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ABSTRACT

Linear dimensionality reduction (DR) techniques have been
applied with great success in the domain of hyperspectral
image (HSI) classification. However, these methods do not
take advantage of supervisory information. Instead, they act
as a wholly unsupervised, disjoint portion of the classifi-
cation pipeline, discarding valuable information that could
improve classification accuracy. We propose the Supervised
Non-negative Matrix Factorization (SNMF) to remedy this
problem. By learning an NMF representation of the data
jointly with a linear multi-class classifier, we are able to
improve classification accuracy in real world problems. Ex-
perimental results on a widely used dataset show state of the
art performance while maintaining full linearity of the entire
DR and classification pipeline.

Index Terms— dimensionality reduction, non-negative
matrix factorization, hyperspectral image classification

1. INTRODUCTION

Applications of Hyperspectral Image (HSI) classification are
well known, ranging from precision agriculture [1] to dis-
aster management [2]. Traditional techniques, such as sup-
port vector machines (SVM) [3] and k-nearest neighbors kNN
[4], have been utilized for the HSI classification problem.
These techniques can achieve reasonable performance, but
in practice they are limited by several key properties of HSI.
First, HSI pixels often contain hundreds of contiguous spec-
tral bands, leading to high dimensional data. Second, mea-
sured spectra are often mixtures of a low number of unique
components, yielding pixels that are highly co-linear. Third,
the amount of labeled data available for model training and
validation is often severely limited.

A common strategy to mitigate these properties is to first
apply a dimensionality reduction (DR) transform to input
spectra and then perform classification in the resulting low-
dimensional space. Linear DR methods, such as principal
component analysis (PCA) [5] and non-negative matrix fac-
torization (NMF) [6], are widely used in HSI processing as

they yield features that are interpretable and can often be as-
signed physical meaning. For instance, factors derived from
NMF can be interpreted as endmembers and scores can be in-
terpreted as the abundances of the endmembers within a pixel.
However, performing DR prior to classification has a critical
limitation: it makes no use of the supervisory information
to find the desired low dimensional feature space. This is
particularly problematic in settings where measured signal is
dominated by background clutter, and direction of maximal
variance does not align with the supervisory task. To address
this shortcoming, we introduce supervised non-negative ma-
trix factorization (SNMF) which fits a linear dimensionality
reduction in the form of NMF jointly with learning classifica-
tion weights for multinomial logistic regression.

Linear Discriminant Analysis (LDA) [7] is well known in
the literature, but assumes rigid multi-variate normal structure
over class distributions and does not impose non-negativity,
limiting interpretation. Partial Least Squares (PLS) [8, 9]
computes (effectively QR) decompositions of both training
spectral data and labels. The projection matrices are found by
maximizing joint covariance to encourage a relationship be-
tween data representation and classification. Other joint DR
and classification formulations, such as Supervised Nonneg-
ative Tensor Factorization with Maximum-Margin Constraint
(SNTFM?) [10] and Supervised Non-negative Tensor Factor-
ization with Multinomial Logistic Regression (SNTFL) [11],
have been developed in the literature. These formulations use
the extracted factor matrix from NMF (or non-negative tensor
decompositions) explicitly as input to the classifier. In con-
trast, the SNMF formulation proposed in this paper uses the
learned spectral factor matrix to transform data into the fea-
ture space, allowing for test- and read-time predictions.

SNMF learns a linear operator that transforms raw data
into a feature space that attempts to maximize classification
performance. By performing DR and classification simul-
taneously, the learned feature space is biased towards the
classification task thereby improving performance of the total
pipeline. The subspace and classification boundary learned
by SNMF are both linear, allowing for interpretability of the
resulting model and reconstruction of projected data.
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2. METHOD

Non-Negative Matrix Factorization

Let X € R™=*" be a pixels x wavelength hyperspectral im-
age, where n, denotes the number of pixels and n; denotes
the number of spectral bands. For a given spectral band,
the 2-D image has been vectorized. Let A € R"** and
B € R™** be an NMF approximation such that X ~ ABT,
with the entries of A and B are all greater than or equal to
zero. The number of columns & in A and B is specified apri-
ori and should reflect the rank of the data matrix; k can be in-
terpreted as the number of end-members present in the scene.
To find A and B, we minimize the objective function:

1
Lm = 5|IX — ABT|I% (1)

subject to

A>0, B:>o. )

This problem can be solved using the well-known Alternating
Least Squares (ALS) algorithm [12].

SNMF

We consider the problem of performing a per-pixel classifica-
tion. We denote the per-pixel class labels as Y € {0, 1} >
where n. is the number of classes present in the scene. Row
1 of Y is a one-hot encoded vector representing the class of
pixel i. To incorporate the supervisory information Y, we
augment the NMF loss function given in Eq 1 as follows:
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where * is the element-wise multiplication operation, and W
is a parameter weight matrix of a linear multi-class logistic
regression. Note that the additional term in the loss func-
tion (Eq 3) depends on the spectral-factor matrix B, but not
on the pixel-factor matrix A, and the class decision bound-
ary is a linear function of W and B. Eq 5 differs from the
standard formulation of the softmax function used in classifi-
cation tasks because the raw data is transformed into a com-
pressed feature space by B. We intentionally avoid using the
term projection because B is not a projection matrix; it only
defines a linear transform into a feature space.

Incoming data will have the same number of raw features
(np) as the original data matrix X and can be transformed to
the compressed set of features (cardinality k) by applying BT
to the data. The fit of the NMF decomposition becomes sec-
ondary to the classification task so that instead of focusing on

matching the source data, we search for the best linear trans-
formation of the data into a subspace that maximizes classifi-
cation ability. Because it is a simple linear transformation, it
is directly interpretable, computationally efficient at test time,
and only requires a small memory footprint.

Other recent supervised DR methods from the literature
[10, 11] have instead imposed supervision loss directly over
the sample factor mode, A, rather than B'X as in SNMF.
While more straightforward, this has a critical failing at model
test time: the sample factor matrix corresponding to previ-
ously unseen data cannot be learned without the supervisory
labels. By instead learning a supervised feature extraction
rather than supervised features, SNMF allows for predictions
over new data during inference.

The learning algorithm for SNMF is shown in Algo-
rithm 1, and minimizes Eq 3 by alternating least squares.
Since the supervisory term depends only on W and B, up-
dates for A proceed exactly as in unsupervised NMF. Solving
for W follows the same procedure as finding weights in
multinomial logistic regression given training data BTX
[13]. The gradient is given in Eq 6.

0L

w = (Y- Y)(B'X) 6)

The supervised loss gradient for B can be calculated analyti-
cally, shown in Eq 7.

0Ly < o .
5 = X(Y - Y)W @)

Note that the computation of % in the chain rule is non-
trivial and the individual rows, columns, or elements of B
cannot be decoupled in the full objective function’s derivative.
This part of the gradient is included in Eq 7. It is important to
note that in addition to updating Y in Line 11, B and W are
arguments to the construction of Y and so it must be updated
at each minimization step in Lines 8 and 10.

For incoming and unseen data Z at test time, we can form
Z = B7Z as a new feature set. We then use the pre-trained
multinomial logistic regression model to predict the class la-
bels for Z. The resulting classification pipeline is fully linear
and uses only spectral information. For application spaces
where data compression is desired, forming Z at read-time
compresses the data by a factor of n,/k where k < ny,.

Optimization details

We use scikit learn’s fmin_1 bfgs_b solver to minimize
Egs 1 and 4 [14]. We employ optional [1 and [2 regulariza-
tion for the NMF factors, adding the standard relevant terms
to Eq 3 and its gradient. These regularization terms had min-
imal impact on accuracy, so we exclude them from further
discussion and did not use them for the experiments in Sec-
tion 3.



Algorithm 1 Supervised Non-negative Matrix Factorization
(SNMF)

1: procedure SNMF(X, Y, k, ftol)

2 A+ Random initialization € R™*¥

3 B < Random initialization € R">*¥

4: W < Random initialization € R**"e

5: fnew +~0

6 repeat

7 fold — fnew R
8 B « argming(||X - BAT||2 - 2 Y xlogY)
9 A < argmin, ||X — BAT||%
10: W argming (— 1Y *log )
11 Y « softmax(BTX, W)
12: L ||X —BAT|Z

13: Lo -3 YxlogY

14: frew < alpm + (1 — )Ly

15: until |fold — fnew| < ftol

16: return B, A, W
17: end procedure

The « parameter in Eq 3 corresponds to the relative
weight of the decomposition to classification in the overall
objective function. For HSI classification, decomposition fit
is much less important than classification. Small but nonzero
values of « yield the best performance, indicating that NMF
serves as a structural regularization term to the feature trans-
formation defined by B.

3. RESULTS

We evaluate the proposed SNMF technique on the widely
used Pavia Centre [15] HSI classification dataset. We re-
move pixels not considered to be one of the labeled classes
from our analysis. Ten repeated trials of 50% — 50% train/test
were performed, and overall accuracy (OA), average accuracy
(AA) and k-scores (k) were computed. We compare SNMF
against the following baselines. We use the Scikit-Learn ver-
sion 0.19.0 [14] implementations of these baselines:

e SVM: Linear kernel support vector machine performed
on full spectral data (no-DR).

e PCA: Principal component analysis followed by multi-
nomial logistic regression for classification.

e NMF: Non-negative Matrix Factorization followed by
multinomial logistic regression for classification.

o LDA: Multi-class Linear Discriminant Analysis [7].

e PLS: Partial Least Squares Discriminant Analysis [16]:
extension of PLS to categorical data.

Overall accuracy results are shown in Figure 1 for a vari-
ety of DR ranks. Since SVM (full data size) and LDA (n. —

= 8) do not parameterize rank, results are shown across
all ranks for visual comparison. Supervised DR techniques
(such as SNMF and PLS) encode supervisory information
into their learned subspaces, providing more discriminative
features and improved performance at low rank. In the case
of the Pavia Centre dataset, SNMF achieves comparable per-
formance with just 5 features. Best maximum overall perfor-
mance is summarized in Table 1; for SNMF, PCA, PLS, and
NMF, we use the rank yielding the best scoring model.
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Fig. 1: OA vs. rank. Error bars represent 95% confidence
intervals over 10 trials with 50/50 train/test split.

Pavia Centre
Method OA AA K
SNMF | 95.6% | 87.1% | 0.938
PCA 72.2% | 43.0% | 0.597
NMF 77.3% | 32.2% | 0.649
PLS 89.1% | 58.1% | 0.842
LDA 95.3% | 85.2% | 0.934
SVM 91.1% | 75.2% | 0.874

Table 1: Comparison of the maximum Overall Accuracy, Av-
erage Accuracy, and x scores for each method across all trials.

Since supervised methods learn more discriminative fea-
tures, they require less training data. As shown in Figure 2,
SNMEF, PLS, and LDA perform well even with a small pro-
portion of training data. In contrast, both PCA and NMF need
much more data to reach optimal performance. This is a criti-
cal advantage for SNMF and other supervised DR techniques
as the amount of labeled training data for HSI classification
is often severely limited. Note that although SVM performs
well with minimal data, it does not perform any DR. SNMF
has the additional advantage of enforcing non-negativity in
the derived features. Rank 8 was used for this study because it
performed the best for this set of trials across baselines. This
study was conducted with 10 randomized trials per point.



Training percent effect on Pavia dataset

PCA
| —l +— NMF
S - PLS
Linear SWM
LDA

010 015 020 025 030 035 040 045 050
Training percent

Fig. 2: OA vs fraction of data used for training.

4. CONCLUSIONS

This paper proposes Supervised Non-negative Matrix Factor-
ization, an extension to the NMF model to encode supervi-
sory information. SNMF jointly learns NMF and multinomial
logistic regression. Joint learning of features and classifica-
tion boundaries yields better features for downstream clas-
sification tasks, boosting performance. SNMF is shown ex-
perimentally to exhibit state-of-the-art performance for HSI
classification and provides an advantage when the size of the
learned subspace is small (e.g. for scenarios requiring signif-
icant read-time compression) or when the amount of labeled
training data is limited. It exhibits these properties because
its features directly encode the supervisory information, lead-
ing to a more compact and useful representation of the data
for the downstream classification task. SNMF achieves this
while remaining fully linear and non-negative, preserving in-
terpretability of the learned feature spaces.
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