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Main target: model structural error

deviation from ‘truth’ or from a higher-fidelity model

e Inverse modeling context

Given experimental or higher-fidelity model data,
estimate the model error

e Represent and estimate the error associated with
Simplifying assumptions, parameterizations
Mathematical formulation, theoretical framework
Numerical discretization

e ...will be useful for
Model validation
Model comparison
Scientific discovery and model improvement
Reliable computational predictions
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Data informs model parameters:

but what if the model is only an approximation?
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Ignoring model error leads to
overconfident and biased predictions

e o Data,N=5

=1.0 -0.5 0.0 0.5 1.0
X

Model-data fit

@ Given noisy data g, calibrate an exponential model f:  g(x) ~ f(x; \)
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Ignoring model error leads to
overconfident and biased predictions
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@ Given noisy data g, calibrate an exponential model f:  g(x) ~ f(x; \)

@ Employ Bayesian inference to obtain posterior PDFs on A
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@ Given noisy data g, calibrate an exponential model f:  g(x) ~ f(x; \)
@ Employ Bayesian inference to obtain posterior PDFs on A

@ True model — dashed-red — is structurally different from fit model f(x, A)

K. Sargsyan (ksargsy@sandia.gov) Embedded Model Error Dec 12,2017 4/13



Ignoring model error leads to
overconfident and biased predictions
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@ Given noisy data g, calibrate an exponential model f:  g(x) = f(x; \)
@ Employ Bayesian inference to obtain posterior PDFs on A
@ True model — dashed-red — is structurally different from fit model f(x, A)

@ Higher data amount reduces posterior and predictive uncertainty
e Increasingly sure about predictions based on the wrong model
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Ignoring model error leads to
overconfident and biased predictions
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@ Given noisy data g, calibrate an exponential model f:  g(x) = f(x; \)
@ Employ Bayesian inference to obtain posterior PDFs on A
@ True model — dashed-red — is structurally different from fit model f(x, A)

@ Higher data amount reduces posterior and predictive uncertainty
e Increasingly sure about predictions based on the wrong model
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Ignoring model error leads to
overconfident and biased predictions
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@ Given noisy data g, calibrate an exponential model f:  g(x) = f(x; \)
@ Employ Bayesian inference to obtain posterior PDFs on A
@ True model — dashed-red — is structurally different from fit model f(x, \)

@ Accounting for model error allows extra uncertainty component to
propagate through predictions
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Explicit model discrepancy: issues for physical models

yi =f(xi; A) + 6(x;) +e
N ———

truth g(x;)

Explicit additive statistical model for model error d(x) (Kennedy-0Hagan, 2001]

Potential violation of physical constraints

Disambiguation of model error §(x;) and data error ¢;

Calibration of model error on measured observable does not impact
the quality of model predictions on other Qols

Physical scientists are unlikely to augment their model with a
statistical model error term on select outputs

o Calibrated predictive model:  f(x; X) + d(x) or f(x; ) ?

e Problem is highlighted in model-to-model calibration (¢; = 0)
e no a priori knowledge of the statistical structure of 6(x)
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Key Idea: Model Error Embedding

Ideally, modelers want predictive errorbars:
inserting randomness on the outputs has issues, so...
@ Augment input parameters \ with a stochastic term 4,

x-independent Vi = Fis A+ 0a) + €

@ Generalize parameter forms,

Random field yi =f(xi; A+ 8o (i) + €

@ More generally, explore additional parameterizations,

Intrusive yi = F(xi3 A, 0o (%)) + €
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Non-Intrusive Probabilistic Embedding

Additive corrections §,, for input parameters A

i =fx5 A+ 0a) + €&

@ Embed model error in specific submodel phenomenology

e a modified transport or constitutive law
e a modified formulation for a material property
e turbulent model constants

@ Allows placement of model error term in locations where key
modeling assumptions and approximations are made

@ as a correction or high-order term
@ as a possible alternate phenomenology

@ Naturally preserves model structure and physical constraints
@ Disambiguates model/data errors
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Bayesian Framework for Model Error Estimation

yi =f(xi; A+ da) + €

@ Given data y;, perform simultaneous estimation of & = (A, «),
i.e. model parameters A and model-error parameters «.

@ Bayes’ theorem

Likelihood Prior
Posterior

—= 5008 p(@)
plaly) = 5
~—

Evidence

@ In order to estimate the likelihood L, (&) = p(y|&) = p(y|\, @),
one needs uncertainty propagation through f(x;; A + d),

stochastic

@ ... hence, we employ Polynomial Chaos (PC) representation for 4.
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Model error embedding — workflow

Calibration
C} Forward modeling (Poly. Chaos)
[:] Inverse modeling (Bayesian) Prior p(}, @)
Embedded
Model Surrogate model Data
) R GSA/BF [ _
flxiz A fxiz A) Fxis A+ 0a(8)) Likelihood i
\Iireprocess |
Any Qol
[ Prediction p(h(x)]y) ]4—[ h(x; A+ 64(8)) ]«—[ Posterior p(\, aly) ]
Prediction

@ Predictive uncertainty decomposition: Total Variance =

Parametric uncertainty + Data noise + Model error + Surrogate error
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More data leads to ‘leftover’ model error

Calibrating a quadratic £(x) = Ao + Aix + dox?
w.rt. ‘truth’ g(x) = 6 +x* — 0.5(x + 1)**> measured with noise o = 0.1.

Summary of features:

—— Linear (ord =1)
—— Quadratic (ord = 2)
—t+— Cubic (ord = 3)
—— True Fcn (ord = 3.5)

@ Well-defined model-to-model calibration
@ Model-driven discrepancy correlations
@ Respects physical constraints

@ Disambiguates model and data errors
@ Calibrated predictions of multiple Qols
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E3SM Land Model (ELM) ©=¥

@ US Department of Energy (DOE) sponsored Earth system model
@ Land, atmosphere, ocean, ice, human system components
@ High-resolution, employ DOE leadership-class computing facilities

U of Michigan Biological Station
150 « Data —— Mean prediction B Surrogate error HEE Posterior uncertainty

72 84
Month

@ Predictive variance decomposition with model-error component
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E3SM Land Model (ELM) ©=¥

@ US Department of Energy (DOE) sponsored Earth system model
@ Land, atmosphere, ocean, ice, human system components
@ High-resolution, employ DOE leadership-class computing facilities

U of Michigan Biological Station

—— Mean prediction B Surrogate error EE Posterior uncertainty

NPP
o n o ow

2 84
Month

@ Predictive variance decomposition with model-error component

@ Allows meaningful prediction of other Qols
(e.g. no data/observable)
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@ US Department of Energy (DOE) sponsored Earth system model
@ Land, atmosphere, ocean, ice, human system components
@ High-resolution, employ DOE leadership-class computing facilities
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@ Predictive variance decomposition with model-error component

@ Allows meaningful prediction of other Qols
(e.g. no data/observable)

@ ... with predictive uncertainty that captures model error
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E3SM Land Model (ELM) ©=¥

@ US Department of Energy (DOE) sponsored Earth system model
@ Land, atmosphere, ocean, ice, human system components
@ High-resolution, employ DOE leadership-class computing facilities

Tonzi Ranch Site

100 Data —— Mean prediction B Surrogate error HEE Posterior uncertainty
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@ Predictive variance decomposition with model-error component
@ Allows (a more dangerous) extrapolation to other sites
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@ Predictive variance decomposition with model-error component
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E3SM Land Model (ELM) =¥

@ US Department of Energy (DOE) sponsored Earth system model
@ Land, atmosphere, ocean, ice, human system components
@ High-resolution, employ DOE leadership-class computing facilities

Tonzi Ranch Site

100 * Data —— Mean prediction Model error I Surrogate error HE Posterior uncertainty
. .

LHF, W/m?

72
Month

@ Predictive variance decomposition with model-error component

@ For surrogate construction (forward UQ) under the hood, see poster by
C. Safta [NG33A-0190: Machine Learning Techniques for Global
Sensitivity Analysis in Climate Models] Wednesday afternoon.
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Software uQlk

Inference library in UQTk v3.0 (www.sandia.gov/uqgtoolkit)

@ Workflow for model error representation, quantification and
propagation
@ Custom components: forward model, likelihood and prior

@ A range of common forward models, including polynomial
surrogates

@ Various likelihood options, including classical, Kennedy-O’Hagan,
model-error-embedding and its approximations

@ Several prior options for embedded parameters «, including
Wishart, Jeffreys, range-constrained

@ All pieces — forward model, likelihood and prior — can be made
custom
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Summary Thank You

@ Represent, quantify and propagate model structural errors

@ Bayesian machinery for simultaneous estimation of physical
parameters and model error

@ A principled guide for model exploration (embedded
representation, but can be performed non-intrusively!)

@ Differentiates from data noise; allows model-to-model calibration

@ Connections with Bayesian model averaging, model ‘nudging’,
and stochastic physics

@ Besides climate models, applied successfully in LES, transport
models, chemistry, fusion

e K. Sargsyan, H. Najm, and R. Ghanem. “On the Statistical Calibration of
Physical Models”. International Journal for Chemical Kinetics, 47(4):
246-276, 2015.

e K. Sargsyan, X. Huan, and H. Najm. “Embedded Model Error
Representation for Model Calibration”, to be submitted, Journal of
Computational Physics, 2017.

K. Sargsyan (ksargsy@sandia.gov) Embedded Model Error Dec 12,2017 13/13



Summary Thank You

@ Represent, quantify and propagate model structural errors

@ Bayesian machinery for simultaneous estimation of physical
parameters and model error

@ A principled guide for model exploration (embedded
representation, but can be performed non-intrusively!)

@ Differentiates from data noise; allows model-to-model calibration

@ Connections with Bayesian model averaging, model ‘nudging’,
and stochastic physics

@ Besides climate models, applied successfully in LES, transport
models, chemistry, fusion

We are hiring!

Postdoctoral Position UQ-in-Climate at Sandia National Labs
Go to Sandia careers’ website and look for job ID 659182
Experience with UQ, climate modeling, coding.

Salary $85700+/year, in Livermore, CA
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Additional Material



Calibrate f(x; A), given data g(x)

x are operating conditions, design parameters, various Qols
A are model parameters to be inferred/calibrated

@ Default:  Ignore model errors: 3 = AN
e Biased or overconfident physical parameters
e Wrong model predictions

e Conventional: Correct for model errors: 8¢ =f(BA) +0(x) +e

Physical parameters are ok

e Wrong model predictions (data-specific corrections)
e Model and data errors mixed up

@ What we do: Correct inside the model: g(x) =flxA+6(x)) +e

Embedded model error

Preserves model structure and physical constraints
Disambiguates model and data errors

Allows meaningful extrapolation



Data-Model-Truth

o Measurements data truth data error
d
i = § (xi) + ¢

o Model truth model model error
gxi) =f(x5A) + 6(x:)

o Total error budget i = F(xi A) + 6(x;) +€

truth g(x;)

Explicit statistical modeling of model discrepancy/error §(x)

Model Error: d(x) ~ GP(u(x), C(x,x"))
Data Error: el ~ N(0,0?)

Estimate model parameters A along with those of §(x), ¢!



Polynomial Chaos Representation of Augmented Input

yi =f(xi; A+ da) + €

@ Zero-mean PC form 6, = S8 | aq W (€)
@ Functional representation of a large class of random variables
@ The PC germ ¢ is a standard random variable
e e.g. Uniform(—1, 1) or Normal(0, 1)
@ The PC bases (e.g. Legendre or Hermite polynomials) are
orthogonal w.r.t. PDF of ¢

/ () Wk(€)me(€)dE =0 form # k.

@ PC representation allows efficient

Sampling

Moment estimation

Variance-based decomposition

Uncertainty propagation (via NISP, see next slide)



Non-intrusive Spectral Projection (NISP) for
Uncertainty Propagation

@ Input random variable represented as PC

AE) = 3wy (€)
k

@ Black-box forward model Z = f(A)
@ Seeking PC representation of output random variable

Z(6) =Y a¥(§)
k

@ Use orthogonality property and quadrature integration to find PC
coefficients

- ™ ;::# (9) (@Y(@)
& = g [ FAO (e T /A (e



Likelihood construction: data model

@ Data yi = g(xi) + €
@ Model Sl A)
@ ModelinputasaPC A= \+3d, =Y, ¥l ..., &)

@ Data generation model

yi = fiA+6a)+e=
= (X”Zak\l’k 517---,€d>+0§1+i=

& ka VW&, €a) + 0ayi

@ Likelihood L,(&) = p(y|a@) for & = (), «) and its construction directly
follows, via sampling or moment extraction.



Model Error — Likelihood options
Vi = D 1 fu(@)Wr(&1s -+, 6a) + 08ati

@ True Likelihood:

Ly(&) = p(yla) =p(i,-. ., yv|@) = 7(y)

Degenerate if no data noise

Requires multivariate kernel density estimation (KDE) or high-d
integration

Gaussian approximation:
(@) exp (=500~ W(@)5 @)~ u(a))

o NISP PC relieves the expense and provides easy access to mean
u(a) and covariance X(a)



Model Error — Likelihood options

Vi = > 1 fi(@) V(& oo Ea) + 0&ay

@ Marginalized Likelihood:

N N
Ly(a) = p(yla) ~ [[ p(ila) = [[ ()
i=1 i=1

Requires univariate KDE
Neglects built-in correlations - looks for a pointwise match
Gaussian approximation:

L OC exXp <_ Z En — Hi d))2>

NISP PC relieves the expense and provides easy access to
marginal means p;(&) and variances (&)



Model Error — Likelihood options

Vi = > 1 fi(@) V(& oo Ea) + 0&ay

@ Approximate Bayesian Computation (ABC):
p(SMa SD) >

€

Ly(a) = %K (

o Mean of f(x;; A) is “centered” on the data

o The width of the distribution of f(x;; A) is consistent with the spread
of the data around the nominal model prediction

Ly(&) 0<exp< 2622[uz =)+ (VEi(@) = ylwi(a yi)2]>

@ NISP PC relieves the expense and provides easy access to marginal
means p;(&) and variances X;;(&)



Optimal Embedding via Bayes Factors

@ Question: which parameters should be augmented with stochastic
structure to capture model error?

@ Initially, we base the decision on GSA (heuristic)

@ Implementing formal model comparison via Bayes Factor

Bayes’ formula for a given model M,
Likelihood Prior

— (y|&, My) p(&|My)
~ p(y|&, My) p(&|My
p(aly,My) =
p(y|My)
N——

Evidence

Posterior

Bayes factor between two models is the ratio of two evidence terms:

p(y|M)
p(y|M2)

Computing log-evidence log p(y|M;) is key for model selection.

BE(M,, M) =



Model Selection: Model Evidence Computation

@ Model evidence is a high-dimensional integral, requiring many
model evaluations — challenging to compute
@ We investigated five methods
@ GA (Gaussian approximation to posterior)
HM (Harmonic Mean estimator)
MC (Plain Monte-Carlo)
IMC (Importance sampling Monte-Carlo)
TMCMC (Transitional Markov chain Monte-Carlo)




Model Selection: Model Evidence Computation

@ Model evidence is a high-dimensional integral, requiring many
model evaluations — challenging to compute
@ We investigated five methods

o GA (Gaussian approximation to posterior)
e HM (Harmonic Mean estimator)
o MC (Plain Monte-Carlo)
o IMC (Importance sampling Monte-Carlo)
o TMCMC (Transitional Markov chain Monte-Carlo)
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Model Selection: Model Evidence Computation

@ Model evidence is a high-dimensional integral, requiring many

model evaluations — challenging to compute

@ We investigated five methods

o GA (Gaussian approximation to posterior)
e HM (Harmonic Mean estimator)
o MC (Plain Monte-Carlo)
o IMC (Importance sampling Monte-Carlo)
o TMCMC (Transitional Markov chain Monte-Carlo)
Param | GSAS; | GA o *
Cr 5.24 x 10T 2.82 x 107 500 *
Pr;l 1.58 x 1072 —2.55 x 103 81000 *
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I =V/u | 224 x 1073 | —3.74 x 103 & 2500
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Embedded Model: Predictions

FOA) =F (63 aw¥i(€r:a)) = D p fie(x; ) Vi (€1:a)

@ Non-intrusive spectral projection (NISP) will allow
o Posterior/pushed-forward predictions

e Easy access to first two moments:

p(x; &) = folx; @), o*(x:a) = Y[ (6 @)Wl

k>0

@ Predictive mean

@ Decomposition of predictive variance

Viy(x)] = Ealo?(x; &)] + Va[u(x; &)

Model error Posterior error




Embedded Model: Predictions at Data Locations

flis A) = f (xis 2op Vi (&1:a) + 0&iva = D1 fi(xis &) Vi (€r:a) + 0&ita

@ Non-intrusive spectral projection (NISP) will allow
o Likelihood computation

e Easy access to first two moments:

(xH ) fo(x,, )7 xH ka Xi; & ||\I’k”2

k>0

@ Predictive mean Efy(x)] = Ea[(xs; &)]

@ Decomposition of predictive variance

VIy(xi)] = Ealo®(x; &)] + Valp(xi; @)] + o

Model error Posterior/Data error




Two common embedding forms
Vi=fxi; A= A+00) + €

@ Unconstrained inputs:
o First-order Gauss-Hermite PC (Multivariate Normal):

A=+ an&
Ay = X 4+ a1y + ans

Ao =i+ anéi + apds + -+ awéa

@ Constrained inputs:
o First-order Legendre-Uniform PC (Independent Uniform):

A =M+
A=+ b

Ag =g+ agéy



Surrogate construction is necessary

Remember output PC construction
Z N (§)Te(§)dE ~ )W (£@) (@)
= e | FEO (e ~ D))

requires multiple model evaluations, hence...

@ We pre-construct a surrogate or a response surface to f(A) via
standard polynomial regression

@ Subsequent NISP can be made exact if the bases of surrogate
and PC match

@ Access to leave-one-out (LOO) surrogate error as yet another
component of the predictive uncertainty



Attribution of error components

Zﬁ YWr(&1, - &a) + onasi

Stochastic dimensions: (&%)

@ Model error &, ..., &
@ Measurement error €411, ..., aun
@ Posterior uncertainty («): can be represented via its own PC
expansion (using MCMC samples and Rosenblatt transformation)
Full PC expansion:  y; = 3. f%;(€)
Full stochastic germ:

€ = (517 ... 7§d7 §d+17 V 7£d+N7 £d+N+l) cee 7€d+N+Na)
Model error  Measurement error Posterior uncertainty

Posterior predictive variance:
opp(xi) = Ealo? (x1, )] + Eop[0p] + Va[u(xi, )]



Predictions account for model error

Calibrating single-exponential models
with data from a double exponential model g(x) = e=03% 4 ¢~

i ~ i — LA FAx
Linear-exponential (x, A) = et Additive Gaussian error

e o Data.fr.om truth e e Data from truth
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Predictions account for model error

Calibrating single-exponential models
with data from a double exponential model g(x) = e=03% 4 ¢~
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Key Steps

@ Formulation: Identify a pair of models with different degree of
fidelity
@ e.g., low-vs-high grid resolution, simplified-vs-detailed geometry, or
data-vs-model.
@ Representation: Embed model error a few parameters at a time
o Build surrogate, perform GSA for initial screening
@ Quantification: Calibrate for embedded PC coefficients
o Challenging Bayesian formulation: adaptive MCMC sampling.
@ Prediction: Embedded model error propagation via PC NISP
o Posterior predictive checks
@ Attribution: Attribute model errors to specific components

e Variance-based decomposition into contributions from
model error, surrogate error, data noise, posterior uncertainty.



Treatment of Discrete or Categorical Parameters

@ We have developed an approach to incorporate discrete parameters in the
embedded model error framework.

@ Augment discrete parameters with a probability mass function (PMF) and
infer the mass weights (just like the continuous case of inferring PDF).

@ Allows MCMC on continuous parameters.
@ Connections to Bayesian model averaging and model selection.

The overall mean for a given (o, a,x) is

w(a,a;x) = Eap [f(A( Za,;x, (a;x)

and the variance is
o*(o,a;x) = Var[f(Ala),L(a);x)]
2

R R
= Zaraf(a;x) + Za,uf(a;x) — (o, a;x)" .
r=1

r=1

due to cont. param. due to categorical param.



