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Main target: model structural error
deviation from ‘truth’ or from a higher-fidelity model

• Inverse modeling context
• Given experimental or higher-fidelity model data,

estimate the model error

• Represent and estimate the error associated with
• Simplifying assumptions, parameterizations
• Mathematical formulation, theoretical framework
• Numerical discretization

• ...will be useful for
• Model validation
• Model comparison
• Scientific discovery and model improvement
• Reliable computational predictions
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Data informs model parameters:
but what if the model is only an approximation?
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Ignoring model error leads to
overconfident and biased predictions
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Model-data fit

Given noisy data g, calibrate an exponential model f : g(x) ≈ f (x;λ)
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True model – dashed-red – is structurally different from fit model f (x, λ)
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True model – dashed-red – is structurally different from fit model f (x, λ)

Higher data amount reduces posterior and predictive uncertainty
• Increasingly sure about predictions based on the wrong model
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Given noisy data g, calibrate an exponential model f : g(x) ≈ f (x;λ)

Employ Bayesian inference to obtain posterior PDFs on λ

True model – dashed-red – is structurally different from fit model f (x, λ)

Accounting for model error allows extra uncertainty component to
propagate through predictions
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Explicit model discrepancy: issues for physical models

yi = f (xi;λ) + δ(xi)︸ ︷︷ ︸
truth g(xi)

+εi

• Explicit additive statistical model for model error δ(x) [Kennedy-O’Hagan, 2001]

• Potential violation of physical constraints

• Disambiguation of model error δ(xi) and data error εi

• Calibration of model error on measured observable does not impact
the quality of model predictions on other QoIs

• Physical scientists are unlikely to augment their model with a
statistical model error term on select outputs
• Calibrated predictive model: f (x;λ) + δ(x) or f (x;λ) ?

• Problem is highlighted in model-to-model calibration (εi = 0)
• no a priori knowledge of the statistical structure of δ(x)
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Key Idea: Model Error Embedding

Ideally, modelers want predictive errorbars:
inserting randomness on the outputs has issues, so...

Augment input parameters λ with a stochastic term δα

x-independent
yi = f (xi;λ+ δα) + εi

Generalize parameter forms,

Random field yi = f (xi;λ+ δα(xi)) + εi

More generally, explore additional parameterizations,

Intrusive yi = f̃ (xi;λ, δα(xi)) + εi
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Non-Intrusive Probabilistic Embedding

Additive corrections δα for input parameters λ

yi = f (xi;λ+ δα) + εi

Embed model error in specific submodel phenomenology
a modified transport or constitutive law
a modified formulation for a material property
turbulent model constants

Allows placement of model error term in locations where key
modeling assumptions and approximations are made

as a correction or high-order term
as a possible alternate phenomenology

Naturally preserves model structure and physical constraints
Disambiguates model/data errors

K. Sargsyan (ksargsy@sandia.gov) Embedded Model Error Dec 12, 2017 7 / 13



Bayesian Framework for Model Error Estimation

yi = f (xi;λ+ δα) + εi

Given data yi, perform simultaneous estimation of α̃ = (λ, α),
i.e. model parameters λ and model-error parameters α.
Bayes’ theorem

Posterior︷ ︸︸ ︷
p(α̃|y) =

Likelihood︷ ︸︸ ︷
p(y|α̃)

Prior︷︸︸︷
p(α̃)

p(y)︸︷︷︸
Evidence

In order to estimate the likelihood Ly(α̃) = p(y|α̃) = p(y|λ, α),
one needs uncertainty propagation through f (xi; λ+ δα︸ ︷︷ ︸

stochastic

),

... hence, we employ Polynomial Chaos (PC) representation for δα.
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Model error embedding – workflow

KUKU

Forward modeling (Poly. Chaos)

Inverse modeling (Bayesian)

Calibration

Preprocess

Prediction

f (xi;λ)

Model

f̃ (xi;λ)

Surrogate

f̃ (xi;λ+ δα(ξ))

Embedded
model

GSA/BF
Likelihood yi

Data

Posterior p(λ, α|y)

Prior p(λ, α)

h(x;λ+ δα(ξ))

Any QoI

Prediction p(h(x)|y)

Predictive uncertainty decomposition: Total Variance =

Parametric uncertainty + Data noise + Model error + Surrogate error
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More data leads to ‘leftover’ model error

Calibrating a quadratic f (x) = λ0 + λ1x + λ2x2

w.r.t. ‘truth’ g(x) = 6 + x2 − 0.5(x + 1)3.5 measured with noise σ = 0.1.

Summary of features:

Well-defined model-to-model calibration
Model-driven discrepancy correlations
Respects physical constraints
Disambiguates model and data errors
Calibrated predictions of multiple QoIs
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E3SM Land Model (ELM)
US Department of Energy (DOE) sponsored Earth system model
Land, atmosphere, ocean, ice, human system components
High-resolution, employ DOE leadership-class computing facilities
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For surrogate construction (forward UQ) under the hood, see poster by
C. Safta [NG33A-0190: Machine Learning Techniques for Global
Sensitivity Analysis in Climate Models] Wednesday afternoon.
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Software

Inference library in UQTk v3.0 (www.sandia.gov/uqtoolkit)

Workflow for model error representation, quantification and
propagation
Custom components: forward model, likelihood and prior
A range of common forward models, including polynomial
surrogates
Various likelihood options, including classical, Kennedy-O’Hagan,
model-error-embedding and its approximations
Several prior options for embedded parameters α, including
Wishart, Jeffreys, range-constrained
All pieces – forward model, likelihood and prior – can be made
custom
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Summary Thank You

Represent, quantify and propagate model structural errors
Bayesian machinery for simultaneous estimation of physical
parameters and model error
A principled guide for model exploration (embedded
representation, but can be performed non-intrusively!)
Differentiates from data noise; allows model-to-model calibration
Connections with Bayesian model averaging, model ‘nudging’,
and stochastic physics
Besides climate models, applied successfully in LES, transport
models, chemistry, fusion

• K. Sargsyan, H. Najm, and R. Ghanem. “On the Statistical Calibration of
Physical Models”. International Journal for Chemical Kinetics, 47(4):
246-276, 2015.

• K. Sargsyan, X. Huan, and H. Najm. “Embedded Model Error
Representation for Model Calibration”, to be submitted, Journal of
Computational Physics, 2017.
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representation, but can be performed non-intrusively!)
Differentiates from data noise; allows model-to-model calibration
Connections with Bayesian model averaging, model ‘nudging’,
and stochastic physics
Besides climate models, applied successfully in LES, transport
models, chemistry, fusion

We are hiring!
• Postdoctoral Position UQ-in-Climate at Sandia National Labs
• Go to Sandia careers’ website and look for job ID 659182
• Experience with UQ, climate modeling, coding.
• Salary $85700+/year, in Livermore, CA
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Additional Material



Calibrate f (x;λ), given data g(x)
x are operating conditions, design parameters, various QoIs
λ are model parameters to be inferred/calibrated

Default: Ignore model errors: g(x) = f (x;λ) + ε

• Biased or overconfident physical parameters
• Wrong model predictions

Conventional: Correct for model errors: g(x) = f (x;λ) + δ(x) + ε

• Physical parameters are ok
• Wrong model predictions (data-specific corrections)
• Model and data errors mixed up

What we do: Correct inside the model: g(x) = f (x;λ+ δ(x)) + ε

• Embedded model error
• Preserves model structure and physical constraints
• Disambiguates model and data errors
• Allows meaningful extrapolation



Data-Model-Truth

• Measurements data truth data error

yi = g(xi) + εd
i

• Model truth
g(xi) =

model
f (xi;λ) +

model error
δ(xi)

• Total error budget yi = f (xi;λ) + δ(xi)︸ ︷︷ ︸
truth g(xi)

+εd
i

Explicit statistical modeling of model discrepancy/error δ(x)

Model Error: δ(x) ∼ GP(µ(x),C(x, x′))

Data Error: εd
i ∼ N(0, σ2)

Estimate model parameters λ along with those of δ(x), εd
i
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Polynomial Chaos Representation of Augmented Input

yi = f (xi;λ+ δα) + εi

Zero-mean PC form δα =
∑K

k=1 αkΨk(ξ)

Functional representation of a large class of random variables
The PC germ ξ is a standard random variable

e.g. Uniform(−1, 1) or Normal(0, 1)

The PC bases (e.g. Legendre or Hermite polynomials) are
orthogonal w.r.t. PDF of ξ∫

Ψm(ξ)Ψk(ξ)πξ(ξ)dξ = 0 for m 6= k.

PC representation allows efficient
Sampling
Moment estimation
Variance-based decomposition
Uncertainty propagation (via NISP, see next slide)



Non-intrusive Spectral Projection (NISP) for
Uncertainty Propagation

Input random variable represented as PC

Λ(ξ) =
∑

k

αkΨk(ξ)

Black-box forward model Z = f (Λ)

Seeking PC representation of output random variable

Z(ξ) =
∑

k

zkΨk(ξ)

Use orthogonality property and quadrature integration to find PC
coefficients

zk =
1

||Ψk||2

∫
f (Λ(ξ))Ψk(ξ)πξ(ξ)dξ ≈ 1

||Ψk||2
∑

q

f (Λ(ξ(q)))Ψk(ξ
(q))w(q)



Likelihood construction: data model

Data yi = g(xi) + εi

Model f (xi; Λ)

Model input as a PC Λ = λ+ δα =
∑

k αkΨk(ξ1, . . . , ξd)

Data generation model

yi = f (xi, λ+ δα) + εi =

= f

(
xi,
∑

k

αkΨk(ξ1, . . . , ξd)

)
+ σξd+i =

NISP
≈

∑
k

fik(α̃)Ψk(ξ1, . . . , ξd) + σξd+i

Likelihood Ly(α̃) = p(y|α̃) for α̃ = (λ, α) and its construction directly
follows, via sampling or moment extraction.



Model Error – Likelihood options

yi =
∑

k fik(α̃)Ψk(ξ1, . . . , ξd) + σξd+i

True Likelihood:

Ly(α̃) = p(y|α̃) = p(y1, . . . , yN |α̃) = π(y)

Degenerate if no data noise
Requires multivariate kernel density estimation (KDE) or high-d
integration
Gaussian approximation:

Ly(α̃) ∝ exp
(
−1

2
(y− µ(α̃))TΣ−1(α̃)(y− µ(α̃))

)
NISP PC relieves the expense and provides easy access to mean
µ(α̃) and covariance Σ(α̃)



Model Error – Likelihood options

yi =
∑

k fik(α̃)Ψk(ξ1, . . . , ξd) + σξd+i

Marginalized Likelihood:

Ly(α̃) = p(y|α̃) ≈
N∏

i=1

p(yi|α̃) =

N∏
i=1

π(yi)

Requires univariate KDE
Neglects built-in correlations - looks for a pointwise match
Gaussian approximation:

Ly(α̃) ∝ exp

(
−1

2

N∑
i=1

Σ−1
ii (α̃)(yi − µi(α̃))2

)
NISP PC relieves the expense and provides easy access to
marginal means µi(α̃) and variances Σii(α̃)



Model Error – Likelihood options

yi =
∑

k fik(α̃)Ψk(ξ1, . . . , ξd) + σξd+i

Approximate Bayesian Computation (ABC):

Ly(α̃) =
1
ε

K
(
ρ(SM,SD)

ε

)
Mean of f (xi; Λ) is “centered” on the data

The width of the distribution of f (xi; Λ) is consistent with the spread
of the data around the nominal model prediction

Ly(α̃) ∝ exp

(
− 1

2ε2

N∑
i=1

[
(µi(α̃)− yi)

2 + (
√

Σii(α̃)− γ|µi(α̃)− yi|)2
])

NISP PC relieves the expense and provides easy access to marginal
means µi(α̃) and variances Σii(α̃)



Optimal Embedding via Bayes Factors

Question: which parameters should be augmented with stochastic
structure to capture model error?

Initially, we base the decision on GSA (heuristic)
Implementing formal model comparison via Bayes Factor

Bayes’ formula for a given model Mk

Posterior︷ ︸︸ ︷
p(α̃|y,Mk) =

Likelihood︷ ︸︸ ︷
p(y|α̃,Mk)

Prior︷ ︸︸ ︷
p(α̃|Mk)

p(y|Mk)︸ ︷︷ ︸
Evidence

Bayes factor between two models is the ratio of two evidence terms:

BF(M1,M2) =
p(y|M1)

p(y|M2)

Computing log-evidence log p(y|Mk) is key for model selection.



Model Selection: Model Evidence Computation

Model evidence is a high-dimensional integral, requiring many
model evaluations – challenging to compute
We investigated five methods

GA (Gaussian approximation to posterior)
HM (Harmonic Mean estimator)
MC (Plain Monte-Carlo)
IMC (Importance sampling Monte-Carlo)
TMCMC (Transitional Markov chain Monte-Carlo)
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Embedded Model: Predictions

f (x; Λ) = f (x;
∑

k αkΨk(ξ1:d)) =
∑

k fk(x; α̃)Ψk(ξ1:d)

Non-intrusive spectral projection (NISP) will allow
Posterior/pushed-forward predictions

Easy access to first two moments:

µ(x; α̃) = f0(x; α̃), σ2(x; α̃) =
∑
k>0

f 2
k (x; α̃)||Ψk||2

Predictive mean
E[y(x)] = Eα̃[µ(x; α̃)]

Decomposition of predictive variance

V[y(x)] = Eα̃[σ2(x; α̃)]︸ ︷︷ ︸
Model error

+Vα̃[µ(x; α̃)]︸ ︷︷ ︸
Posterior error



Embedded Model: Predictions at Data Locations

f (xi; Λ) = f (xi;
∑

k αkΨk(ξ1:d)) + σξi+d =
∑

k fk(xi; α̃)Ψk(ξ1:d) + σξi+d

Non-intrusive spectral projection (NISP) will allow
Likelihood computation

Easy access to first two moments:

µ(xi; α̃) = f0(xi; α̃), σ2(xi; α̃) =
∑
k>0

f 2
k (xi; α̃)||Ψk||2

Predictive mean
E[y(xi)] = Eα̃[µ(xi; α̃)]

Decomposition of predictive variance

V[y(xi)] = Eα̃[σ2(xi; α̃)]︸ ︷︷ ︸
Model error

+Vα̃[µ(xi; α̃)] + σ2︸ ︷︷ ︸
Posterior/Data error



Two common embedding forms
yi = f (xi; Λ = λ+ δα) + εi

Unconstrained inputs:
First-order Gauss-Hermite PC (Multivariate Normal):

Λ1 = λ1 + α11ξ1

Λ2 = λ2 + α21ξ1 + α22ξ2

...
Λd = λd + αd1ξ1 + αd2ξ2 + · · ·+ αddξd

Constrained inputs:
First-order Legendre-Uniform PC (Independent Uniform):

Λ1 = λ1 + α1ξ1

Λ2 = λ2 + α2ξ2

...
Λd = λd + αdξd



Surrogate construction is necessary

Remember output PC construction

zk =
1

||Ψk||2

∫
f (Λ(ξ))Ψk(ξ)πξ(ξ)dξ ≈ 1

||Ψk||2
∑

q

f (Λ(ξ(q)))Ψk(ξ
(q))w(q)

requires multiple model evaluations, hence...

We pre-construct a surrogate or a response surface to f (Λ) via
standard polynomial regression
Subsequent NISP can be made exact if the bases of surrogate
and PC match
Access to leave-one-out (LOO) surrogate error as yet another
component of the predictive uncertainty



Attribution of error components

yi =
∑

k

fik(α)Ψk(ξ1, . . . , ξd) + σDξd+i︸ ︷︷ ︸
hi(ξ̂;α̂)

Stochastic dimensions:
Model error ξ1, . . . , ξd

Measurement error ξd+1, . . . , ξd+N

Posterior uncertainty (α): can be represented via its own PC
expansion (using MCMC samples and Rosenblatt transformation)

Full PC expansion: yi =
∑

fjΨj(
ˆ̂
ξ)

Full stochastic germ:

ˆ̂
ξ = (ξ1, . . . , ξd︸ ︷︷ ︸

Model error

, ξd+1, . . . , ξd+N︸ ︷︷ ︸
Measurement error

, ξd+N+1, . . . , ξd+N+Nα︸ ︷︷ ︸
Posterior uncertainty

)

Posterior predictive variance:
σ2

PP(xi) = Eα[σ2(xi, α)] + EσD [σ2
D] + Vα[µ(xi, α)]



Predictions account for model error

Calibrating single-exponential models
with data from a double exponential model g(x) = e−0.5x + e−2x

Linear-exponential f (x, λ) = eλ1+λ2x
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Key Steps

Formulation: Identify a pair of models with different degree of
fidelity

e.g., low-vs-high grid resolution, simplified-vs-detailed geometry, or
data-vs-model.

Representation: Embed model error a few parameters at a time
Build surrogate, perform GSA for initial screening

Quantification: Calibrate for embedded PC coefficients
Challenging Bayesian formulation: adaptive MCMC sampling.

Prediction: Embedded model error propagation via PC NISP
Posterior predictive checks

Attribution: Attribute model errors to specific components
Variance-based decomposition into contributions from
model error, surrogate error, data noise, posterior uncertainty.



Treatment of Discrete or Categorical Parameters

We have developed an approach to incorporate discrete parameters in the
embedded model error framework.

Augment discrete parameters with a probability mass function (PMF) and
infer the mass weights (just like the continuous case of inferring PDF).

Allows MCMC on continuous parameters.
Connections to Bayesian model averaging and model selection.

The overall mean for a given (α, a, x) is

µ(α, a; x) = EΛ,L [f (Λ(α),L(a); x)] =

R∑
r=1

arµr(α; x),

and the variance is

σ2(α, a; x) = VΛ,L [f (Λ(α),L(a); x)]

=
R∑

r=1

arσ
2
r (α; x)︸ ︷︷ ︸

due to cont. param.

+
R∑

r=1

arµ
2
r (α; x)− µ(α, a; x)2

︸ ︷︷ ︸
due to categorical param.

.


