples 

were stored in the dark at -20 °C until analysis. The exchanged samples were enclosed in cooling 

blocks during the entire transport.

2.5. Chemical analysis 

The same type of instrument, column and conditions for GC/MS analysis were used both at FOI and 

at LLNL. Each sample was analyzed using GC/MS in both electron impact (EI) mode and chemical 

ionization (CI) mode. Analysis in EI mode was performed using an Agilent 7890A/6890 GC equipped 

with a HP-5MS column (30 m long, 0.25 mm id, 0.25 µm film thickness, Agilent Technologies). A 1 µL 

aliquot of sample was introduced by splitless injection at 250 oC, with Helium as carrier gas at a 

constant flow of 1.0 mL/min. The column oven started at 40 oC for 1 min, followed by a 10 oC/min 

increase to 300 oC and hold at 300 oC for 5 min giving a runtime of 32 min. The mass spectrometer 

(Agilent 5975C/5973 MSD) scanned 29-500 m/z at a speed of 3.08 scan/s. The temperature of the 

transfer line, ion source and quadrupole were set at 280 oC, 230 oC and 150 oC, respectively. An 

Agilent 6890 GC/Agilent 5973 MS was used for the GC/MS-CI analysis with isobutane or ammonia as 

CI gas in positive mode using a scan range of 60-550 m/z at a scan speed of 3.03 scan/s. The ion 

source was set at 300 oC and the quadrupole at 150 oC. All other settings were the same as in EI 

mode. 

A quality control (QC) sample, consisting of eight compounds of different properties and a 

hydrocarbon series (C8-C28) dissolved in DCM, was run in the beginning of each sample sequence as 

well as after approximately every 10th sample. The QC samples were used for two purposes; to 

monitor the condition of the GC/MS system and to perform a retention index calibration. 

Furthermore, a blank analysis (DCM or DCM+BSTFA) preceded each sample during the analysis.

One 1000 µg/mL sample from each route was analyzed using a GC-TOFMS-EI employing a Leco 

Pegasus 4D coupled to an Agilent GC 6890 using similar settings as described above [26]. Data was 



acquired within the mass range of 38-500 m/z. Mass calibration measurements yielded a resolution 

of 0.1 to 0.3 ppm. The GC-TOF-MS data was used for CAS identification.

NMR analysis were performed using a Bruker Avance II 500 MHz NMR spectrometer. 1H-NMR and 
31P-NMR spectra were recorded using standard parameter files from Bruker. Tetramethylsilane was 

used as a reference and the samples were analyzed in CDCl3 or D2O

2.6. Identification of CAS 

CAS were identified by extracting mass spectra from chromatographic peaks using Automatic 

Mass Spectral Deconvolution and Identification Software (AMDIS, version 2.70, National Institute of 

Standards and Technology, NIST, Gaithersburg, MD, USA) and matched against mass spectra libraries 

(NIST 11 Version 2.0g and OPCW Central Analytical Database (OCAD ver. 19). These tentative 

identifications were supported by the use of retention indices calculated by AMDIS for each 

compound and by molecular weights determined from GC/MS-CI data. Mass spectra for compounds 

not found in mass spectra libraries were manually interpreted with the aid of previously published 

data [27] [28] [29]. GC/MS analysis of 1000 µg/mL samples were used to improve the identification in 

cases where the 100 µg/mL samples gave unclear results, for instance if MS-CI data had low signal-

to-noise ratio for a certain peak. In addition, further analysis on CAS was accomplished by studying 

samples arising from the previous synthesis steps, an approach that contributed to CAS tracking and

to understand were in the process the different CAS were formed. GC/HRMS data were also 

produced for identification of selected compounds. The combined use of all available information -

mass spectrum, molecular weight, retention index and synthetic pathway origin – resulted in 

tentative CAS identities assessed with relatively high degree of certainty (see supporting material). 

Where available, reference substances were used to provide unambiguous identification.

2.7. Data processing

GC/MS-EI raw data from 57 samples (the 100 µg/mL samples), see Table 1, were processed to 

generate a peak table. The table includes samples produced at both LLNL and FOI that were analyzed 

independently at each location. AMDIS was used in conjunction with a target library consisting of 

spectra, retention indices (RI), and tentative identities (if known) for all CAS with chromatographic 

peaks exceeding 0.5 % of total area. All chromatograms were analyzed by AMDIS for automated 

identification of target peaks and the automatic calculation of corresponding peak areas. AMDIS was 

used to search the target library retention indices for matching CAS to the chromatographic peaks, 

minimum match factor was set to 50-70. For compounds displaying a high match factor (Net match 

factor ≥ 90) and correct retention index (± 20 units) the area of the peak was transferred to a 

worksheet in Excel. Peaks with RI close to ± 20 units and match factor between 70 and 90 were 

checked manually before deciding whether to include them in the worksheet or not. During data

processing, no threshold for peak area was set. Hence, for a particular compound, peak areas smaller 

than 0.5 % were included if the peak area of this compound exceeded 0.5 % for at least one of the 

samples. The resulting peak table contained one row for each sample and one column for each CAS. 

The peak areas for each sample in the peak table were normalized so that the total area for all peaks 

in one sample equaled 100 %. To evaluate if the polar CAS (TMS-derivatized compounds) 

incorporated valuable information to the CAS profiles, one additional peak table was created for 

each sample in which the peak areas of the polar CAS were added in the same row as the 

corresponding underivatized sample. Then, the peak areas for each row in this polar CAS included 

peak table were normalized so that the total area for all peaks in one row equaled 100 %.  



2.8. Multivariate analysis 

Multivariate statistic evaluation of the normalized peak table were performed using the software 

SIMCA 13.0.2.0 (Sartorius Stedim Biotech). Two different multivariate statistical approaches were 

used: PCA was used to get an overview of the variation in the dataset, while PLS-DA [30] was used in 

the classification of the synthetic routes. All processed data were mean-centered and different types

of scaling and transformation of the data were evaluated. Applying a logarithmic transformation, log 

(X+0.01), in order to normalize the data distribution was found to produce best results for our data. 

Using this transformation, the performance of unit variance (UV)-scaling proved to perform best on 

our data for PCA models, and the combination based on log-transformation/Pareto was chosen for 

PLS-DA modelling.

3. Results and Discussion

3.1. Synthesis

VR was successfully produced by all the studied routes with conversion ranging between

approximately 5 to 80%. In addition to VR, a large number of byproducts and impurities were found 

in the reaction mixtures. Each synthesis route was performed in at least two replicates by each 

laboratory generating 37 unique batches of VR to sample. Over all more than 100 individual synthesis 

steps were performed which all, in various degree, left traces in the VR batches produced.

3.2. Chemical analysis and identification of CAS

A large number of impurities and byproducts from synthesis was observed in the samples (Fig. 3, 

supporting material). As can be seen in the figure, it is difficult to use visual interpretation in order to 

link a certain CAS profile to the correct synthesis route. All of the VR production routes involve 

several individual reaction steps, increasing the possibility for generating a vast number of CAS. In 

order to process the information contained in the samples, a relatively high threshold was set in 

order to reduce the number of CAS to a manageable quantity. Most of the CAS had a large variation 

of their relative intensities between samples, even within the intralab replicates. In such cases it was 

often found that the difference between samples originating from the two laboratories was even 

greater. For example, Table 2 shows the normalized peak areas of four individual CAS from four

samples produced by the same route (including replicates) and synthesized at both labs. Three 

interesting observations should be emphasized; first, the normalized areas of diisobutyl 

methylphosphonate displayed a large difference between the two replicates synthesized at FOI, 

while the replicates synthesized at LLNL showed more similarity, indicating that the variation of a 

single CAS between replicates is often difficult to interpret. Secondly, there were pronounced 

differences between the laboratories, for example, the normalized areas for O-isobutyl O-[2-

(diethylamino)ethyl] methylphosphonothioate were above 44.5 for the LLNL synthesis replicates but 

found to be below 4.8 for the FOI synthesis replicates indicating laboratory specific CAS profiles. 

Thirdly, the normalized areas for these CAS remained relatively constant after shipping the samples 

overseas for a second analysis indicating stability of those specific CAS and that the performance of 

the GC-MS analysis was similar between the laboratories. The benefit of performing the study at 

more than one laboratory to cover inter-lab-variation was apparent when interpreting the data 

described above. 

Taking all data into account, most CAS were present in a majority of the routes and the number of 

CAS unique for a single route were few. In total, 49 different CAS were identified based on the 

chemical analyses of all routes. Out of these compounds, 21 were identified based on hits in 

instrument spectral libraries, 17 compounds were tentatively identified by spectra interpretation, 5

of the CAS were verified by the use of reference substances, and 11 of the compounds remain 

unidentified. When the samples were derivatized prior to GC-MS analysis, an additional number of 



18 polar compounds (e.g. phosphonic acids and phosphonothioic acids) were identified as their TMS 

derivatives [31] [32]. However, there were indications that the derivatization of VX samples was 

prone to produce artifacts not present in the original samples, implying a risk of adding artificial CAS 

to the process [33]. Identification of all individual CAS would have been an optimal scenario, however 

this is not within the scope of the study. It is important to emphasize that an identified structure is 

not required for inclusion of a CAS in the multivariate modeling approach used in this study. 

However, the known CAS identities allowed a more in depth investigation of the profiles. With an 

established chemical identity it is possible to assess the origin of an identified CAS via a thorough 

analysis of the specific synthetic route it derived from, thus placing additional input for the 

interpretation and validity of the model.

The identified CAS were phosphonates, phosphonothioates, analogues of VR, pyrophosphonates and 

diethylamine derivatives. Two chemicals, isobutyl methylphosphonic acid and isobutyl 

methylphosphonothionic acid, were present in all samples. In addition, methyl phosphonic acid and 

diisobutyl methylphosphonate were found in almost all samples along with pyro phosphonate-based 

species that were present in samples from all routes but not in all replicates. The CAS are often 

analogues of the same type of compounds and determining their exact structure via interpretation of 

mass spectra can then become a daunting task. The MS-EI fragmentation patterns among the VR 

analogues showed a high degree of similarity compared to VR but their retention indices, and 

molecular weights, and/or molecular formula deviated from VR allowing their differentiation. A few 

of these analogues were preliminary identified as O-isobutyl- O-[2-(diethylamino)ethyl]

methylphosphonothioate and O-isobutyl- S-[2-diethylaminoethyl] methylphosphonodithioate (Fig. 4).

3.3. Route classification

The CAS profiles of all 57 underivatized samples from the six synthetic routes were included in a PCA-

model to get an overview of the data. The PCA-model with 57 observations and 49 variables (CAS)

required seven significant principal components to explain 82 % of the data variance (R2X = 0.82, Q2 =

0.49). The use of Pareto scaling or no scaling (only mean centering) of the variables gave similar 

results in terms of cross validation (Q2 = 0.46 using Pareto and Q2 = 0.45 using centering). The score 

plots revealed no evident outliers and therefore all samples were included in the building of the 

model. Furthermore, the samples from each route clustered in separate groups. Since clustering of 

the routes was observed in the PCA score plot already using the 57 underivatized samples, these 

were the samples primarily used for construction of the PLS-DA prediction model (M1, Table 3). This 

approach reduces the analytical complexity and amount of data to be processed, hence facilitating 

the reproduction at most analytical laboratories. In order to evaluate if the derivatized samples 

contained valuable information to the CAS profiles, data of the polar CAS (TMS-derivatized 

compounds) were incorporated in a second PLS-DA model (M2, Table 3). M2 describes the variation 

between the six routes slightly better with a small increase in both R2Y and Q2. The amount of work 

for generating a peak table with both TMS and non TMS data is substantially increased and the 

performance of the prediction of the test set samples using M2 did not increase when compared to 

the original PLS-DA model (data not shown). Thus, the addition of polar CAS such as 

methylphosphonic acid, methylphosphonothioic acid, isobutyl methylphosphonic acid, isobutyl 

methylphosphonothioic acid, and isobutyl S-(2-diethylaminoethyl) methylphosphonothioic acid in the 

predictions was considered superfluous. Furthermore these chemicals are common degradation 

products of VR and are likely to exist in most VR samples.

A third model (M3) was built using the derivatized and underivatized data where the 20 least 

important CAS, as estimated by the model, were removed from M2 to evaluate if this could be done

without affecting the model’s predictive ability. Among the 20 compounds removed were both 



derivatized and underivatized CAS. The results showed that the predictive ability of the model was 

efficient in the reduced version of M2. The reduction of up to 20 CAS proved that the route

classification was not particularly sensitive to removal of some individual compounds and that some 

noise could be removed by variable reduction. However, the removal of even more CAS reduced the 

predictive ability significantly, indicating that approximately 45 CAS were needed to retain the 

performance of the route classification. Since there are a number of unidentified compounds among 

the CAS it is difficult to assess the importance of the individual CAS removed or not, why we 

recommend that as many CAS as possible are used in the modeling and in the predictions of routes.

M1 with all 57 underivatized samples resulted in a 10 principal component (PC) model with a cross 

validated predictive ability Q2 = 0.85 and total explained variance R2X = 0.89. The six routes were all 

well described by the model with individual R2Y values of 0.9 or higher and Q2 values above 0.8. The 

score plots of the four dominant PC’s (Fig. 5) separated samples from each route from the other 

routes. Samples from routes 4 and 5 separated well in the score plot of PC 1 vs PC 2(Fig. 5, top), 

whereas separation of routes 1, 2, 3 and 6 samples are seen in score plot of PC 3 vs PC 4 (Fig. 5, 

bottom). Samples from routes 3, 4 and 6 displayed small variation and clustered tightly in well-

defined groups whilst samples from routes 1, 2 and 5 were more widely spread in the score plot. This 

is consistent with the observations made during synthesis where routes 3, 4 and 6 were robust and 

more straight-forward to perform. This compared to routes 1, 2 and 5 which represent more complex 

chemical conditions.

In order to illustrate the variability between replicates in more detail and the different traits of CAS 

profiles of different routes, a reduced PCA model was built on samples from only routes 1 and 3 

(3PCs, R2 = 0.83 and Q2 = 0.64). In the score plot of the two first PCs (Fig. 6), samples from route 3 

display small variations between replicates, both within the same laboratory and between the

laboratories. In addition, the reanalyzed samples that were transported overseas are all clustered 

tightly in one distinct group. Hence, the results indicate that the synthesis of VR according to route 3 

is fairly reproducible and the CAS profiles seem to be stable. In contrast, the variation between

samples from route 1 is much larger. The four synthesis replicates analyzed directly at the laboratory

of origin deviate both within and between laboratories. The variation was found to be linked to both 

the synthesis replicates and the effect brought upon by aging and transport of samples. Hence the 

synthesis of route 1 creates batches displaying greatly diverging CAS profiles, both within as well as 

between laboratories, and the profiles are not stable over time when transported and resubjected to 

analysis. It is important to have enough samples to cover the variation in CAS profiles within a given

route and the associated variation brought upon the sample by other factors in order for the model 

to work as efficiently as possible. Ultimately, an ideal model should be based on CAS that are stable 

over time or built on a model that can incorporate the degradation of these species over time. 

PLS-DA regression coefficients were used to evaluate the importance of individual CAS for attribution 

of samples to specific synthesis routes and to get an overview of how the CAS profiles were 

composed (Fig. 7). Each route possesses their individual set of key CAS (i.e. significantly correlated), 

that differentiate it from others. For example, the coefficient plots illustrate that compound 2(N,N-

diethylaminoethyl-2-chloride), shown as number 2 in Fig. 7, is positively correlated to samples from 

route 5 and route 6 and negatively correlated to samples from route 3 and route 4, whereas being 

insignificant for samples of route 1 and route 2. Route 2 does not show any individually significant 

CAS. Coefficient plots facilitated the evaluation of the importance of individual CAS for each route, 

however, the signatures positively correlated to a route were not necessarily unique for that route 

and could still be present in other routes. By visual interpretation of the regression coefficients plots 



it is evident that CAS contributes heterogeneously to the CAS profiles and that most CAS are 

important for differentiating between routes.

3.4. Validation with external test set
The validation of the PLS-DA model was performed using an external test set. The use of an external 
test set for validation requires that the samples included in the test set are not used for construction 
of the PLS-DA model and hence can be regarded as unknown samples. When the routes of the test 
set samples are predicted, the performance of the model can be assessed based on the 
correspondence between predicted and true values. Ideally, a sample that belongs to a specific class 
(in this case route) would have a predicted value of 1 for that specific class and members of other 
classes would get a predicted value of 0. The deviation from these values for the test set samples 
give a measure of the model’s predictive ability. A test set was selected out of the 57 samples,
consisting of 11 samples.The test set was chosen to include two replicates from each route (one FOI 
sample and one LLNL sample) except for route 2 from which only one replicate was selected since 
only three replicates were available from that route (see supporting material). 

A PLS-DA model was calculated based on the remaining 46 samples (10 PCs, R2Y = 0.94 and Q2 = 0.81) 
and this model was used for route classifications of the samples in the test set. As shown in Table 4 
the model correctly assigned the routes for all 11 samples in the test set (predicted values close to 1). 
The classification of sample 2 (R11UU) to route 1 deviated from a predicted value of 1 but route 1 
was still by far the best prediction for that sample (all other routes having predicted values close to 
0). The difficulty to assign this sample could be explained by the greater sample-to-sample variability 
seen for route 1. Furthermore, no test samples were misclassified (all values were close to 0 when 
not belonging to the class). 

All samples produced within the study were classified to correct routes using the methodology 

presented in this work, thus demonstrating the strength of the developed approach. Nonetheless, 

the model developed in this study is based on a limited amount of samples and the development of a 

validated forensic method would require a model based on data involving more VR samples. More 

VR samples of different origin could be included to increase the resolving power of the model. The 

design of this study was established in order to narrow its scope to a reasonable size. The aim was to 

ensure that the variability of CAS profiles originated mainly from production methods rather than 

from specific solvents, reagents, storage, environmental factors, etc. It is important to note that in 

order to strengthen the model described herein, more refined studies on the synthesis route 

attribution of VR would merit additional routes and elements that could not be covered in this study.

Consequently, if the same analytical procedures described in this study are employed during the 

analysis, the model could easily be expanded to include more samples and thus become more 

refined. 

4. Conclusions
VR was produced by six synthetic routes and all samples of the test set were correctly classified 

according to the production routs. The key conclusion is that most CAS within the samples are 

relevant for classification and contribute to various degrees to the profiling. By using a large number 

of CAS the model is not as vulnerable to changes of individual CAS as a prediction of routes based 

only on one or a few specific CAS would be. The collaboration between the laboratories added extra 

value in the identification of relevant synthesis pathways and in the identification of unknown CAS. 

However, the collaboration has been crucial in obtaining inter-lab cross validation achieved by 

exchanging samples as well as exchanging analyzed data between the laboratories and to combine all 

of the data in one model.  
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FIGURE AND TABLE CAPTIONS

Figure 1. Model compound Russian VX (VR).
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n.d. = not detected

Table 1. The samples (100 µL/mL GC/MS) withdrawn from the different routes R1-R6 and included in the 

multivariate data analysis.  Samples synthesized at FOI or LLNL and analyzed at FOI or LLNL (X= Data missing).

PLS-DA models Variables

(CAS)

Observations

(samples)

Components R2X R2Y Q2

M1. Original model 49 57 10 0.89 0.93 0.85

M2. Model with polar CAS 

included

67 57 11 0.88 0.96 0.86

M3. Reduced M2 model 47 57 11 0.89 0.96 0.87

Table 2. Relative abundance (%) of four CASs in one of the routes. All four synthesis replicates are analyzed at 

both laboratories.

P

O

S
O

N



Figure 2. A graphic presentation of the main starting materials and building blocks of the six synthetic 

pathways.
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Figure 3. CAS profiles of six VR batches. Each bar represents a compound and the sum of all peak areas are 

normalized to 100%. The graphs represent route 1 batches synthesized at FOI (A) and at LLNL (B), route 3 

batches synthesized at FOI (C) and at LLNL (D) and route 5 batches synthesized at FOI (E) and at LLNL (F).
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Figure 4. Mass spectra of VR and two previously not described VR-related compounds. A) VR spectrum from 

OCAD library (MW = 267, C11H26NO2PS). B) Spectrum of O-isobutyl-O-[2-(diethylamino) ethyl]

methylphosphonothioate (empirical data: MW = 267, C11H26NO2PS) tentatively identified. C) Spectrum of O-

isobutyl-S-[2-diethylaminoethyl] methylphosphonodithioate (empirical data: MW = 283, C11H26NOPS2) 

tentatively identified. 



PLS-DA models Variables

(CAS)

Observations

(samples)

Components R2X R2Y Q2

M1. Original model 49 57 10 0.89 0.93 0.85

M2. Model with polar CAS 

included

67 57 11 0.88 0.96 0.86

M3. Reduced M2 model 47 57 11 0.89 0.96 0.87

Table 3. Model performance under different settings.

Figure 5. Score plots of the PLS-DA model (PC1 versus PC2 above, PC3 versus PC4 below).
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Figure 6. Score plot of PCA model based on samples from route 1 and route 3 (PC1 versus PC2). Samples are 
named according to route (R1 or R3), replicate (1 or 2), synthesis laboratory (U=LLNL or S=FOI) and analysis 
laboratory (U=LLNL or S=FOI). 
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Figure 7. Coefficient plots for R1, R2, R3, R4, R5 and R6 illustrating the relative importance of some of the CAS 

for different routes. Compounds are numbered 1 to 49 but the numbering differs compared to supporting 

material.
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R1 R2 R3 R4 R5 R6

Test sample 1 (R1) 1.04 0.01 0.17 0.08 -0.17 -0.13

Test sample 2 (R1) 0.64 -0.07 -0.11 0.18 0.13 0.23

Test sample 3 (R2) 0.04 1.05 0.09 -0.13 -0.04 -0.01

Test sample 4 (R3) 0.01 0.03 0.77 0.07 -0.02 0.14

Test sample 5 (R3) 0.06 0.05 1.14 0.03 -0.05 -0.23

Test sample 6 (R4) 0.02 0.02 -0.04 1.05 -0.07 0.02

Test sample 7 (R4) -0.01 0.06 0.12 0.92 0.15 -0.23

Test sample 8 (R5) 0.22 -0.01 -0.02 0.06 0.99 -0.23

Test sample 9 (R5) 0.16 0.04 -0.07 0.00 0.89 -0.03

Test sample 10 (R6) -0.04 -0.07 0.35 0.07 0.00 0.69

Test sample 11 (R6) 0.00 0.07 0.08 0.00 0.06 0.79

Table 4. PLS-DA classification of routes for an external test set consisting of eleven samples. Classification 
criteria was set to: <0.35 = do not belong to the class (white), 0.35 to 0.65 = May or may not belong to the class 
(orange), and 0.65-1.35 = belonging to the class (green).
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