
Development of a Novel Accelerator
for Neutron Transport Solution

Using the Galerkin Spectral Element
Methods

Nuclear Energy Advanced Modeling and Simulation
Dean Wang

University of Massachusetts, Lowell

Collaborators
The Ohio State University

University of Michigan

David Henderson, Federal POC
Timothy Valentine, Technical POC

Project No. 15-8208

FINAL REPORT

DOE NEUP Project

Development of a Novel Accelerator for Neutron Transport

Solution Using the Galerkin Spectral Element Methods

Dean Wang 1

Thomas Downar 2

Yunlin Xu 2

Yulong Xing 1

Emily Shemon 3

1 The Ohio State University

2 University of Michigan
3 Argonne National Laboratory

April 30, 2019

1

2

ABSTRACT

This report summarizes the results of a three-year research project sponsored by the U.S.
Department of Energy (DOE) Nuclear Energy University Program (NEUP) to develop and
implement advanced acceleration schemes for the DOE NEAMS neutronics code PROTEUS-
SN. The project team included the University of Massachusetts Lowell, The Ohio State
University, University of Michigan, and Argonne National Laboratory.

The PROTEUS code is a high-fidelity capable deterministic neutron transport code based on
unstructured finite element meshes, which solves the steady-state and transient neutron
transport problem using the 2nd-order discrete ordinate method (SN2ND), the method of
characteristics (MOC), and the advanced nodal transport method (NODAL). The DSA scheme
has been implemented in PROTEUS to speed up SN transport calculations. The existing DSA
scheme employs a consistent finite element formulation on the same fine mesh structure as the
SN solution While the use of consistent discretizations makes the DSA method effective, it
does not necessarily make it efficient because the numerical solution of a discretized elliptic
diffusion problem itself can be costly, particularly when the problem size becomes large.

We developed a new discontinuous Galerkin (DG) discretization of the diffusion equation,
called DG-DSA, which can effectively and efficiently accelerate the SN transport iterations.
As compared with the previous work, the novelty of our method is that the diffusion equation
is solved on a coarse-mesh grid using the DG methods, and the DG diffusion discretization
incorporates local hp adaptation, i.e., local adaptation of mesh size and/or polynomial degree,
based on local total cross section (or optical thickness). Therefore, the resulting number of
degrees of freedom (DOF) of the DG discretization is much less than the conventional
consistent DSA discretizations, and thus DG-DSA can achieve significant improvement in
computational efficiency. We implemented this scheme in PROTEUS-SN.

In addition, we developed a new stabilization scheme named linear prolongation CMFD
(lpCMFD). A novel feature of this scheme is that the conventional flat flux ratio–based scaling
approach is replaced with a linear interpolation of the scalar flux differences at the coarse-mesh
cell edges between the neutron transport and CMFD calculations. Fourier convergence analysis
and numerical results show that lpCMFD is unconditionally stable and more effective than
other CMFD based on acceleration schemes such as pCMFD, odCMFD.

We also developed a new nonlinear diffusion acceleration scheme for solving neutron transport
equations. This scheme, called LR-NDA, employs a local refinement approach on the
framework of CMFD by solving a local boundary value problem of the scalar flux on the
coarse-mesh structure to replace the piecewise constant scalar flux obtained by CMFD. The
refined flux is then used to update the scalar flux in the neutron transport source iteration. It
has been demonstrated that that LR-NDA is much more effective and stable than CMFD for a
wide range of optical thicknesses. LR-NDA is a local adaptive method, which means LR-NDA
does not necessarily require local refinement for all the coarse-mesh cells on the problem
domain, i.e., it can be used only for relatively optically thick regions where the standard CMFD
scheme would encounter the convergence problem.

3

4

ACKNOWLEDGEMENTS
We would like to thank the U.S. Department of Energy Office of Nuclear Energy for their
support of this project through the Nuclear Energy University Program.

5

TABLE OF CONTENTS
Abstract... 2

ACKNOWLEDGEMENTS .. 4

Table of Contents .. 5

List of figures ... 7

List of tables .. 9

1. Introduction ... 10

2. Development of DG-DSA .. 10

2.1 DG-DSA formulation and algorithm .. 11

2.2 Numerical Results ... 16
2.2.1 Numerical Convergence Study ... 16
2.2.2 Local 𝒑 Adaptation ... 18
2.2.3 Local 𝒉 Adaptation ... 19

2.3 Summary .. 22

3. Development of lpCMFD .. 22

3.1 lpCMFD FORMULATION AND ALGORITHM .. 23

3.2 FOURIER ANALYSIS ... 28
3.2.1 Fourier Analysis Formulation for Fixed Source Problem .. 28
3.2.2 Numerical Results of Fourier Analysis for Fixed Source Problem .. 32
3.2.3 Numerical Results of Fourier Analysis for Transient and Eigen Value Problems 34

3.3 NUMEIRCAL RESULTS .. 38
3.3.1 2-D Fixed Source Problem .. 38
3.3.2 2D K-Eigenvalues Problem ... 40

3.4 Demonstration of a lpCMFD method on MOC Solver .. 42
3.4.1 lpCMFD method on MOC ... 42
3.4.2 Track-based centroid calculation ... 44
3.4.3 lpCMFD algorithm in MOC ... 46
3.4.4 Numerical results ... 47

3.5 Summary .. 51

4. Development of LR-NDA ... 52

4.1 LR-NDA formulation and algorithm ... 52

4.2 Numerical convergence study ... 57

4.3 Local adaptation of LR-NDA .. 59

6

4.4 Summary .. 61

5. Implementations of DG-DSA in PROTEUS-SN .. 62

5.1 Introduction ... 62

5.2 Input Files ... 64

5.3 Creating Global Coarse Mesh .. 65
5.3.1 Coarse Mesh specifications and Limitations .. 67

5.4 Creating Parallel Coarse Mesh .. 67

5.5 Global Matrix Assembly .. 69
5.5.1 Reference elements ... 69
5.5.2 Basis functions ... 70

5.6 Within group solver .. 70

5.7 Numerical Results ... 71

5.8 Summary .. 74

6. Conclusions .. 75

References ... 76

Appendix ... 78

A. Local Discontinuous Galerkin Finite Element Method ... 78

B. List of Publications supported by the project .. 83

7

LIST OF FIGURES
Figure 2-1. Flowchart of the DG-DSA algorithm __ 12
Figure 2-2. Spectral radius vs. 𝛴𝑡. ___ 17
Figure 2-3. Numerical results of local 𝑝 adaptation. __ 19
Figure 2-4. Specifications of 2-D problem. __ 20
Figure 2-5. Numerical results of local ℎ adaptation. __ 21
Figure 3-1. Flowchart of the lpCMFD algorithm for fixed source problems. ____________________________ 25
Figure 3-2. 1-D mesh. __ 25
Figure 3-3. 2D mesh. ___ 26
Figure 3-4. SN Scalar Flux Updating Comparison for CMFD and lpCMFD. ______________________________ 28
Figure 3-5. Convergence comparison (𝑝 = 5). ___ 33
Figure 3-6. Convergence comparison (𝑝 = 10). __ 34
Figure 3-7. Verification of Fourier analysis with numerical results for selected cases. ___________________ 35
Figure 3-8. Comparison between CMFD and lpCMFD. ___ 36
Figure 3-9. Threshold of convergence for lpCMFD __ 37
Figure 3-10. Comparison of SlpCMFD and conventional CMFD ______________________________________ 38
Figure 3-11. Specifications of 2D fixed-source problem. ___ 39
Figure 3-12. Numerical results of lpCMFD for 2D fixed-source problem. _______________________________ 40
Figure 3-13. Specifications of 2D k-eigenvalue problem. ___ 41
Figure 3-14. Numerical results of lpCMFD for 2D K-eigenvalue problem. ______________________________ 42

Figure 3-15. Linear interpolation to get __ 44
Figure 3-16. Track-based method for calculating the centroids. _____________________________________ 45
Figure 3-17. lpCMFD flow chart in MOC __ 47
Figure 3-18. Geometry and cross section of the 2D1G test problem. __________________________________ 48

Figure 3-19. 2-norm of residuals vs. MOC iterations, 2D1G test problem. __________________________ 48
Figure 3-20. Power distribution and relative errors of the 2D1G test problem. __________________________ 49
Figure 3-21. Geometry and fuel configuration of the 2D C5G7 problem. ______________________________ 50

Figure 3-22. 2-norm of residuals vs. MOC iterations, 2D C5G7 problem. _________________________ 50
Figure 3-23. Power distribution and relative errors of the 2D C5G7 problem. ___________________________ 51
Figure 4-1. Flow chart of the LR-NDA algorithm for fixed source problems. ____________________________ 53
Figure 4-2. Local refinement mesh for 2D problem. ___ 54
Figure 4-3. Flowchart of the LR-NDA algorithm for k-eigenvalue problems. ____________________________ 56
Figure 4-4. Convergence performance comparison between CMFD and LR-NDA. ________________________ 58
Figure 4-5. Specifications of 2D k-eigenvalue problem. __ 59
Figure 4-6. Numerical results of LR-NDA for 2D k-eigenvalue problem. _______________________________ 60
Figure 5-1. Coarse pin cell superimposed on a fine pin cell with fuel in the radial region (yellow) and moderator
in the background region (blue). __ 63
Figure 5-2. Mapping between fine and coarse grid ___ 64
Figure 5-3. DG-DSA implementation flowchart __ 64
Figure 5-4. Sample UFMESH input file ___ 65
Figure 5-5. Flowchart for global coarse mesh generation __ 66
Figure 5-6. Flowchart for parallel coarse mesh generation ___ 68
Figure 5-7. Flowchart for assembling global diffusion matrix _______________________________________ 69
Figure 5-8. Linear triangular (Left) and quadrilateral (Right) reference elements. _______________________ 70
Figure 5-9. Flux distribution and Specifications of the assembly. _____________________________________ 71
Figure 5-10. Numerical results for GMRES iterative method __ 72

df

effk

effk

8

Figure 5-11. Numerical results for CG iterative method __ 72
Figure 5-12. Number of diffusion iterations for using CG iteration method ____________________________ 73
Figure 5-13. Number of diffusion iterations for using GMRES iteration method _________________________ 73

9

LIST OF TABLES
Table 2-1. Computational Performance Comparison* ___ 21

Table 3-1. and iteration cycles for different CMFD schemes, 2D1G test problem. ___________________ 48

Table 3-2. and iteration cycles for different CMFD schemes, 2DC5G7 problem. ____________________ 49
Table 4-1. Computational Performance Comparison of the 2-D k-eigenvalue Problem ___________________ 61
Table 5-1. Computational Performance Comparison using CG method ________________________________ 74
Table 5-2. Computational Performance Comparison using GMRES method ____________________________ 74

effk

effk

10

1. INTRODUCTION
This report summarizes our work on the development and implementation of advanced
acceleration schemes for neutron transport calculations, including DG-DSA, lpCMFD, and
LR-NDA. These newly developed schemes have improved current acceleration techniques, and
they can be implemented in any neutron transport codes to improve the computational
efficiency. In the following, we will discuss in detail these methods with a focus on the theory,
numerics and implementation.

2. DEVELOPMENT OF DG-DSA
There has been considerable research on diffusion synthetic acceleration (DSA) of transport
source iterations.1-4 The DSA method is based on the use of a diffusion calculation for
approximating the iterative error of the transport source iteration. Most work was focused on
the development of so-called consistent (or partially consistent) diffusion discretizations in
order to obtain the optimal convergence performance. While the use of consistent
discretizations makes the DSA method effective, it does not necessarily make it efficient
because the numerical solution of a discretized elliptic diffusion problem itself can be costly,
particularly when the problem size becomes large.

Adams and Martin developed a DSA scheme based on a discontinuous finite element (DFE)
diffusion discretization to accelerate DFE transport iterations.4 They noted that their DFE based
DSA scheme was very effective, however, the efficient solution of the DFE diffusion equations
in 2-D geometries remained an open question. A loss in the effectiveness of DSA for
accelerating transport source iteration has been observed with certain SN discretizations on
multi-dimensional grids in the presence of material discontinuities.5 Warsa et al showed
through numerical experiments that replacing source iteration with a preconditioned Krylov
method can efficiently solve problems that are virtually intractable with accelerated source
iteration.6 In 2010, Wang and Ragusa developed the modified interior penalty (MIP) scheme
based on discontinuous finite element discretization of the second-order diffusion equation for
high-order discontinuous finite element spatial discretizations of the SN transport equation on
locally refined unstructured meshes.7 It was found that MIP is stable and effective for realistic
problems, even with distorted elements, but loses effectiveness for some highly heterogeneous
configurations. Most recently, Roberts and Forget developed a two-grid multigroup diffusion
preconditioner for application to multiplying fixed-source transport problems using the SN
method. It was found that the coarse-mesh diffusion preconditioner performs quite well,
especially when used with a fine-mesh diffusion smoother and transport-correction.8

In this chapter, we present a new discontinuous Galerkin (DG) discretization of the diffusion
equation, called DG-DSA, which can effectively and efficiently accelerate the SN transport
iterations. As compared with the previous work, the novelty of our method is that the diffusion
equation is solved on a coarse-mesh grid using the DG methods, and the DG diffusion

11

discretization incorporates local ℎ𝑝 adaptation, i.e., local adaptation of mesh size and/or
polynomial degree, based on local total cross section (or optical thickness). Therefore, the
resulting number of degrees of freedom of the DG discretization is much less than the
conventional consistent DSA discretizations, and thus DG-DSA can achieve significant
improvement in computational efficiency.

The remaining chapter is organized as follows. In Sec. 2.1, we present in detail the formulation
and algorithm of the DG-DSA method. A numerical study of DG-DSA is carried out in Sec.
2.2, focusing on various numerical aspects such as convergence performance, local ℎ𝑝
adaptation, and penalty. Sec. 2.3 concludes the chapter with a brief summary and discussion.

2.1 DG-DSA FORMULATION AND ALGORITHM

We introduce the DG-DSA method based on monoenergetic SN neutron transport fixed-source
problems. The scattering and neutron source are assumed isotropic. The flowchart of the DG-
DSA algorithm is shown in Fig. 2-1.

12

Figure	2-1.	Flowchart	of	the	DG-DSA	algorithm	

The 𝑙CD iteration cycle begins with the SN transport equation with iteration indices on 2-D
Cartesian geometry is expressed as

𝜇 F
FG
𝜓IJKL(𝑥, 𝑦, 𝜇, 𝜂) + 𝜂 F

FT
𝜓IJKL(𝑥, 𝑦, 𝜇, 𝜂) + 𝛴U𝜓

IJKL(𝑥, 𝑦, 𝜇, 𝜂) = 		 VW
X
𝜙I(𝑥, 𝑦) +

																																																																							Z
X
𝑄(𝑥, 𝑦)	,	 	 	 	 	 										(2-1)	

where	𝜙 and 𝜓 are the scalar flux and angular flux, respectively. ΣC and Σ] are the total cross
section and scattering cross section. 	𝜇 and 𝜂 are the neutron angular directions. 𝑥 and 𝑦 are the
spatial positions. 𝑄 is the external neutron source. 𝑙 is the source iteration index and 𝑙 + 1/2 is
the intermediate step.

During each source iteration, the diffusion is utilized to approximate the transport iterative flux
error as

13

− F
FG
` Z
aVb

F
FG
𝛿𝜙IJZ/d(𝑥, 𝑦)e − F

FT
` Z
aVb

F
FT
𝛿𝜙IJZ/d(𝑥, 𝑦)e + 𝛴f𝛿𝜙IJZ/d(𝑥, 𝑦) =

																																																				𝛴g[𝜙IJZ/d(𝑥, 𝑦) − 𝜙I(𝑥, 𝑦)]	,		 	 	 	 					(2-2)	
where 𝛴f is the absorption cross section.

We solve the above diffusion equation with primal discontinuous Galerkin method (DG)10,
which is a commonly used method for solving elliptic and parabolic problems.

−∇ ∙ l𝐷∇	𝛿𝜙(𝑥, 𝑦)n + Σf𝛿𝜙(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) , in Ω	, (2-3a)

Reflective BC: −𝐷∇	𝛿𝜙(𝑥, 𝑦) ∙ 𝒏 = 0	, on Γstu	, (2-3b)

Vacuum BC: −𝐷∇	𝛿𝜙(𝑥, 𝑦) ∙ 𝒏 = Z
d
	𝛿𝜙(𝑥, 𝑦)	, on Γvfw	, (2-3c)

where Ω is a polygonal domain in ℝd, Γstu and Γvfw are disjoint sets that partition the domain
boundary. 𝒏 is a unit normal vector to the boundary exterior to Ω. The functions 𝐷 and 𝑓 are
defined as

𝐷 = Z
ayb

 (2-4a)

and

𝑓(𝑥, 𝑦) = Σg[𝜙IJZ/d(𝑥, 𝑦) − 𝜙I(𝑥, 𝑦)] . (2-4b)

Multiplied by a test function υ and integrated over an element 𝐸 gives

−∫ υ	∇ ∙ (𝐷∇	𝛿𝜙)	} + ∫ Σf𝛿𝜙	υ} = ∫ 𝑓	υ} 	,					∀𝐸 ∈ 	ℰ , (2-5)

where ℰ is the discretization of Ω, i.e. the mesh. Appling the Green’s theorem on the first term

−∫ υ	∇ ∙ (𝐷∇	𝛿𝜙)	} = ∫ 𝐷∇	𝛿𝜙 ∙ ∇	υ} − ∫ 𝐷∇	𝛿𝜙 ∙ 𝒏𝑬	υF} 	,				∀𝐸 ∈ 	ℰ	, (2-6)

where 𝒏𝑬 denotes an outward normal vector to, 𝜕𝐸, the boundary of an element 𝐸. Summing
over all the elements gives

∑ ∫ (𝐷∇	𝛿𝜙 ∙ ∇	υ} +}∈ℰ Σf𝛿𝜙	υ) − ∑ ∫ [𝐷∇	𝛿𝜙 ∙ 𝒏𝒆υ]tt∈���b − ∑ ∫ (𝐷∇	𝛿𝜙 ∙tt∈����∪����

𝒏𝒆)υ = ∑ ∫ 𝑓υ}}∈ℰ 	, (2-7)

where Γ��U is a set containing only interior edges and 𝒏𝒆 is an outward unit normal vector of
edge 𝑒. Two new operators are introduced: jump [∙] and average {∙}

Interior edge: {υ} = Z
d
lυ|}K� +	υ|}L�n , (2-8a)

 [υ] = υ|}K� −	υ|}L�	, ∀𝑒 = 	𝜕𝐸Zt ∩ 𝜕𝐸dt , (2-8b)

14

Boundary edge: {υ} = [υ] = υ|}K�	, ∀𝑒 = 	𝜕𝐸Zt ∩ 𝜕Ω	, (2-8c)

where 𝜕Ω is the boundary of the domain Ω. For heterogeneous diffusion, we can employ a
diffusion weighted average9, which is defined as:

{υ} =
�|�L�

�|�K�
J�|�L�

υ|}K� +
�|�K�

�|�K�
J�|�L�

υ|}L� . (2-9)

Clearly, the usual arithmetic average is recovered when 𝐷|}K� = 𝐷|}L�.

For continuous and second order differentiable functions, the jump and average operators are
defined as:

 [𝛿𝜙] = 0	, ∀𝑒 ∈ Γ��U	, (2-10a)

 [𝐷∇	𝛿𝜙 ∙ 𝒏𝒆] = 0	, ∀𝑒 ∈ Γ��U	, (2-10b)

 {𝐷∇	𝛿𝜙 ∙ 𝒏𝒆} = 	𝐷∇	𝛿𝜙 ∙ 𝒏𝒆	, 	∀𝑒 ∈ Γ��U	. (2-10c)

Applying Eqs. (2-8) and (2-10) in Eq. (2-7), it is straightforward to obtain the variational
formulation (or weak formulation) of Eq. (2-3):

∑ ∫ (𝐷∇	𝛿𝜙 ∙ ∇	υ} +}∈ℰ Σf𝛿𝜙	υ) − ∑ ∫ {𝐷∇	𝛿𝜙 ∙ 𝒏𝒆}[υ]tt∈���b +

																																																		Z
d
∑ ∫ [𝛿𝜙][υ]tt∈���� = ∑ ∫ 𝑓υ	}}∈ℰ . (2-11)

Using the smoothness of the solution 𝛿𝜙 expressed in Eq. (10a), we can add the following two
terms to the weak formulation:

 𝜖 ∑ ∫ {𝐷∇υ	 ∙ 𝒏𝒆}[𝛿𝜙]tt∈���b 	+ ∑ ∫ ��
|t|
[𝛿𝜙][υ]tt∈���b = 0	, (2-12)

where |𝑒| is the edge length, 𝜎t is a nonnegative real penalty number and 𝜖 is another
parameter that may take the value of {-1, 0, 1}. Thus, the variational formulation can be
rewritten as:

𝑎�(𝛿𝜙, υ) = 	𝐿(υ)	, (2-13)

where 𝑎�(𝛿𝜙, υ) and 𝐿(υ) are bilinear and linear forms defined as:

𝑎�(𝛿𝜙, υ) 	= ∑ ∫ (𝐷∇	𝛿𝜙 ∙ ∇	υ} +}∈ℰ Σf𝛿𝜙	υ) − ∑ ∫ {𝐷∇	𝛿𝜙 ∙ 𝒏𝒆}[υ]t 	t∈���b +
Z
d
∑ ∫ [𝛿𝜙][υ]tt∈���� + 𝜖 ∑ ∫ {𝐷∇υ	 ∙ 𝒏𝒆}[𝛿𝜙]tt∈���b 	+ ∑ ∫ ��

|t|
[𝛿𝜙][υ]tt∈���b , (2-14a)

𝐿(υ) = ∑ ∫ 𝑓υ}}∈ℰ 	. (2-14b)

For heterogeneous diffusion, we can introduce a diffusion-dependent penalty parameter9, 𝛾t,
which is defined as:

15

𝛾t =
d�|�L�

�|�K�

�|�K�
J�|�L�

. (2-15)

 Applying the above harmonic mean of the diffusion coefficients on the penalty term in
Eq. (14a) gives the modified penalty term:

 ∑ ∫ ����
|t|

[𝛿𝜙][υ]tt∈���b . (2-16)

Using the harmonic mean of the diffusion coefficients to penalize jumps can tune
automatically the amount of penalty and therefore enhance the numerical stability.

Depending on the choice of parameter 𝜖 , the methods are named differently. A detailed
discussion of these three types of DG methods can be found in Reference 10.

𝜖 =
−1,										Symmetric	interior	penalty	Galerkin	(SIPG)									
+1,										Nonsymmetric	interior	penalty	Galerkin	(NIPG)
0,													Incomplete	interior	penalty	Galerkin	(IIPG)								

 . (2-17)

DG-DSA utilizes a finite element space 𝒟ª(ℰ), the space of discontinuous polynomials. The
global basis functions of 𝒟ª(ℰ) have a support contained in each element.

𝒟ª(ℰ) = span{𝑃�}: 1 ≤ i ≤ 𝑁}, 𝐸 ∈ ℰ} , (2-18a)

with

𝑃�}(𝑥, 𝑦) = 	 ¯
𝑝�}(𝑥, 𝑦)	,				(𝑥, 𝑦) ∈ 𝐸
0	,																	(𝑥, 𝑦) ∉ 𝐸 , (2-18b)

where {𝑝�}} is a set of local basis functions that are chosen to be monomial basis functions,
translated from the interval (-1,1) for quadrilateral mesh:

𝑝�}(𝑥, 𝑦) = 	 ±
G²G³´K/L
d(G³´K²G³)

µ
¶
· T²T¸´K/L
d(T¸´K²T¸)

¹
º
, 𝐼 + 𝐽 = 𝑖	, 0 ≤ 𝑖 ≤ 𝑘} , (2-18c)

and (𝑥¿JZ/d, 𝑦ªJZ/d) is the midpoint of an element 𝐸 bounded by (𝑥¿, 𝑥¿JZ) ∩ (𝑦ª, 𝑦ªJZ). This
yields the local dimension

𝑁} =
(ª�JZ)(ª�Jd)

d
 , (2-18d)

where 𝑘} is the highest polynomial degree of an element 𝐸.

Finally, the DG-DSA method is solving for (𝛿𝜙�À)IJZ/d(𝑥, 𝑦) in 𝒟ª(ℰ) space such that

𝑎�l(𝛿𝜙�À)IJZ/d(𝑥, 𝑦), υn = 	𝐿(υ)	,														∀υ ∈ 𝒟ª(ℰÁ)	. (2-19)

When the local basis functions are employed, the solution (𝛿𝜙�À)IJZ/d(𝑥, 𝑦) can be expressed
as

16

(𝛿𝜙�À)IJZ/d(𝑥, 𝑦) = ∑ ∑ 𝛼�}
Ã�
�ÄZ}∈ℰ 𝑃�}(𝑥, 𝑦), (2-20)

where 𝛼�} is the 𝑖-th unknown real number of an element 𝐸 to be solved for.

Substituting Eq. (2-20) into Eq. (2-19) gives

𝑨𝜶 = 𝒃	, (2-21a)

where 𝜶 is a vector with components of 𝛼�}, 𝒃 is a vector of 𝐿 ·𝑃¿}
′¹, and 𝑨 is a sparse matrix

expressed as

𝐴 = ∑ ∑ 𝑎�l𝑃�}, 𝑃¿}
ÉnÃ�

�ÄZ}∈ℰ , ∀𝐸Ê ∈ 	ℰ,				∀1 ≤ 𝑗 ≤ 𝑁}É. (2-21b)

At the end of the 𝑙CD source iteration, the scalar flux can be updated in the next transport
iteration as

𝜙IJZ(𝑥, 𝑦) = 	𝜙IJZ/d(𝑥, 𝑦) + (𝛿𝜙�À)IJ
K
L(𝑥, 𝑦)	. (2-22)

The transport source iteration will continue until the convergence criterion is satisfied.

The DG-DSA method is locally adaptive, which means that both the mesh size and the
polynomial degree are locally adjustable based on local total cross sections. The penalty
number, 𝜎t, is chosen to give the optimum performance based on a scoping analysis, which
will be discussed later.

2.2 NUMERICAL RESULTS

2.2.1 NUMERICAL CONVERGENCE STUDY

A numerical study of the DG-DSA acceleration performance was carried out based on a 2-D
SN fixed-source model problem, which is a homogeneous 6cm	 × 	6cm square with the
reflective boundary on the left and bottom sides and the vacuum boundary on the top and right
sides. The domain is discretized into 5×5 uniform coarse-mesh cells. The fine-mesh number
in each coarse-mesh cell is 12×12. The numerical solution for the SN transport was obtained
on the fine-mesh grid (60 × 60) using the level-symmetric S12 quadrature set for angular
discretization and the diamond difference (DD) method for spatial discretization. The DG-DSA
results were obtained on various coarse-mesh grids, which was determined based on the total
cross section. The coarse-mesh (5 × 5) was used for small cross sections (ΣU ≤ 1	cm²Z), and
the fine-mesh (60 × 60) was used for large cross sections (ΣU ≥ 6	cm²Z). For medium cross
sections (1 < ΣU < 6	cm²Z) , the DG-DSA mesh size was determined by maintaining the
optical thickness (i.e., ΣCΔ, where	Δ is the coarse-mesh size) around 1.2. The symmetric interior
penalty Galerkin method (SIPG) was used with piecewise linear polynomials and the optimized
penalty number. The S12 with DG-DSA was implemented in MATLAB.

In order to characterize the convergence behavior, we estimate the spectral radius numerically
as defined by

17

𝜌 = lim
I→Ó

ÔÕÖ´K²ÕÖÔ
ÔÕÖ²ÕÖ×KÔ

 . (2-23)

Note that the convergence is rapid when 𝜌 ≪ 1, and it slows down when 𝜌 increases. When
𝜌 ≥ 1 the scheme fails to converge.

Fig. 2-2 presents the numerical spectral radius of DG-DSA as a function of the total cross
section for various scattering ratios, c. It shows that the DG-DSA method is very effective and
stable for a wide range of total cross sections (or optical thickness). The general trend is that
the convergence rate decreases with the increase in total cross sections up to ΣU ≈ 200	cm²Z
(i.e., the optical thickness of 20), thereafter the spectral radius decreases because the SN solution
tends to the diffusion limit. In addition, the spectral radius increases with the scattering ratio in
general.

Figure	2-2.	Spectral	radius	vs.	𝛴U.	

The above convergence analysis can be used to develop the local mesh refinement strategy for
DG-DSA. For example, in a typical light water reactor, the total cross section of water in fast
neutron groups is less than 1 cm²Z, and it is larger than 1 cm²Z in thermal groups. The total
cross section of the fuel is typically less than 1 cm²Z . Therefore, for fast group transport
calculations, the DG-DSA mesh can be as large as fuel pin size (~1.2	cm) or even larger. Only
for thermal groups, it requires a relatively fine-mesh.

It is interesting to note that in most neutron transport codes the conventional “consistent” DSA
discretization uses the same mesh as the transport discretization, which typically has more than
100 cells in a fuel pin. However, our DG-DSA discretization can have less than 20 cells to
achieve the same convergence performance. This is why our DG-DSA scheme can be very
efficient. Detailed comparisons are given in the following subsections.

18

2.2.2 LOCAL 𝒑 ADAPTATION

We study the local 𝑝 (polynomial degree) adaptivity of the DG-DSA method based on a 2-D
monoenergetic transport fixed-source problem with a homogeneous cross section. Similar to
the problem in Sec. 2.2.1, the model problem is a 6cm × 6cm square with the reflective
boundary on left and the bottom sides and the vacuum boundary on the top and right sides. The
domain is divided into 5 × 5 uniform coarse-mesh cells. The fine-mesh number in each coarse-
mesh is 12 × 12 . The numerical SN transport solutions were obtained on the fine-mesh
(60 × 60)	using DD for spatial discretization and the level-symmetric 𝑆Zd quadrature set for
angular discretization. The DG-DSA solutions were obtained on the coarse-mesh (5 × 5), using
piecewise constant (P0), linear (P1), and quadratic (P2) polynomials, respectively.

The numerical results are presented in Fig. 2-3. The converged flux is shown in Fig. 2-3a; and
the flux relative error, the relative difference between two successive iterations, as a function
of transport iteration is shown in Fig. 2-3b. It shows that the DG-DSA acceleration scheme is
more effective with higher polynomials, but the computational saving decreases with
increasing polynomial degree (e.g., P1 vs. P2). The use of higher polynomials is more
expensive because of a larger number of degrees of freedom. For nuclear neutron transport
problems, we recommend P1 for the region of large total cross sections (ΣU > 1	cm²Z), and P1
or P0 for small cross sections (ΣU < 1	cm²Z).

(a) Converged scalar flux

19

	(b)	Flux	relative	error	vs.	iteration	number	

Figure	2-3.	Numerical	results	of	local	𝑝	adaptation.	

2.2.3 LOCAL 𝒉 ADAPTATION

In this section, we solve the same problem as above with inhomogeneous cross sections as
shown in Fig. 2-4. The problem has 5 × 5 uniform coarse-mesh cells, and each coarse cell
consists of 12×12 fine-mesh cells. This case is a mimic of a mini fuel assembly. The numerical
solutions for the SN transport were obtained on the fine-mesh (60 × 60) using the level-
symmetric S12 quadrature set for angular discretization and the diamond difference (DD)
method for spatial discretization. The DG-DSA solutions were obtained on both the fine-mesh
(FM) and coarse-mesh (CM) grids. Piecewise linear polynomial functions were used for the
DG-DSA solutions. It should be noted that a local mesh refinement, 6 × 6, was applied to the
absorbing region (in orange), where the optical thickness is large. The resulting mesh is a
nonconforming mesh with some hanging nodes. The total number of cells in the DG-DSA mesh
is 252, while the SN mesh has 3600 cells.

The numerical results are shown in Fig. 2-5. The converged scalar flux is plotted in Fig. 2-5a.
The convergence performance, i.e., the flux relative error vs. transport sweep number, is
illustrated in Fig. 2-5b. The results of the SN source iteration without acceleration are shown
for comparison. It shows that DG-DSA can effectively converge the SN iterations on the coarse-
mesh as on the fine-mesh.

1.0E-10

1.0E-08

1.0E-06

1.0E-04

1.0E-02

1.0E+00

1 10 100 1000

Fl
ux

 R
el

at
iv

e
Er

ro
r

Transport Sweep #

SI

P0

P1

P2

20

Figure	2-4.	Specifications	of	2-D	problem.	

(a)	Converged	scalar	flux	

21

(b)	Flux	relative	error	vs.	iteration	number	

Figure	2-5.	Numerical	results	of	local	ℎ	adaptation.	

The comparison of computing time is summarized in Table 2-1 for the above problem. It shows
that DG-DSA is very effective when solved on a “consistent” fine-mesh (e.g., H12P1), but
computationally inefficient because the discretized linear diffusion system is very large with
the number of degrees of freedom of 10800, while it is only 675 for the coarse-mesh solution
of H3P1. It is found that for DG-DSA the piecewise linear function always outperforms the
pricewise constant function (e.g., H3P1 vs. H3P0 or H6P0). This case demonstrates that the
DG-DSA method can effectively and efficiently accelerate the transport iteration by using a
coarse-mesh grid.

In addition, as compared with continuous Galerkin (CG) methods, an advantage of the DG
methods is that they can be discretized on a nonconforming mesh which enables flexible
implementation of local ℎ𝑝 adaptation, while the CG implementation on the nonconforming
mesh is much more involving and complicated. It should be noted that in this study the linear
system of DG-DSA, i.e., Eq. (2-21a), was solved simply using the MATLAB built-in
“backslash” function.

Table	2-1.	Computational	Performance	Comparison*	

SI

DG-DSA
H12P0b H12P1 H6P0 H6P1 H3P0 H3P1

Number of DOFa 302400 3600 10800 900 2700 225 675
Transport iteration

number
325 15 15 16 15 22 15

Transport time (s)c 49.70 2.46 2.48 2.43 2.33 3.44 2.32
DG-DSA time (s)c - 3.52 62.28 0.18 2.07 0.13 0.24

Total calculation time
(s) 49.70 5.98 64.76 2.61 4.40 3.57 2.56

Speedup 1 8.3 0.77 19.04 8.31 13.92 19.41

1.0E-10

1.0E-08

1.0E-06

1.0E-04

1.0E-02

1.0E+00

1 10 100 1000

Fl
ux

 R
el

at
iv

e
Er

ro
r

Transport Sweep #

SI

FM DG-DSA

CM DG-DSA

22

* Computational results were obtained with MATLAB R2018a on MacBook Pro with
Processor 2.9 GHz Intel Core i7.

a SI: The unmember of degrees of freedom is the total number of angular flux unknowns;
DG-DSA: The total number of polynomial coefficients.

b H12P0: H12 denotes a mesh refinement of 12 × 12 for each coarse-mesh cell and P0
denotes a piecewise constant function for DG-DSA.

c Measured by the MATLAB tic-toc function.

2.3 SUMMARY

In this chapter, we have presented our newly developed diffusion synthetic acceleration
method, DG-DSA, for speeding up the convergence of neutron transport calculations. This new
DSA method can greatly improve the computational efficiency of the conventional DSA
methods by using the DG methods. The novelty of DG-DSA is that it reduces the number of
degrees of freedom by discretizing the diffusion equation on a coarse-mesh grid with local ℎ𝑝
adaption. Our numerical results have demonstrated its rapid convergence performance and
efficiency. In addition, it is worth mentioning that for LWR applications DG-DSA can further
employ mesh adaptation for different neutron energy group, i.e., the mesh for fast group
calculations can be coarser than that for thermal groups (e.g., pin or quarter assembly size)
since the total cross sections of water and fuel in fast groups are smaller than thermal group
cross sections.

It is found that the acceleration performance of DG-DSA is sensitive to the penalty number,
𝜎t, although the solution of the DG-DSA itself is numerically stable for a wide range of penalty.
For small total cross sections (< 0.8 cm²Z), the convergence rate of DG-DSA is not much
sensitive to the penalty. When the cross section increases, the penalty should be increased to
obtain the optimal convergence performance.

3. DEVELOPMENT OF LPCMFD
The coarse-mesh finite difference (CMFD) method is being widely used for accelerating
neutron transport calculations. A well-known issue with CMFD is that it will become unstable
and even fail when the optical thickness becomes large, which has been reported in various
numerical and theoretical studies. 12-14

A number of stabilization techniques have been developed to improve the stability of CMFD.
One is the under-relaxation approach, which arbitrarily applies some damping on the drift flux
coefficient to stabilize CMFD.12 However, a judicious choice of under-relaxation has to be
problem dependent and nonoptimal relaxation will hurt the convergence. A variant of CMFD
method, called the partial-current-based CMFD (pCMFD), is found to be unconditionally
stable for monoenergetic infinite homogenous problems, but become slower than CMFD for
problems with intermediate and smaller optical thickness. 15 A new optimally diffusive coarse-
mesh finite difference (odCMFD) method, which generalizes CMFD by adding an artificial

23

term to the diffusion coefficient, is unconditionally stable and faster than CMFD.16-17 A two-
level pCMFD acceleration schemes which augments a fine-mesh based acceleration with a
fixed source in a coarse mesh based acceleration with power iteration, is introduced Cho et al.18
It was shown that for optically thick coarse mesh cell, this scheme enhances the convergence
performance of pCMFD. A recent stabilization technique uses linear weighting on two
neighboring coarse-mesh cell flux ratios to replace the conventional prolongation method of
CMFD.19 The weighting factors between the two coarse-mesh cells are determined based on
the geometric centroids. Essentially, it is still a nonlinear flux updating method.

In this chapter, we present a new stabilization scheme, named linear prolongation CMFD
(lpCMFD). A novel feature of this scheme is that the conventional flat-flux-ratio based scaling
approach is replaced with a linear interpolation of the scalar flux differences at the coarse-mesh
cell edges between the neutron transport and CMFD calculations. The new flux update uses a
linear additive approach, which has some similarity with the diffusion synthetic acceleration
method (DSA). Larsen and Kelley in Reference 20 show that the linearized form of the CMFD
method is algebraically equivalent to the coarse-mesh DSA method.

The remainder of this chapter is organized as follows. The formulation and algorithm of
lpCMFD are presented in Sec. 3.1. In Sec. 3-2, a detailed Fourier analysis of the lpCMFD
convergence is presented. The effectiveness and stability of the lpCMFD method are
demonstrated based on a 2D neutron transport fixed source problem and a 2D k-eigenvalue
problem in Sec. 3-3. Sec 3.4 covers the fourier analysis of lpCMFD for transient and eigen
value problems. The lpCMFD method is used with MOC solver and its demonstration is shown
Sec 3.5.

3.1 LPCMFD FORMULATION AND ALGORITHM

The formulation and algorithm of the lpCMFD scheme are presented in this section. The
flowchart of the lpCMFD algorithm for fixed source problems is shown in Fig. 3-1. The 𝑙th
iteration cycle begins with the neutron transport calculation:

Ω ∙ ∇𝜓IJZ/d+	ΣU𝜓IJZ/d = yW
Xæ
(𝜙I + 𝑄) , (3-1)

where	𝜙 and 𝜓 are the scalar flux and angular flux, Σg and ΣU are scattering cross section and
total cross section defined on the fine-mesh,	Ω is the neutron direction, and 𝑄 is the external
neutron source. 𝑙 is the source iteration index and 𝑙 + 1/2 is the intermediate step.

During each transport source iteration, the coarse-mesh flux is obtained by solving the CMFD
equation,

∇ ∙ ± ²Z
ayb,çè

𝛻 + 𝐷̂ëì
IJZ/dµΦIJZ + (ΣU,ëì − Σg,ëì)ΦIJZ = 𝑄 , (3-2)

where ΦIJZ is the coarse-mesh scalar flux. 	ΣU,ëì and Σg,ëì are the total cross section and
scattering cross section defined on the coarse-mesh. 𝐷̂ëì

IJZ/dis the drift coefficient (or nonlinear

24

coupling coefficient) which is calculated using the information from the 𝑙 + 1/2 step transport
source iteration,

𝐷̂ëì
IJZ/d =

∫ îïïðÖ´K/L	J	 K
ñòb,çè

∇ÕóÖ´K/LK
×K

ÕÖ´K/L
 , (3-3)

where 𝜙ôIJZ/d is the averaged transport calculated scalar flux on the coarse-mesh. In the flux
update step, our lpCMFD scheme replaces the following conventional flat flux scaling
approach:

𝜙IJZ = 𝜙IJZ/d õÖ´K

ÕóÖ´K/L
 , (3-4)

with a linear prolongation approach:

𝜙IJZ = 𝜙IJZ/d + 𝛿𝜙 . (3-5)

A linear interpolation is used to obtain the fine delta flux inside the cell based on the delta flux
at the cell boundary:

𝛿𝜙 = Linear	Interpolation(𝛿Φ÷ë) . (3-6)

25

Figure	3-1.	Flowchart	of	the	lpCMFD	algorithm	for	fixed	source	problems.	

For 1D problems, we have the boundary delta flux defined as

Figure	3-2.	1-D	mesh.																					

𝛿Φ÷ë =
𝛿Φ�²Z/d =

Z
d
ùlΦ�²Z

IJZ − 𝜙ô�²Z
IJZ/dn + lΦ�

IJZ − 𝜙ô�
IJZ/dnú

𝛿Φ�JZ/d =
Z
d
ùlΦ�

IJZ − 𝜙ô�
IJZ/dn + lΦ�JZ

IJZ − 𝜙ô�JZ
IJZ/dnú

 , (3-7)

where Φ�²Z
IJZ, Φ�

IJZ, and Φ�JZ
IJZ are the CMFD flux values on the coarse-mesh cells 𝑖 − 1, 𝑖, and

𝑖 + 1, respectively, as shown in Fig. 3-2. 𝜙ô�²Z
IJZ/d, 𝜙ô�

IJZ/d, and 𝜙ô�JZ
IJZ/d are the corresponding

26

averaged transport flux values. Using linear interpolation between the boundary delta flux
values of each coarse-mesh cell gives the fine delta flux inside the coarse-mesh cell as:

 𝛿𝜙�(𝑥) = 𝛿Φ�²Z/d +
G²G�×K/L

G�´K/L²G�×K/L
(𝛿Φ�JZ/d − 𝛿Φ�²Z/d) . (3-8)

For 2D problems, we have the boundary delta flux defined on the square mesh shown in Fig.
3-3 as

Figure	3-3.	2D	mesh.	

𝛿Φ÷ë

=

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝛿Φ�²Zd,¿²

Z
d
=
1
4
ÿ·Φ�²Z,¿²Z

IJZ − 𝜙ô�²Z,¿²Z
IJZ/d ¹ + ·Φ�,¿²Z

IJZ − 𝜙ô�,¿²Z
IJZ/d¹ + ·Φ�,¿

IJZ − 𝜙ô�,¿
IJZ/d¹ + ·Φ�²Z,¿

IJZ − 𝜙ô�²Z,¿
IJZ/d¹!

𝛿Φ
�JZd,¿²

Z
d
=
1
4 ÿ
·Φ�,¿²Z

IJZ − 𝜙ô�,¿²Z
IJZ/d¹ + ·Φ�JZ,¿²Z

IJZ − 𝜙ô�JZ,¿²Z
IJZ/d ¹ + ·Φ�JZ,¿

IJZ − 𝜙ô�JZ,¿
IJZ/d¹ + ·Φ�,¿

IJZ − 𝜙ô�,¿
IJZ/d¹!

𝛿Φ
�JZd,¿J

Z
d
=
1
4 ÿ·Φ�,¿

IJZ − 𝜙ô�,¿
IJZ/d¹ + ·Φ�JZ,¿

IJZ − 𝜙ô�JZ,¿
IJZ/d¹ + ·Φ�JZ,¿JZ

IJZ − 𝜙ô�JZ,¿JZ
IJZ/d ¹ + ·Φ�,¿JZ

IJZ − 𝜙ô�,¿JZ
IJZ/d¹!

𝛿Φ
�²Zd,¿J

Z
d
=
1
4 ÿ
·Φ�²Z,¿

IJZ − 𝜙ô�²Z,¿
IJZ/d¹ + ·Φ�,¿

IJZ − 𝜙ô�,¿
IJZ/d¹ + ·Φ�,¿JZ

IJZ − 𝜙ô�,¿JZ
IJZ/d¹ + ·Φ�²Z,¿JZ

IJZ − 𝜙ô�²Z,¿JZ
IJZ/d ¹!

	

 (3-9)

Using bilinear interpolation on the four corner delta flux values of each coarse-mesh cell gives
the fine delta flux inside the coarse-mesh cell as:

𝛿𝜙�,¿(𝑥, 𝑦) = Bilinear	Interpolationl𝛿Φ�²Z/d,¿²Z/d, 𝛿Φ�JZ/d,¿²Z/d, 𝛿Φ�JZ/d,¿JZ/d, 𝛿Φ�²Z/d,¿JZ/dn

= 𝑎𝑥 + 𝑏𝑥𝑦 + 𝑐𝑦 + 𝑑 , (3-10)

where

𝑎 = &õ�´K/L,³×K/L²&õ�×K/L,³×K/L

∆G
 , (3-11a)

𝑏 = &õ�´K/L,³´K/L²&õ�×K/L,³´K/LJ&õ�×K/L,³×K/L²&õ�´K/L,³×K/L

	∆G∆T
 , (3-11b)

27

𝑐 = &õ�×K/L,³´K/L²&õ�×K/L,³×K/L

∆T
 , (3-11c)

𝑑 = 𝛿Φ�²Z/d,¿²Z/d . (3-11d)

It should be noted that if the coarse-mesh cell edge lies on the problem domain boundary, the
delta scalar flux on this edge equals to the delta scalar flux of the coarse-mesh cell.

Fig. 3-4 gives an illustrative comparison of SN scalar flux updating between the lpCMFD and
CMFD methods. It can be seen that the updated scalar flux for the transport calculation is
always kept continuous across the coarse-mesh boundary in lpCMFD, while it is usually not
the case for CMFD.

(a) Delta flux in each coarse-mesh cell.

(b) Linearized delta flux in each coarse-mesh cell.

28

 (c) Comparison of flux correction between CMFD and lpCMFD.

Figure	3-4.	SN	Scalar	Flux	Updating	Comparison	for	CMFD	and	lpCMFD.	

3.2 FOURIER ANALYSIS

In order to study the convergence performance and stability of lpCMFD, we perform detailed
Fourier analysis in this section. First in Sec. 3.2.1, the Fourier analysis formulation of the
linearized lpCMFD method is presented, and the spectral radius of the error iteration matrix is
derived. Then in Sec. 3.2.2, the Fourier spectral radius results are compared with the numerical
results for various scattering ratios. At last, in Sec. 3.2.3, the numerical results of Fourier
analysis for eigenvalue problems are presented.

3.2.1 FOURIER ANALYSIS FORMULATION FOR FIXED SOURCE PROBLEM

The Fourier analysis is performed based on an 1D homogeneous problem with a uniform mesh
and a specified number 𝑝 of fine-mesh cells per coarse cell. Eqs. (3-1) through (3-8) are firstly
linearized near the exact solution. Then the error terms in the linearized equations are expressed
as Fourier modes. The spectral radius can be obtained from the error iteration matrix. The
Fourier analysis is carried out on a single coarse-mesh cell with periodic boundary conditions.
The number of fine-mesh cells in the coarse-mesh cell is 𝑝. The coarse-mesh spacing is ∆. The
fine-mesh spacing is ℎ = ∆/𝑝.

We first define the following Fourier ansatz:

𝜓)�,ª
(IJZ) = 𝐸�,ª

(IJZ)𝑒�yb*Áª , (3-12a)

𝜙)ª
(IJZ) = 𝑆ª

(IJZ)𝑒�yb*∆Áª , (3-12b)

𝜙)Z,ª²Z/d
(IJZ/d) = 𝑈ª

(IJZ/d)𝑒�yb*∆Á(ª²Z/d) , (3-12c)

29

Φ,¿
(IJZ/d) = 𝐶(IJZ/d)𝑒�yb*∆¿ , (3-12d)

Φ,Z,¿²Z/d
(IJZ/d) = 𝐺(IJZ/d)𝑒�yb*∆(¿²Z/d) , (3-12e)

Φ,¿
(IJZ) = 𝑅(IJZ)𝑒�yb*∆¿ . (3-12f)

The tilde notation above a variable represents the first order error term near the exact solution.
𝜓), 𝜙), and Φ, are the Fourier fine-mesh angular flux, fine-mesh scalar flux, and the coarse-mesh
average scalar flux, respectively. The superscripts 𝑙 and 𝑙 + 1/2 denote the CMFD iteration
index and the intermediate transport iteration index, respectively. The subscript 𝑘 is the fine-
mesh index in each coarse-mesh cell, and 𝑘 − 1/2 denotes the left edge of the fine-mesh cell
𝑘. 𝑗 is the coarse-mesh index, 𝑗 − 1/2 denotes the left edge of the coarse-mesh cell 𝑗. The
subscript 1 denotes the edge current. The subscript 𝑛 denotes the neutron direction. 𝐸, 𝑆, 𝑈, 𝐶,
𝐺, and 𝑅 are the coefficients of the Fourier ansatz terms. 𝜆 is the Fourier frequency.

Eq. (1) is discretized using the step characteristic method in space and the numerical quadrature
set in angle. The discretized linearized transport equation is expressed as follows:

𝜇�l𝜓)�,ªJZ d⁄
IJZ d⁄ − 𝜓)�,ª²Z d⁄

IJZ d⁄ n + ΣUℎ𝜓)�,ª
IJZ d⁄ = yW

d
ℎ𝜙)ªI , (3-13a)

𝜓)�,ª
IJZ d⁄ = ZJ3�

d
𝜓)�,ªJZ d⁄
IJZ d⁄ + Z²3�

d
𝜓)�,ª²Z d⁄
IJZ d⁄ , (3-13b)

 𝛼� = 	
ZJt×òb4/5�

Z²t×òb4/5�
− d6�

ybÁ
 . (3-13c)

The linearized form of Eq. (3-2) (detailed derivation can be found in Reference 20), is given as
follows:

Φ,J
(IJZ) − `2 +

ΣfΔd

𝐷ëì
eΦ, (IJZ) + Φ,²(IJZ)

=	 Z
�çè

·Φ,Z,JZ d⁄
(IJZ d⁄) − Φ,Z,²Z d⁄

(IJZ d⁄)¹ + Φ,J
(IJZ d⁄) − 2Φ, (IJZ/d) + Φ,²(IJZ d⁄), (3-14)

where 𝐷ëì is the diffusion coefficient on the coarse-mesh. Φ,J
(IJZ) and Φ,²(IJZ) are the fluxes of

the right and left coarse-mesh cells, respectively. Φ,Z,JZ d⁄
(IJZ d⁄) and Φ,Z,²Z d⁄

(IJZ d⁄)	are the currents at the
right and left edges of the coarse-mesh cell, respectively.

With the periodic boundary conditions on the coarse-mesh cell edges, we can linearize the left
and right-side boundary conditions Eq. (3-7) as

𝛿Φ78 =
Z
d
l𝑒²�yb*9 + 1n𝛿: , (3-15a)

𝛿Φ7; =
Z
d
l𝑒�yb*9 + 1n𝛿: , (3-15b)

30

where

𝛿: = Φ, (IJZ) − Φ, (IJZ/d) . (3-16)

Then we linearize the flux updating Eq. (3-8) of lpCMFD as follows,

𝜙)ªIJZ = 𝜙)ª
IJZ/d + (dª²Z)&,t�òb<=J[d>²(dª²Z)]&,t×�òb<=

X>
+ &,

d
 , 1 ≤ 	𝑘 ≤ 𝑝. (3-17)

The key part in Fourier analysis is to find the error transition matrix for the fine-mesh scalar
flux error terms. Based on the single coarse-mesh cell with periodic boundary conditions, we
first define vectors 𝑬�

IJZ/dand 𝑺𝒄I to store the fine-mesh edge angular and center scalar fluxes,
respectively, which are given as follows:

𝑬�
IJKL =

⎣
⎢
⎢
⎢
⎡ 𝜓)�,Z d⁄

IJZ d⁄

𝜓)�,ZJZ d⁄
IJZ d⁄

⋮
𝜓)�,>²Z d⁄
IJZ d⁄

⎦
⎥
⎥
⎥
⎤

>×Z

, (3-18a)

𝑺𝒄I =

⎣
⎢
⎢
⎢
⎡𝜙
)ZI

𝜙)dI
⋮
𝜙)>I ⎦
⎥
⎥
⎥
⎤

>×Z

.	 (3-18b)

After the 𝑙th source iteration calculation of transport equation, the 𝑙 + 1/2 intermediate step
fine-mesh edge angular flux is obtained as follows,

𝑬�
IJZ/d = 𝒀�²Z

yW
d
𝑺𝒄I , (3-19)

where 𝒀� is matrix for the transport calculation. 𝒀� is expressed as,

𝒀� =

⎣
⎢
⎢
⎢
⎢
⎡ − 6�

Á
+ ΣU(

Z²3�
d
) 6�

Á
+ ΣU(

ZJ3�
d
) 0 0 0

0 	− 6�
Á
+ ΣU(

Z²3�
d
) 6�

Á
+ ΣU(

ZJ3�
d
) 0 0

0 0 0 ⋱ 0
[6�
Á
+ ΣU ·

ZJ3�
d
¹]𝑒�yb*9 0 0 0 − 6�

Á
+ ΣU(

Z²3�
d
)⎦
⎥
⎥
⎥
⎥
⎤

>×>

 (3-20)

The fine-mesh center scalar flux is derived as follows,

𝑺𝒄
IJZ/d = ∑ 𝑤�𝑷�𝑬�

IJZ/dÃ
�ÄZ = ∑ 𝑤�𝑷�𝒀�²Z

yW
d
𝑺𝒄IÃ

�ÄZ = 𝑯𝑺𝒄I , (3-21)

where 𝑁 is number of angular quadrature set points, and

31

𝑷� =

⎣
⎢
⎢
⎢
⎢
⎡

Z²3�
d

ZJ3�
d

0 0 0

0 Z²3�
d

ZJ3�
d

0 0
0 0 0 ⋱ 0

ZJ3�
d
𝑒�yb*9 0 0 0 Z²3�

d ⎦
⎥
⎥
⎥
⎥
⎤

>×>

 , (3-22a)

𝑯 = ∑ 𝑤�𝑷�𝒀�²Z
yW
d

Ã
�ÄZ . (3-22b)

Matrix 𝑯 is the iteration matrix for the transport source iteration calculation.

Based on the variables defined above, the coarse-mesh average scalar flux and left edge current
are obtained as follows,

𝑪IJZ/d = Z
>
× [1 ⋯ 1]Z×> ∑ 𝑤�𝑷�𝒀�²Z

yW
d
𝑺𝒄IÃ

�ÄZ , (3-23a)

𝑮IJZ/d = [1 0 ⋯ 0]Z×> ∑ 𝑤�𝜇�𝒀�²Z
yW
d
𝑺𝒄IÃ

�ÄZ . (3-23b)

From the above derivation, we find that all the quantities needed at the 𝑙 + 1/2 step can be
expressed in terms of 𝒀�, 𝑺𝒄I , and 𝑷�. By substituting Eq. (3-23) into Eq. (3-14), we have

𝑹IJZ𝑒�yb*9 − `2 +
ΣfΔd

𝐷ëì
e𝑹IJZ + 𝑹IJZ𝑒²�yb*9

= 9
�çè

l𝑒�yb*9/d − 𝑒²�yb*9/dn𝑮IJZ/d + 𝑪IJZ/d𝑒�yb*9 − 2𝑪IJZ/d + 𝑪IJZ/d𝑒²�yb*9 . (3-24)

From Eq. (3-24), we can obtain

𝑹IJZ − 𝑪IJZ/d = 	 ∆l	t
�òb<=/L²t×�òb<=/Ln𝑮Ö´K/LJy�9L	𝑪Ö´K/L

�çè[d QR](yb*9)²d]²y�9L	
 . (3-25)

Using Eqs. (3-17) and (3-25), the iteration equation for the fine-mesh scalar flux error of
lpCMFD is obtained as follows,

𝑺wIJZ = (𝑯+ 	𝜽	(𝑹− 𝑪))𝑺wI , (3-26)

where 𝜽 is defined as

𝜽 = (𝜃Z			𝜃d	. . . 	𝜃>)U , (3-27a)

	𝜃ª = 	
d>J(d>²dªJZ)t×�òb<=J(dª²Z)t�òb<=

X>
	 , 1 ≤ 𝑘 ≤ 𝑝 . (3-27b)

The matrix l𝑯+ 	𝜽	(𝑹− 𝑪)n is the final error iteration matrix for lpCMFD. Its spectral radius
as a function of Fourier frequency is given as

32

𝜔(𝜆) = max ±𝑎𝑏𝑠 ·𝑒𝑖𝑔l𝑯+ 	𝜽	(𝑹− 𝑪)n¹µ . (3-28)

Fourier frequency that satisfies the periodic boundary condition is expressed as follows

𝜆 =	 dæg
yb8

 , 𝑠 = 1, 2,… , 𝐽 − 1 , (3-29)

where

𝐽 = 8
9
 , (3-30)

where 𝐿 denotes the domain size of the 1D problem. The spectral radius is defined as

𝜌 = maxl𝜔(𝜆)n	. (3-31)

3.2.2 NUMERICAL RESULTS OF FOURIER ANALYSIS FOR FIXED SOURCE

PROBLEM

The model problem considered in this section is a homogeneous 50-centimeter slab with the
reflective right boundary and vacuum left boundary. The fine-mesh size is 0.1cm. The fine-
mesh number in each coarse mesh is 𝑝. The numerical solutions were obtained using the Gauss-
Legendre S10 quadrature set for angular discretization and the step characteristic (SC) method
for spatial discretization.

For comparison with the Fourier analysis results, the numerical spectral radius of the lpCMFD
convergence is calculated by

𝜌 = ÔÕÖ´K²ÕÖÔ
ÔÕÖ²ÕÖ×KÔ

 . (3-32)

For comparison, the theoretical spectral radius results of CMFD, lpCMFD, odCMFD and
pCMFD are also showing in Figs. 3-5 and 3-6 for scattering ratios of 0.6, 0.8, 0.9, and 0.99,
respectively. Fig. 3-5 is for 𝑝 = 5 , and Fig. 3-6 is for 𝑝 = 10 . The coarse-mesh optical
thickness is ΣUΔ.

33

Figure 3-5. Convergence comparison (𝑝 = 5).

a) Scattering ratio c = 0.6 b) Scattering ratio c = 0.8

0

0.2

0.4

0.6

0.8

1

0 . 0 1 0 . 1 1 1 0 1 0 0

CMFD

pCMFD

odCMFD

lpCMFD

lpCMFD (Numerical)

Coarse-Mesh Optical Thickness

Sp
ec

tr
al

 R
ad

iu
s

0

0.2

0.4

0.6

0.8

1

0 . 0 1 0 . 1 1 1 0 1 0 0

CMFD
pCMFD

odCMFD
lpCMFD

lpCMFD (Numerical)

Sp
ec

tr
al

 R
ad

iu
s

Coarse-Mesh Optical Thickness

a) Scattering ratio c = 0.6 b) Scattering ratio c = 0.8

c) Scattering ratio c = 0.9 d) Scattering ratio c = 0.99

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100

CMFD

pCMFD

odCMFD

lpCMFD

lpCMFD (Numerical)

Coarse-Mesh Optical Thickness

Sp
ec

tr
al

 R
ad

iu
s

0

0.2

0.4

0.6

0.8

1

0 . 0 1 0 . 1 1 1 0 1 0 0

CMFD
pCMFD
odCMFD
lpCMFD
lpCMFD (Numerical)

Sp
ec

tr
al

 R
ad

iu
s

Coarse-Mesh Optical Thickness

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100

CMFD

pCMFD

odCMFD

lpCMFD

lpCMFD (Numerical)

Sp
ec

tr
al

 R
ad

iu
s

Coarse-Mesh Optical Thickness

0

0.2

0.4

0.6

0.8

1

0 . 0 1 0 . 1 1 1 0 1 0 0

CMFD

pCMFD

odCMFD

lpCMFD

lpCMFD (Numerical)
Sp

ec
tr

al
 R

ad
iu

s

Coarse-Mesh Optical Thickness

34

c) Scattering ratio c = 0.9 d) Scattering ratio c = 0.99

Figure 3-6. Convergence comparison (𝑝 = 10).

The following observations can be drawn from the above convergence study for the 1D model
problem:

1. For large scattering ratios (> 0.9), CMFD is only effective for the coarse-mesh optical
thickness less than 1. It becomes unstable and fails to converge when the thickness is
larger than 2.

2. pCMFD is unconditionally stable, but the convergence performance is worse than
lpCMFD and odCMFD for moderate optical thickness.

3. lpCMFD is unconditionally stable for the whole range of the optical thickness tested.
For the optical thickness less than 1, the convergence performance of lpCMFD is
similar to CMFD and odCMFD. It becomes more effective and stable than CMFD for
the optical thickness larger than 1 when the scattering ratio becomes large.

4. The results of numerical spectral radius of lpCMFD are consistent with the theoretical
Fourier results.

3.2.3 NUMERICAL RESULTS OF FOURIER ANALYSIS FOR TRANSIENT AND

EIGEN VALUE PROBLEMS

The Fourier analysis for the eigenvalue problems is discussed in this section. The quadrature
sets used are S[and the total cross section is assumed to be 1 cm²Z. The Fourier analysis results
are compared with the numerical results first to verify the Fourier analysis. Then the Fourier
analysis results of lpCMFD and CMFD are compared with each other to show the performance
improvement with linear prolongation. The parameter space where the lpCMFD is
unconditionally stable is then examined.

3.2.3.1 VALIDATION OF FOURIER ANALYSIS IN EIGENVALUE PROBLEMS

The Fourier analysis was verified by comparing the theoretical results from Fourier analysis
with the results from direct numerical simulation in k-eigenvalue problems and are shown in

0

0.2

0.4

0.6

0.8

1

0 . 0 1 0 . 1 1 1 0 1 0 0

CMFD

pCMFD

odCMFD
lpCMFD

lpCMFD (Numerical)

Sp
ec

tr
al

 R
ad

iu
s

Coarse-Mesh Optical Thickness

0

0.2

0.4

0.6

0.8

1

0 . 0 1 0 . 1 1 1 0 1 0 0

CMFD
pCMFD
odCMFD
lpCMFD
lpCMFD (Numerical)

Coarse-Mesh Optical Thickness

Sp
ec

tr
al

 R
ad

iu
s

35

Fig. 3-7. Despite the difference in the parameters used, it shows the theoretical results agree
very well with the code numerical results. When the coarse mesh optical thickness ΣUΔ is 1, the
numerical results converge very quickly which results in a large error in the estimate of the
spectral radius of the numerical solution. Δ is the size of the coarse mesh. However, the overall
agreement between theoretical and numerical investigation results indicates that the theoretical
results are sufficient to investigate the properties of lpCMFD. In the following investigations,
only the Fourier analysis results are used. Moreover, by comparing the plots in Fig. 3-7a and
Fig. 3-7b, it is apparent that when M=1 (M is the number of transport sweeps) the spectral
radius is independent of scattering ratio c in lpCMFD.

(a) c = 0.3

(a) c = 0.9

Figure	3-7.	Verification of Fourier analysis with numerical results for selected cases.

36

3.2.3.2 COMPARISON BETWEEN LPCMFD AND FPCMFD

The performance of lpCMFD and CMFD can be compared using the results in Fig. 3-8. When
the coarse cell optical thickness ΣCΔ > 5, for CMFD, the spectral radius is greater than 1, the
method is unstable, whereas for lpCMFD, the spectral radius is less than 1. The lpCMFD
method is stable even when the coarse mesh optical thickness is as large as 40. These results
suggest that linear prolongation makes CMFD much more stable, thus there is a much larger
parameter space where lpCMFD to be stable.

(a) CMFD

(b) lpCMFD

Figure	3-8.	Comparison	between	CMFD	and	lpCMFD.	

37

3.2.3.3 FINE MESH OPTICAL THICKNESS THRESHOLD IN LPCMFD

For the model problem with large size and a large number of coarse meshes, it is found that
there is a fine mesh optical thickness threshold for the lpCMFD, as shown in Fig. 3-9:

1. The threshold is almost a constant for different number of fine cells.
2. With the number of coarse mesh increasing, the threshold decreases and converges to

a constant which is around 2.46. It should be noted that M= 1 is the most unstable
option. Therefore, it can be concluded that there is a fine cell optical thickness threshold
for which the lpCMFD is stable no matter how large the size of coarse mesh is.

Figure	3-9.	Threshold	of	convergence	for	lpCMFD	

3.2.3.4 UNCONDITIONALLY STABLE VERSION OF LPCMFD (SLPCMFD)

The diffusion coefficient can be modified to make the lpCMFD more stable as Eq. (3-32)
shows.

D^_ =
1
3ΣC

+ θ^_(ΣCΔ)Δ (3 − 32)

𝜃fî is named as the artificially diffusive and is applied to the diffusion coefficient. For the
lpCMFD, the 𝜃fî is determined by Eq. (3-33):

𝜃^_ =
0,																																		ΣUℎ < 0
0.25(ΣCh − 1), 	1 ≤ ΣCℎ ≤ 2
0.25,																												ΣCℎ ≥ 2

		 (3 − 33)

38

The lpCMFD with the 𝜃fî defined in Eq. (3-33) is named as SlpCMFD. The spectral radius of
SlpCMFD with lpCMFD and other mainstream variants of CMFD methods are compared in
Fig. 3-10 for various number of q, which represents the number of fine cells per coarse cell. As
indicated in the figure, the SlpCMFD converges faster than any mainstream CMFD methods
analyzed. It has comparable stability with the other unconditionally stable methods in small
and large optical thickness region but is more stable in intermediate optical thickness region.

(a)	𝑞 = 4																																																						(b)	𝑞 = 10

(c)	𝑞 = 20

Figure	3-10.	Comparison	of	SlpCMFD	and	conventional	CMFD	

3.3 NUMEIRCAL RESULTS

Two monoenergetic neutron transport model problems are studied to demonstrate the
effectiveness and stability of lpCMFD as compared with CMFD. The first problem is a 2D
fixed-source problem, and the second one is a 2D k-eigenvalue problem.

3.3.1 2-D FIXED SOURCE PROBLEM

In this section, the 2D fixed-source problem is employed to test the stability and effectiveness
of lpCMFD. Neutron scattering is assumed isotropic. The model problem considered is a

39

5cm × 5cm square with the reflective boundary condition on the four sides. The external
neutron source is homogenous in the domain with the constant value of 1/cmd. The domain is
divided into 25 uniform coarse-mesh cells as shown in Fig. 3-11. The fine-mesh number per
each coarse-mesh cell is 10 × 10 . Numerical solutions for the SN neutron transport were
obtained using the diamond difference (DD) method for spatial discretization and the Gauss-
Legendre S12 quadrature set for angular discretization.

Figure	3-11.	Specifications	of	2D	fixed-source	problem.	

In this problem, a cross section perturbation was introduced in the coarse-mesh cell close to
the bottom left corner of the problem domain (marked as the red square in Fig. 3-11). The
CMFD method without under-relaxation cannot converge for this problem as expected. In order
to have the CMFD method converge, the under-relaxation factor should be at least smaller than
0.73. Numerical results for CMFD, CMFD with under-relaxation factor, and lpCMFD are
shown in Fig. 3-12.

(a) Converged scalar flux

ΣU = 3.0	cm²Z, 𝑐
= 0.99

ΣU = 10.0	cm²Z, 𝑐 = 0.1

40

(b) Flux relative error vs. iteration number

Figure	3-12.	Numerical	results	of	lpCMFD	for	2D	fixed-source	problem.	

Fig. 3-12a plots the converged scalar flux, and Fig. 3-12b shows the convergence comparison
between lpCMFD and CMFD. The relative flux relative residual (2-norm) is used as the
convergence performance index. It is shown that lpCMFD needs about 49 transport sweeps,
while the CMFD scheme with an optimal under-relaxation factor of 0.73 takes 253 transport
sweeps to converge. This study demonstrates that lpCMFD is more effective than the under-
relaxed CMFD method.

3.3.2 2D K-EIGENVALUES PROBLEM

In this section, the 2D monoenergetic k-eigenvalue problem with large optical thickness is
setup to test the stability and effectiveness of lpCMFD. Neutron scattering is assumed isotropic.
The model problem considered is a 5cm × 5cm square with the reflective boundary condition
on four sides. The domain is divided into 25 uniform coarse-mesh cells as shown in Fig. 3-13.
The fine-mesh number in each coarse-mesh cell is 10 × 10. Numerical solutions for the SN
neutron transport were obtained using the diamond difference (DD) method for spatial
discretization, and the Gauss-Legendre S12 quadrature set for angular discretization.

1.0E-09

1.0E-07

1.0E-05

1.0E-03

1.0E-01

1.0E+01

1.0E+03

1 10 100 1000

Re
la

tiv
e

Fl
ux

 R
es

id
ua

l

Transport Sweep #

CMFD CMFD with under-relaxation lpCMFD

41

Figure	3-13.	Specifications	of	2D	k-eigenvalue	problem.	

In this problem, a cross section perturbation was introduced in the center coarse-mesh cell in
the problem domain (marked as the red square in Fig. 3-13). The optical thickness of white
coarse-mesh cells is 10. The CMFD method without under-relaxation cannot converge for this
problem. The fine delta flux values in each coarse-mesh cell were calculated using bilinear
interpolation on the four corner delta flux values of the coarse-mesh cell. Our testing shows
that in order to have the CMFD method converge, the under-relaxation factor should be at least
smaller than 0.15. Numerical results for lpCMFD and CMFD are presented in Fig. 3-14.

(a) Normalized converged scalar flux

Σg = 9.0	cm²Z, ΣU = 10.0	cm²Z, 𝜐Σu
= 1.0	cm²Z

Σg = 8.1	cm²Z, ΣU = 9.0	cm²Z, 𝜐Σu
= 0.99	cm²Z

42

(b) Flux residual vs. iteration number

Figure	3-14.	Numerical	results	of	lpCMFD	for	2D	K-eigenvalue	problem.	

Fig. 3-14a shows the normalized converged scalar flux. The relative flux residual (2-norm) is
used as the convergence performance index. It is shown in Fig. 3-14b that lpCMFD converges
at about 220 transport sweeps, which is much less than 544 transport sweeps taken by the
CMFD scheme with an optimal under-relaxation factor of 0.15. This study demonstrates that
lpCMFD is more effective than the under-relaxed CMFD method.

3.4 DEMONSTRATION OF A LPCMFD METHOD ON MOC SOLVER

Method of Characteristics (MOC) is a very popular method to solve neutron transport
equations. In this section, lpCMFD is applied on a code based on MOC method. Track-based
centroids calculation method is introduced to find the centroids coordinates for random shapes
of fine cells. And the numerical results are given to demonstrate the stability and efficiency of
lpCMFD method on MOC.

3.4.1 LPCMFD METHOD ON MOC

Considering the multi-group steady state Boltzmann neutron transport equation:

𝜴 ⋅ 𝛻𝜓(𝒙,𝜴) + 𝛴U,g(𝒙)𝜓g(𝒙,𝜴) = hi h (𝒙,
g,g′→g

Xæ

j

À

g′ÄZ

𝜴 ⋅ 𝜴′)𝜓g′(𝒙,𝜴′)𝑑𝛺′+

Z
Xæ

lm(𝒙)
ªeff

∑ 𝑣∑ (𝒙)u,g′
À
g'ÄZ 𝜙g′(𝒙) (3-34)

where represents the angular flux while represents the scalar flux. Make the discrete
ordinates approximation for the angular variables, then set up and solve the equation for the

1.0E-09

1.0E-07

1.0E-05

1.0E-03

1.0E-01

1.0E+01

1.0E+03

1 10 100 1000

Re
la

tiv
e

Fl
ux

 R
es

id
ua

l

Transport Sweep #

CMFD CMFD with under-relaxation lpCMFD

y f

43

chosen set of directions. And we can get the flux distribution based on the solution on the
characteristic rays, which is the essential of Method of Characteristic (MOC).

Divide the problem domain into coarse cells and homogenize the coarse cells. Then set up the
angular-integrated neutron balance equation:

 (3-35)

where is the coarse mesh flux at the MOC iteration, and are the total and

scattering cross section of the coarse mesh. And is the drift coefficient which can be
obtained by

 (3-36)

where is the coarse cell-averaged scalar flux at the MOC iteration. Solve Eq. 3-35 to
obtain the flux of the coarse cells. Then use the coarse mesh flux to update the scalar flux in
Eq. (3-34) so that MOC iteration can be effectively accelerated.

Conventionally, the scalar flux in Eq. (3-34) is updated directly by

 (3-37)

However, in this report, a linear prolongation is applied to update :

 (3-38)

where is defined as

 (3-39)

and it can be obtained by linear interpolation using the delta fluxes of the neighbor cells as
depicted in Fig. 3-15.

1 1
, ,1/ 2

,

1 ()ˆ3
f f+ +

+

æ ö-
Ñ × + S - S =ç ÷ç ÷S Ñ +è ø

l l
t CM s CMl

t CM CM

Q
D

1f +l thl ,St CM ,Ss CM
1/2ˆ +l

CMD

1/2f +l thl

f

1
1 1/2

1/2f f
f

+
+ +

+

F
=

l
l l

l

f

1 1/2f f df+ += +l l

df

1 1/2df f+ +=F -l l

44

Figure	3-15.	Linear	interpolation	to	get	 	

In 2D case, to find the delta flux at point (x,y) in coarse cell , the delta fluxes at the four

corners of coarse cell is supposed to be obtained first. And the delta flux at each corner is
the averaged delta flux of the four coarse cells which share the same vertex. In other words,

𝛿𝜙�p =
1
4
(𝛿𝜙Ãq + 𝛿𝜙Ã + 𝛿𝜙q + 𝛿𝜙ë)																																				(3 − 40a)

𝛿𝜙�t =
1
4
(𝛿𝜙Ã + 𝛿𝜙Ã} + 𝛿𝜙} + 𝛿𝜙ë)																																						(3 − 40b)

𝛿𝜙gp =
1
4
(𝛿𝜙q + 𝛿𝜙ë + 𝛿𝜙rq + 𝛿𝜙r)																																						(3 − 40c)

𝛿𝜙gt =
1
4
(𝛿𝜙ë + 𝛿𝜙} + 𝛿𝜙r + 𝛿𝜙r})																																								(3 − 40d)

And then is obtained by bi-linear interpolation of , , and ：

 (3-41)

where

𝑎 =
𝛿𝜙gt − 𝛿𝜙gp

𝛥𝑥
																																																															(3 − 42a)

𝑏 =
𝛿𝜙�t − 𝛿𝜙�p + 𝛿𝜙gp − 𝛿𝜙gp

𝛥𝑥𝛥𝑦 																															(3 − 42b)

𝑐 =
𝛿𝜙�p − 𝛿𝜙gp

𝛥𝑦 																																																														(3 − 42c)

𝑑 = 𝛿𝜙ë																																																																																	(3 − 42d)

3.4.2 TRACK-BASED CENTROID CALCULATION

In MOC method, the centroids coordinates of a region can be calculated with the track-based
method.21

df

dfxy C

C

dfxy dfnw dfne dfsw dfse

df = + + +xy ax bxy cy d

45

Fig. 3-16 illustrates the ray tracing process in a quarter pin cell, which is regarded as a coarse
cell in CMFD. The fuel region is divided into eight regions. The cladding region and moderator
region are divided into four regions respectively. Note that the rays in Fig. 3-16 only represents
a part of characteristic rays for four angles. In actual MOC sweeper, there are tens to hundreds
of parallel rays for each angle that traverses the whole cell.

Figure	3-16.	Track-based	method	for	calculating	the	centroids.	

Assuming the fine cell we are interested in is the green cell. A characteristic ray with an
azimuthal angle enters the cell from the point , and goes out from the point

. In an MOC sweeper, the coordinates of the outgoing point is usually

unknown. But it can be determined with the incoming point coordinates and track

length , as described by Eq. (3-43).

 (3-43a)

 (3-43b)

where is the azimuthal angle and is the polar angle of the ray. The subscript

represents the angle of the ray, including polar angle and azimuthal angle ; represents
the cell number and represents the ray number.

In practical application, the scaled track length instead of is usually used. And the

relation between and is

 (3-44)

where is the renormalization factor and in 2D case, is defined as the ratio of the cell's

actual area to the area that all rays in azimuthal angle traversed:

a i , ,(,)in in
a i a iX Y

, ,(,)a i a iX Y , ,(,)a i a iX Y

, ,(,)in in
a i a iX Y

, ,m i ks

ja q p (,)=m p a
p a i

k

, ,m i kt , ,m i ks

, ,m i kt , ,m i kt

, , , , ,x=m i k a i m i kt s

,xa i ,xa i
a

46

 (3-45)

where is the area of cell ; is the distance between the rays with azimuthal angle

and is the track length of the -th ray with azimuthal angle in cell .

In MOC method, an integration over cell can be numerically evaluated using track data, as
shown by Eq. (3-46)

	

= 																																												(3-46)

where is the quadrature weight in direction corresponding to the product quadrature set
chosen in the MOC sweeper.

Thus, the angular-dependent coordinates of the centroid of cell can be calculated

by Eq. (3-47). Eq. (3-47) is not only can be applied to calculate the centroid of a polygon cell
as depicted in Fig. 3-16, it can be also applied for any other shapes of cells.

 (3-47a)

 (3-47b)

3.4.3 LPCMFD ALGORITHM IN MOC

The algorithm of lpCMFD in an MOC code is described by the flow chart Fig. 3-17. The main
steps different from the conventional CMFD are colored to blue in the flow chart. Compared
with conventional CMFD, lpCMFD requires to find the neighbor cells for all the coarse cells
and calculate the centroids coordinates for all the fine cells at the beginning. Another difference
lies in the step where fine cell fluxes are updated with flux results in coarse cells. For lpCMFD,
the fluxes in fine cells are updated with Eq. (3-38) while for conventional CMFD, they are
updated with Eq. (3-37).

Note that the first two steps are only needed to be done one time before the transport iterations.
The results are stored and then applied in the MOC iterations when needed. Compared with
conventional CMFD, the flux updating step in lpCMFD only requires one more linear
interpolation calculation, as formulated in Eq. (3-41) and Eq. (3-42), which can also be quickly
done. Therefore, lpCMFD will not increase the total calculation cost significantly.

,
, ,

x
d

=
å
i

a i
a a i k
k

S
d s

iS i d ad a

, ,a i ks k a i

i

wm m

i , ,(,)C C
a i a iX Y

47

Figure	3-17.	lpCMFD	flow	chart	in	MOC	

3.4.4 NUMERICAL RESULTS

Two neutron transport problems are modeled and numerically simulated to demonstrate the
effectiveness of lpCMFD. The results of conventional CMFD and odCMFD are given as well
for comparison.

3.4.4.1 2D 1 GROUP TEST PROBLEM

A simple 2-D monoenergetic neutron transport problem (2D1G test problem) is studied in Sec.
3.3.2 to show the stability of lpCMFD. In this section, the same problem is simulated for MOC
solver. As shown in Fig. 3-18, the problem domain is a 5cm 5cm square with a perturbation
zone at the center. The size of coarse mesh is 1.0cm and each coarse cell contains a 10 10
fine mesh. And the four boundaries are all set to reflective boundary condition.

´
´

48

Figure	3-18.	Geometry	and	cross	section	of	the	2D1G	test	problem.	

Neutron transportation of this case is simulated by a MOC-based code. Different CMFD
schemes including conventional CMFD, odCMFD and lpCMFD, were applied and the
numerical results are shown in Table 3-1.

Table	3-1.	 and iteration cycles for different CMFD schemes, 2D1G test problem.	

Scheme iterations error
CMFD - Diverge -
odCMFD 264 1.0058431 9.358541E-09
lpCMFD 125 1.0058433 1.454771E-09
lpCMFD ratio LI 122 1.0058433 4.821690E-09

Figure	3-19.	2-norm	of	 residuals	vs.	MOC	iterations,	2D1G	test	problem.	

effk

effk

effk

49

In Table 3-1, the last column “error'” refers to the 2-norm residual of -eigenvalue and the last

row “lpCMFD ratio LI” refers to using linear interpolation on the ratio of fluxes instead

of the difference . Fig. 3-19 shows how the residuals of changes as the
MOC iteration number increasing.

The results of conventional CMFD shows that this case is an unstable problem and
conventional CMFD cannot reach the convergence. odCMFD and lpCMFD both can stabilize
the MOC iteration though odCMFD takes more than two times iteration cycles than lpCMFD.
lpCMFD with ratio linear interpolation makes the iteration even a little faster. The left side
figure in Fig. 3-20 shows the power distribution normalized by the maximum value of this
2D1G problem calculated by lpCMFD. Use the power distribution calculated by odCMFD as
the reference, the relative error of the power distribution between odCMFD and lpCMFD is
shown in Fig. 3-20. As indicated, the relative error is very limited.

Table	3-2.	 and iteration cycles for different CMFD schemes, 2DC5G7 problem.

Scheme iterations error
CMFD - Diverge -
odCMFD 27 1.1871162 6.551761E-09
lpCMFD 19 1.1871142 6.436066E-09
lpCMFD ratio LI 17 1.1871142 4.086793E-09

Figure	3-20.	Power	distribution	and	relative	errors	of	the	2D1G	test	problem.	

3.4.4.2 2D C5G7 PROBLEM

The 2D C5G7 benchmark is a well-known problem that can be used for the verification of
neutron transport code.22 In this section, a 2D C5G7 problem is calculated to verify lpCMFD
method on MOC. The model of the 2D C5G7 problem is 1/4 of a whole core, as depicted by
Fig. 3-21.

k
1

1/2f

+

+

Fl

l

1 1/2df f+ +=F -l l
effk

effk

effk

50

The 2D C5G7 benchmark is a heterogeneous problem consisting of UO2 and mixed oxide
(MOX) fuel. The 1/4 C5G7 core contains 9 assemblies, which are two UO2 assemblies, two
MOX fuel assemblies and five reflector assemblies. Each fuel assembly contains 17 17 fuel
pins and the configuration of fuel pins is shown in Fig. 3-21. The size of each pin cell is 1.26cm

1.26cm and the radius of the fuel pin with cladding is 0.54cm. Each pin cell is divided into
16 fine cells as illustrated by the pin cell mesh in the upper right corner of Fig. 3-21. The fuel
region is divided into two concentric circles with four fine cells in each circle while the
moderator region is divided into eight fine cells.

For the whole 1/4 core, the upper and left boundaries are set to reflective boundary condition
while the other two boundaries are set to vacuum boundary condition due to the symmetry in
the core. The number of MOC outer iterations for different CMFD schemes are listed in Table.
II. And Fig. 3-22 shows how the residuals of decreases as the MOC iteration number
increasing.

Figure	3-21.	Geometry and fuel configuration of the 2D C5G7 problem.

Figure	3-22. 2-norm of residuals vs. MOC iterations, 2D C5G7 problem.

´

´

effk

effk

51

As indicated, the 2D C5G7 problem is unstable for conventional CMFD and it fails to converge.
odCMFD and lpCMFD can both stabilize the CMFD algorithm and get converged results,
while lpCMFD performs better than odCMFD. As well, the linear interpolation for the ratio of
fluxes is applied. The result shows it can reduce two more iterations compared to using linear
interpolation for the difference of fluxes. Besides, the maximum value normalized power
distribution of the 2D C5G7 problem and the relative error (odCMFD results as reference) are
illustrated in Fig. 3-23. The result shows that lpCMFD obtains nearly the same power
distribution as odCMFD. Besides, as for the run time, lpCMFD takes nearly the same time per
iteration as odCMFD and there is no remarkable difference (less than 1%).

Figure	3-23.	Power	distribution	and	relative	errors	of	the	2D	C5G7	problem.	

3.5 SUMMARY

This chapter presents our latest work on the development and assessment of the nonlinear
acceleration scheme lpCMFD for neutron transport calculations. lpCMFD utilizes the linear
prolongation technique instead of the conventional flat prolongation used in CMFD to update
the neutron transport scalar flux. The new scheme can greatly stabilize the CMFD. The
convergence study of the acceleration scheme lpCMFD based on Fourier analysis for the 1D
SN fixed source problem is presented. The Fourier analysis results show that lpCMFD is
unconditionally stable for the whole range of the optical thickness tested. The convergence
performance of lpCMFD is similar to CMFD for the optical thickness less than 1, and is more
effective and stable than CMFD for the optical thickness larger than 1. It has also been
demonstrated for the 2D fixed source and k-eigenvalue problems that lpCMFD is more
effective than the CMFD method with under-relaxation.

Furthermore, the linear prolongation CMFD method is applied on a MOC code. A track-based
method is applied to calculate the centroids coordinates for the fine cells. And according to the
numerical results of the 2D1G test problem and the 2D C5G7 problem, it proves that lpCMFD
can stabilize the CMFD iterations on MOC method effectively and lpCMFD method performs
better than odCMFD on reducing the outer MOC iterations.

52

4. DEVELOPMENT OF LR-NDA
In order to improve the effectiveness and stability of the coarse-mesh finite difference method
(CMFD), we developed a new nonlinear diffusion acceleration scheme for solving neutron
transport equations. This scheme, called LR-NDA, employs a local refinement approach on the
framework of CMFD by solving a local boundary value problem of the scalar flux on the
coarse-mesh structure to replace the piecewise constant scalar flux obtained by CMFD. The
refined flux is then used to update the scalar flux in the neutron transport source iteration. In
this report, a detailed convergence study of LR-NDA is carried out based on a 2D fixed source
problem, and it shows that LR-NDA is much more effective and stable than CMFD for a wide
range of optical thickness. In addition, we demonstrate that LR-NDA is a local adaptive
method. It doesn’t necessarily require local refinement for all the coarse-mesh cells on the
problem domain, i.e., it can be only used for relatively optically thick regions where the
standard CMFD scheme would encounter the convergence problem.

The section is organized as follows. A brief overview of the formulation and algorithm of LR-
NDA is given in Sec. 4.1. Sec. 4.2 is devoted to a detailed study of the convergence
performance of LR-NDA and its comparison with CMFD based on a 2D fixed source problem.
Sec. 4.3 discusses local adaptivity of LR-NDA with a simple 2D k-eigenvalue problem. A brief
summary and discussion is given in Sec. 4.4.

4.1 LR-NDA FORMULATION AND ALGORITHM

In our previous study,23 a monoenergetic SN fixed source neutron transport problem in slab
geometry was used to study the convergence behavior of LR-NDA. In this report, we extend
our study of the convergence behavior of LR-NDA for 2D problems by using a monoenergetic
SN fixed source neutron transport equation with isotropic scattering and neutron source. The
flow chart of the LR-NDA algorithm is shown in Fig. 4-1. There are three levels of mesh
structures employed in LR-NDA. The SN transport equation is first solved on the fine-mesh
grid, and the CMFD equation is then solved on the coarse-mesh. Finally, local refinement,
solving a local BVP of the scalar flux, is carried out on the local refined mesh.

53

Figure	4-1.	Flow	chart	of	the	LR-NDA	algorithm	for	fixed	source	problems.	

The 𝑙th iteration cycle begins with the SN transport equation with iteration indices is expressed
as

𝜇 F
FG
𝜓IJKL(𝑥, 𝑦, 𝜇, 𝜂) + 𝜂 F

FT
𝜓IJKL(𝑥, 𝑦, 𝜇, 𝜂) + 𝛴U𝜓

IJKL(𝑥, 𝑦, 𝜇, 𝜂) = 		 VW
X
𝜙I(𝑥, 𝑦) +

																																																																							Z
X
𝑄(𝑥, 𝑦)	,	 	 	 	 	 (4-1)	

where	𝜙 and 𝜓 are the scalar flux and angular flux, respectively. 𝛴g and 𝛴U are the scattering
cross section and total cross section. 	𝜇 and 𝜂 are the neutron angular directions. 𝑥 and 𝑦 are
the spatial positions. 𝑄 is the external neutron source. 𝑙 is the source iteration index and 𝑙 +
1/2 is the intermediate step.

During each SN source iteration, the coarse-mesh flux is obtained by solving the CMFD
equation,

 ∇ ∙ ± ²Z
aVb,çè

𝛻 + 𝐷̂ëì
IJZ/dµΦIJZ + (𝛴U,ëì − 𝛴g,ëì)ΦIJZ = 𝑄, (4-2)

54

where ΦIJZ and 𝑄 are the coarse-mesh scalar flux and coarse-mesh averaged external neutron
source.	𝛴U,ëì and 𝛴g,ëì are the total cross section and scattering cross section defined on the
coarse-mesh. 𝐷̂ëì

IJZ/dis the drift coefficient which is calculated using the information from the
𝑙 + 1/2 step SN source iteration. For the 2D coarse-mesh, we define 𝐷̂ëì

IJZ/d in x and y
directions on the coarse-mesh edge,

𝐷̂ëì,G
IJZ/d =

∫ 𝜇𝜓𝑙+1/2(𝑥,𝑦,𝜇,𝜂)𝑑𝜇	+	 1
3𝛴𝑡,𝐶𝑀

𝜕Φ𝑙+1/2
𝜕𝑥

1
−1

Φ𝑙+1/2
, (4-3)

𝐷̂ëì,T
IJZ/d =

∫ 𝜂𝜓𝑙+1/2(𝑥,𝑦,𝜇,𝜂)𝑑𝜂	+	 1
3𝛴𝑡,𝐶𝑀

𝜕Φ𝑙+1/2
𝜕𝑦

1
−1

Φ𝑙+1/2
, (4-4)

where the denominator in Eqs. (4-3) and (4-4) is the averaged value of the scalar flux of two
neighboring coarse-meshes relative to the coarse-mesh edge. After solving Eq. (4-2), we
employ two types of flux update. For coarse-mesh cells with small optical thickness, the SN
source iteration scalar flux for the 𝑙 + 1 cycle is updated using the same scaling approach as in
the standard CMFD:

𝜙IJZ = 𝜙IJZ/d õÖ´K

ÕóÖ´K/L
 , (4-5)

where	𝜙ôIJZ/d is obtained by averaging the calculated transport scalar flux on the coarse-mesh.

For coarse-mesh cells with large optical thickness, a local refinement calculation is performed
on these coarse-mesh cells by solving the following local neutron diffusion equation with the
fixed boundary conditions on the local mesh:

𝛻 ∙ ·²Z
aVb

𝛻 + 𝐷̂wì
IJZ/d¹𝜙IxwfIIJZ + (𝛴U − 𝛴g)𝜙IxwfIIJZ = 𝑄, (4-6)

where 𝜙IxwfIIJZ is the scalar flux on the local mesh, 𝐷̂wì
IJZ/dis the drift coefficient which is defined

on the local mesh and calculated using the information from 𝑙 + 1/2 step SN source iteration.

 (a) Coarse-mesh (b) Local refinement mesh

Figure	4-2.	Local refinement mesh for 2D problem.

55

𝜙IxwfIIJZ in Eq. (4-6) is the scalar flux on the local refinement mesh point, marked as green points
in Fig. 4-2. The 𝐷̂wì

IJZ/d in Eq. (4-6) is defined on the fine-mesh edges, including 𝐷̂wì,G
IJZ/d and

𝐷̂wì,T
IJZ/d,

𝐷̂wì,G
IJZ/d =

∫ 𝜇𝜓𝑙+1/2(𝑥,𝑦,𝜇,𝜂)𝑑𝜇	+	 13𝛴𝑡
𝜕𝜙𝑙+1/2

𝜕𝑥
1
−1

𝜙𝑙+1/2
, (4-7)

𝐷̂wì,T
IJZ/d =

∫ 𝜂𝜓𝑙+1/2(𝑥,𝑦,𝜇,𝜂)𝑑𝜂	+	 13𝛴𝑡
𝜕𝜙𝑙+1/2

𝜕𝑦
1
−1

𝜙𝑙+1/2
, (4-8)

where the denominator in Eqs. (4-7) and (4-8) is the averaged value of the scalar flux of two
neighboring fine-meshes relative to the fine-mesh edge. The boundary scalar flux (marked as
the red points in Fig. 4-2) for the local BVP are obtained by weighting the transport flux values
at the mesh points on the coarse-mesh edges with the coarse-mesh flux ratio between the
CMFD and SN transport results. There are two types of mesh points, i.e., coarse-mesh corner
points and coarse-mesh side points. The boundary flux at each corner mesh point is defined in
Eq. (4-9), and the boundary flux at each side mesh point is defined in Eq. (4-10).

𝜙÷ë,wxs�tsIJZ = Z
X
(õ

Ö´K

ÕóÖ´K/L
y
8_÷

+ õÖ´K

ÕóÖ´K/L
y
;_÷

+ õÖ´K

ÕóÖ´K/L
y
8_U

+ õÖ´K

Õó Ö´K/L
y
;_U
)	𝜙wxs�ts

IJZ/d , (4-9)

𝜙÷ë,g�îtIJZ = Z
d
(õ

Ö´K

ÕóÖ´K/L
y
J
+ õÖ´K

ÕóÖ´K/L
y
²
)	𝜙g�ît

IJZ/d, (4-10)

where 𝜙wxs�ts
IJZ/d and 𝜙g�ît

IJZ/d are the transport flux at the corner and side mesh point, respectively.
The subscripts “L_B”, “R_B”, “L_T” and “R_T” denote the left bottom, right bottom, left top,
and right top coarse-mesh cells surrounding the corner-mesh point, respectively. The subscripts
“+” and “−” denote the right and left sides of the coarse-mesh cell edge in the 𝑥 direction, or
the top and bottom sides of the coarse-mesh cell edge in the 𝑦 direction. If local refinement is
applied for coarse-mesh cells which share the boundary with the problem domain, Eqs. (4-9)
and (4-10) can be used to calculate the boundary conditions for local refinement calculations
with appropriate simplification for the corner or side mesh points.

After solving Eq. (4-6), the calculated local mesh points scalar flux along with the BVP
boundary mesh point flux, is averaged to obtain the center flux of each fine-mesh cell which is
used to update the scalar flux in the next transport sweeping,

𝜙
�JKL,¿J

K
L

IJZ = 	 Z
X
l	𝜙�,¿IJZ + 	𝜙�JZ,¿IJZ + 	𝜙�,¿JZIJZ + 	𝜙�JZ,¿JZIJZ n, (4-11)

where	𝑖 and	𝑗 are the indices of the mesh point in the local refinement mesh as shown in Fig.
4-2.

The source iteration will continue until the convergence criterion is satisfied. The following
flowchart illustrates that the LR-NDA scheme is used for k-eigenvalue problems, as shown in
Fig. 4-3.

56

Figure	4-3.	Flowchart	of	the	LR-NDA	algorithm	for	k-eigenvalue	problems.	

57

In Fig. 4-3, 𝑚 stands for the power iteration index, 𝜀Z is the convergence criterion for the power
iteration in the CMFD calculation and 𝜀d	is the convergence criterion for the k-eigenvalue. A
local refinement calculation level is added into the two-level Transport/CMFD algorithm. After
the CMFD power iteration is done, the new coarse-mesh flux and 𝑘tuu are obtained. For
coarse-mesh cells with small optical thickness, Eq. (4-5) is still used to update the SN transport
sweep scalar flux for the 𝑙 + 1 cycle. For coarse-mesh cells with large optical thickness, a local
refinement calculation is performed on these coarse-mesh cells by solving the following local
neutron diffusion equation with the fixed boundary conditions on the local mesh obtained with
Eqs. (4-9) and (4-10),

𝛻 ∙ ·²Z
aVb

𝛻 + 𝐷̂wì
IJZ/d¹𝜙IxwfIIJZ + (𝛴U − 𝛴g)𝜙IxwfIIJZ = }V�

ª���
𝜙IxwfIIJZ , (4-12)

where 𝜐	is the mean number of neutrons produced per fission, 𝛴u is the fission cross section
and 𝑘tuu is the eigenvalue calculated from CMFD. Similarly, after solving Eq. (4-12), the SN
transport sweep scalar flux for the 𝑙 + 1 cycle is updated with Eq. (4-11).

 In addition, it is worthwhile to mention that the LR-NDA method can be utilized to
accelerate other transport solvers, such as the Method of Characteristics (MOC) and Monte
Carlo methods.

4.2 NUMERICAL CONVERGENCE STUDY

A numerical study of the LR-NDA convergence performance was carried out based on a 2D
model problem, which is a homogeneous 10cm × 10cm square with the vacuum boundary
condition for four sides. The domain is discretized into 10 × 10 uniform coarse-mesh cells.
The fine-mesh number in each coarse-mesh cell is 10 × 10. The numerical solutions were
obtained using the Gauss-Legendre S12 quadrature set for angular discretization and the
diamond difference (DD) method for spatial discretization. Both CMFD and LR-NDA
acceleration schemes were implemented in the MATLAB code for the problem.

In order to characterize the convergence behavior, we calculated the spectral radius numerically
as defined by

𝜌 = ÔÕÖ´K²ÕÖÔ
ÔÕÖ²ÕÖ×KÔ

 . (4-13)

Fig. 4-4 presents the spectral radius results for CMFD and LR-NDA as a function of coarse-
mesh optical thickness (i.e., 𝛴U,ëìΔ, where	Δ is the coarse-mesh size), for the scattering ratios
of 0.6, 0.8, 0.9, and 0.99.

58

(a) scattering ratio c = 0.6 (b) scattering ratio c = 0.8

(c) scattering ratio c = 0.9 (d) scattering ratio c = 0.99

Figure	4-4.	Convergence	performance	comparison	between	CMFD	and	LR-NDA.	

Similar to our previous 1D findings,24 the following observations can be drawn from the 2D
results:

1. For small scattering ratio, i.e., 𝑐 = 0.6 or 0.8, CMFD is stable for the whole range of
the optical thickness.

2. When the scattering ratio increases to 0.99, CMFD is only effective for the optical
thickness less than 1. It becomes unstable and fails to converge when the optical
thickness is larger than 2.

3. The convergence performance of LR-NDA is almost the same with CMFD for the
optical thickness less than 1, and is more effective and stable than CMFD for the optical
thickness larger than 1.

4. In addition, it is interesting to note that the spectral radius of LR-NDA first increases
with the optical thickness up to 10 and thereafter tends to decrease. The improved
performance of LR-NDA at high optical thickness is due to the fact that the diffusion
solution becomes a better approximation to the SN solution at high optical thickness.

59

4.3 LOCAL ADAPTATION OF LR-NDA

In this section, we study the local adaptivity of the LR-NDA scheme based on a 2D
monoenergetic k-eigenvalue problem with large cross section variations in the domain. The
model problem considered is a 5cm × 5cm square with the reflective boundary condition on
the four sides. The domain is divided into 25 uniform coarse-mesh cells. The fine-mesh number
in each coarse-mesh is 10 × 10 as shown in Fig. 4-5. Similar to the above 2D fixed source
problem, the numerical solutions for the SN neutron transport were obtained using the DD
method for spatial discretization, and the Gauss-Legendre S12 quadrature set for angular
discretization.

Figure	4-5.	Specifications	of	2D	k-eigenvalue	problem.	

In this problem, there are three local regions as shown in color, which have very large total
cross sections, i.e., the local optical thickness is very large. It should be pointed out that the
cross sections are arbitrarily given to make it a very challenging problem for numerical
solution. For this problem, the standard CMFD scheme fails to converge the SN iteration.

To study the local adaptivity of LR-NDA, we consider three types of local refinement. The first
case is that local refinement is only applied for those three-diagonal coarse-mesh cells (in
color). In the second case, local refinement calculation is applied for the 3 × 3 coarse-mesh
cells containing those three optically thick cells. The last case is that local refinement is applied
for all the coarse-mesh cells in the domain (i.e., 5 × 5). Numerical results for these three local
adaptation cases are presented in Fig. 4-6.

60

(a) Normalized converged scalar flux

 (b) keff relative error vs. iteration number

Figure	4-6.	Numerical	results	of	LR-NDA	for	2D	k-eigenvalue	problem.	

Fig. 4-6a shows the normalized converged scalar flux. The flux changes significantly in those
three optically thick regions. The 𝑘tuu relative error is used as the convergence performance
index. The error criterion 𝜀d is 10²[(Fig. 4-3). The error criterion 𝜀Z for the power iteration in
CMFD is 10²Zd. It is shown that the second case with local refinement for the 3 × 3 cells is
similar to the case where local refinement is applied for the whole domain (5 × 5). It is
noteworthy to point out that the first case, where local refinement is only applied on the three-
diagonal coarse-mesh cells, is still very effective, although requires more iterations. This study
demonstrates that LR-NDA is a local adaptive method and it can be easily implemented for
any region of the problem domain, which means that it can be only used for optically thick
regions where CMFD could have the convergence problem.

Numerical	results	– local	adaptivity

1.0E-08
1.0E-07
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00

1 10 100

Ke
ff	
Re

lta
tiv

e	
Er
ro
r

Transport	Sweep	#

LR-NDA	Local	Adaptivity

3
3x3
5x5

0

0.5

60

1

1.5

2

N
or

m
al

iz
ed

 S
ca

la
r F

lu
x

2.5

40

3

Y

2D K-eigenvalue Problem
S12 Solution Accelerated with LR-NDA

20

X

50454035300 2520151050

1cm

1c
m

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1 10 100

Ke
ff

Re
la

tiv
e

Er
ro

r

Transport Sweep #

LR-NDA Local Adaptivity

3

3 x 3

5 x 5

61

The computing time for each case is summarized in Table 4-1. It is shown that LR-NDA can
significantly reduce the number of transport sweeps. Compared to the CPU time spent on the
transport sweep and CMFD calculations, the time spent on the local refinement calculation is
much less. In addition, local refinement calculations for each coarse-mesh cell can be
parallelized to make the computational cost negligible.

Table 4-1. Computational Performance Comparison of the 2-D k-eigenvalue Problem

Computation with a single CPU (Intel (R) Xeon (R) E5-2630 v3 @ 2.40 GHz);

𝑀 = 5, the coarse-mesh number in the 𝑥 or 𝑦 direction in the problem domain;

𝑃 = 10, the fine-mesh number in the 𝑥 or 𝑦 direction in each coarse-mesh;

𝑁 = 12, the S12 quadrature set.

4.4 SUMMARY

This section presents the development and assessment of the nonlinear LR-NDA acceleration
scheme for neutron transport calculations. LR-NDA incorporates a local refinement solution
on the coarse-mesh structure based on the CMFD framework. The convergence study of LR-
NDA based on the 2D SN fixed source problem has demonstrated that LR-NDA can greatly
improve the stability and effectiveness of CMFD.

No Acceleration LR-NDA

(Transport Sweep) (3) (3 × 3) (5 × 5)

Number of unknowns 𝑀d × 𝑃d × ((𝑁 + 2)𝑁 2⁄)

(𝑃 − 1)d × 3

(𝑃 − 1)d × 3d

(𝑃 − 1)d × 5d
 (5d × 10d × 84) (9d × 3) (9d × 3d) (9d × 5d)

Number of transport sweep 1483 51 36 32

Transport calculation time (s) 1895.6 64.5 45.2 40.4

CMFD power iteration number 0 6495 4597 4078

CMFD calculation time (s) 0 2.2 1.5 1.4

Total local refinement calculation
time (s) 0 6.9 × 10²d 1.8 × 10²Z 3.2 × 10²Z

Local refinement calculation time
for one coarse mesh (s) 0 2.3 × 10²d 2.0 × 10²d 1.3 × 10²d

Total calculation time (s) 1895.6 66.8 46.9 42.1

Speedup 1 28.4 40.4 45.0

62

In addition, it is demonstrated that LR-NDA is a local adaptive method and it can be easily
implemented for any region of the problem domain where the standard CMFD method would
become ineffective or unstable. It should be pointed out that computational cost of local
refinement is negligible as compared with the CMFD cost because of its local compactness and
efficient parallel implementation. This novel feature will make it very computationally
attractive for large 2D/3D neutron transport problems.

5. IMPLEMENTATIONS OF DG-DSA IN PROTEUS-SN

5.1 INTRODUCTION

A discontinuous Galerkin diffusion synthetic acceleration scheme (DG-DSA) is implemented
in a standalone PROTEUS neutronics code. PROTEUS is a three-dimensional, highly scalable,
high-fidelity deterministic neutron transport code based on the second-order even-parity
formulation, which is discretized using continuous Galerkin finite element method in space,
discrete ordinates approximation in angle, and multigroup approximation in energy. Because
continuous Galerkin finite element method is applied to discretize the spatial domain, the
degrees of freedom become the number of vertices. PROTEUS solves both forward and
backward eigenvalue problems using power iteration with neutron up-scattering treatments
where each within-group system of equations is solved using SSOR-preconditioned conjugate
gradient method with diffusion synthetic acceleration.11 On the other hand, in DG-DSA
method, only the synthetic diffusion equation is discretized using discontinuous Galerkin finite
element method and solved on a coarser grid. For a discontinuous Galerkin method, the degrees
of freedom become dependent on the polynomial degree of the trial function for each element
rather than the number of vertices. Therefore, the advantages of utilizing DG-DSA method
compared to the existing DSA in PROTEUS are employing a coarser grid and adapting the
polynomial degree of trial functions. This local hp adaptation can significantly decrease the
number of unknowns if an appropriate number of polynomial degrees are used thus improving
the computational efficiency.

As a two-level method, constructing the parallel coarse mesh is an important step. The focus
of the chapter is on the implementation of the two-dimensional parallel coarse mesh solver for
diffusion synthetic acceleration, which is used to reduce computational cost and speed up
convergence of the overall calculations. In the implementation, the coarse mesh is obtained
from the user defined fine mesh. The fine mesh must be defined on a square pin-cell assembly
format where each pin-cell consists of two sections pin and background. We defined the coarse
mesh such that it has only two blocks (pin and background) and each block consist of exactly
eight equal elements (triangular for pin region and quadrilateral for background region).

To illustrate the specifications of the coarse mesh generated in PROTEUS, a single fuel pin
model is shown in Fig. 5-1 where the coarse pin cell is superimposed on a fine pin cell. The
yellow pin region represents the fuel consisting of two concentric and four azimuthal
subdivisions per octant whereas the blue background region represents the moderator with four

63

azimuthal subdivisions per octant. The total number of fine-mesh elements in the pin cell is 96
while it is 16 elements for coarse-mesh. The coarse mesh vertices are defined at the center node
and at the intersections between the octant lines and the outermost pin radius and the cell
boundaries. If multiple materials are assigned to a single coarse element, for instance, if there
is a cladding material surrounding the fuel in the pin region, then only the innermost material,
i.e., the fuel, is assigned to the coarse element. This assumption is viable for practical problems
due to the relatively small volume of the cladding material compared to the fuel volume.

Figure	5-1.	Coarse	pin	cell	superimposed	on	a	fine	pin	cell	with	fuel	in	the	radial	
region	(yellow)	and	moderator	in	the	background	region	(blue).	

Once the fine and coarse global meshes are constructed based on the input files, the fine mesh
is partitioned on-the-fly into the number requested domains using METIS library; then the
coarse mesh partitioning is obtained directly from the corresponding fine mesh partition. At
the end of the process, each processor owns a piece from both the fine and coarse mesh, called
the local mesh. Each processor can see its local mesh as well as one more layer of ghost set of
elements and their vertices. The combined mesh of local and ghost mesh is called the visible
mesh.

After the locally visible meshes are generated, they are processed to obtain the finite element
spatial matrices using the Gaussian numerical integration. The spatial matrices are then
stenciled, and the preconditioners are set using PETSc library.

In the within-group solver, the flux values calculated from the neutron transport equations need
to be mapped to the visible coarse mesh in order to utilize the DG-DSA method. The mappings
between coarse-mesh and fine-mesh for restriction and interpolation steps are shown in Figure
5-2. Each coarse element is mapped to the corresponding inner fine elements and the fine
vertices that it contains.

64

	

Figure	5-2.	Mapping	between	fine	and	coarse	grid	

A coarse-mesh generation flowchart and its utilization in PROTEUS is shown in Figure 5-3.
As seen from the figure, there are four main parts: 1) reading input to generate global fine and
coarse grids, 2) decomposing the global grids to locally owned meshes for parallel
computations, 3) setting up the solver by assembling transport and diffusion matrices, and 4)
solving the within-group transport and diffusion equations on the fine and coarse meshes,
respectively. The rest of the section discusses the detailed implementation of each step.

Figure	5-3.	DG-DSA	implementation	flowchart	

5.2 INPUT FILES

To perform a PROTEUS simulation, four text input files are required: a driver input file, a
mesh input file (.nemesh, .ascii or .ufmesh), a material assignment file (.assignment), and a
cross-section input file (.isotxs or .anlxs). The driver input file (.inp) controls the PROTEUS
calculations by specifying the simulation parameters and also points to the other input files.
The assignment file defines the materials in the geometric regions and provides material
properties such as density and isotope concentrations. For our implementation, the driver input

Fine Mesh Coarse Mesh Fine Mesh

Restriction Interpolation

Proteus Flowchart

Im
po

rt
M

es
h

Re
ad

 In
pu

t
Se

tu
p

So
lve

r
W

ith
in

Gr
ou

p
So

lve
r

Driver input

Master
Processor

generates both
fine and

coarse grid

Fine and
coarse mesh

decomposition

Assembling
DG-DSA

Matrix in Petsc

Mesh input

Metis

NTmesh

CoarseMesh

PNTmesh

PCMesh

Assembling
Transport

Matrix in Petsc

TopLevel_AngleTopLevel_DG

Within Group
Conjugate
Gradient
Iteration

Within Group
DG Diffusion

Synthetic
Acceleration

Flux(n)

Flux(n+1)

Flux

Matrix

Mapping

65

file and mesh input file formats are modified to specify that the DG-DSA method is being used
and to provide the necessary parameters. Two new keywords (USE_DG_DSA and
DG_DSA_parameter) are added in the driver input file. The keyword USE_DG_DSA indicates
whether DG-DSA is used for the PROTEUS simulation and if it is the case then the keyword
DG_DSA_parameter,	𝜖, specifies the type of interior penalty Galerkin method as following

𝜖 =
−1,										Symmetric	interior	penalty	Galerkin	(SIPG)									
+1,										Nonsymmetric	interior	penalty	Galerkin	(NIPG)
0,													Incomplete	interior	penalty	Galerkin	(IIPG)	.							

There are numerous mesh file formats available in PROTEUS such as NEMESH, UFMESH,
GRID and ASCII formats. The UFMESH is the most user-friendly mesh format among the
four mentioned above because it utilizes keywords to generate two-dimensional Cartesian or
hexagonal fuel assemblies. Therefore, it is chosen for the course mesh generation
implementation. As mentioned earlier, the coarse mesh used for the DG-DSA method is fixed
such that each pin-cell would have only two blocks and 16 coarse elements; thus, it does not
need to be specified in the mesh input file. However, the polynomial degree of the trial
functions and the penalty number for the interior penalty Galerkin method are specified in the
mesh input file by the user. Thus, the UFMESH file format is slightly modified to get these
parameters. Figure 5-4 demonstrates a sample UFMESH file for a single pin cell with two
blocks: Fuel1 and Moderator. In the cell definition, the keywords PIN and BACKGROUND
are followed by the material names, the number of subdivisions, and the outer most radius of
the material (for only PIN region). For DG-DSA method, two parameters are added at the end
of the cell definition to indicate the polynomial degree and the penalty number for that region.
If DG method is not used, then these parameters are ignored. In this case, the polynomial degree
is given to be 1 for both blocks while the penalty number is equal to 1.0 for the fuel and 0.3 for
the moderator region. The DG-DSA method is based on the primary discontinuous Galerkin
approach which employs interior penalty to stabilize the numerical solution. It is found that the
acceleration performance of DG-DSA is sensitive to the penalty number and to achieve the
optimal convergence performance the penalty number needs to be tuned for each problem,
although it is numerically stable for a wide range of penalty.

Figure	5-4.	Sample	UFMESH	input	file	

5.3 CREATING GLOBAL COARSE MESH

In PROTEUS, the mesh input file is read in and stored in a datatype called “NTmesh” which
stands for neutron transport mesh. It saves mesh information including the numbering of
vertices and elements, vertex coordinates, vertex indices for each element, element type, and

66

boundary conditions. To store the mapping between coarse and fine grids, a new datatype,
“CoarseMesh,” is created which contains coarse mesh information stored in NTmesh datatype
structure and the mapping details. Fig. 5-5 illustrates the subroutine “SN2ND_Setup_Mesh” in
PROTEUS which is responsible for reading the mesh input file and generating the global fine
and coarse mesh on the root processor. The generated grids are then exported to text files to be
read in by other processors later in the code in order to decompose the global meshes into
locally owned meshes. In the flowchart, subroutines are shown in rectangular boxes. To add
the DG-DSA implementation to the existing PROTEUS code, some subroutines are modified
(in purple color), and some are added (in blue). The existing subroutines are in gray rectangles,
and the outputs are written in rounded yellow rectangles. If DG-DSA is not specified in the
driver input file, then the subroutine “PNTmesh_Legacy_Import” is called to generate only the
fine grid. On the other hand, if DG-DSA is specified, then the subroutine
“PNTmesh_Legacy_Import_DG” is called instead to generate both the fine and coarse grids.

Figure	5-5.	Flowchart	for	global	coarse	mesh	generation	

First, the UFmesh input file is read in a subroutine “UFmesh_Read_Input_DG.” The first
keyword specified in UFmesh input file is the coordinate system either CARTESIAN or
HEXAGONAL. Based on the keyword, the subroutine calls another subroutine to finish
reading in the input file. In this implementation, only the Cartesian system is considered. The
subroutine “UFmesh_Cartesian_Assembly_NTmesh_DG” reads each unique pin cell
definitions and calls “UFmesh_GenericCell_NTmesh_DG” to obtain the number of elements
and vertices in the pin cell and also to determine the coordinates of each vertex for both fine
and coarse grids based on the given number of azimuthal and radial subdivisions and the radius
of each pin material. In this process, the area of the fine pin cell region is preserved. The coarse
mesh vertices are obtained at the center node and at the intersections between the octant lines
and the outermost pin radius and the cell boundaries. Then, all the unique pin cells are merged
in a subroutine “UFmesh_MergeByGrid_DG” based on the given grid. At last, the fine and
course Cartesian assemblies are constructed and stored in forms of NTmesh and Coarsemesh
datatype.

The boundary conditions specified in the driver input are applied to the fine and coarse grids
in the subroutine “NTmesh_ApplyBCAliases.” Mesh surfaces are defined in the existing

SN2ND_Setup_Mesh Is DGDSA used?

PNTmesh_Legacy_Import

PNTmesh_Legacy_Import_DG

NO

YES

Ufmesh_Read_Input_DG Ufmesh_Cartesian_Assembly_
Ntmesh_DG

Ufmesh_GenericCell_Ntmesh_DG

Ufmesh_MergeByGrid_DG

Ntmesh_ApplyBCAliases

PNTmesh_Export

PCMesh_Export

Ntmesh_Surfaces_LegacyMap

Ntmesh_Export_ASCII_Block

CoarseMesh_Export_ASCII_Block

Fine Mesh in text file

Coarse Mesh in text file

Coarse Mesh mapping in
text file

67

subroutine “NTmesh_Surfaces_LegacyMap.” Since the global meshes are fully defined
including boundary conditions and surface mapping, they can be exported into a text file to
generate PNTmesh type structure (Parallel Neutron Transport mesh) and PCMesh type
structure (Parallel Coarse Mesh). To write down the mapping between the coarse and fine
meshes, new subroutines “PCMesh_Export” and “CoarseMesh_Export_ASCII_Block” are
created.

5.3.1 COARSE MESH SPECIFICATIONS AND LIMITATIONS

As mentioned earlier, the coarse mesh is generated such that both the pin and the background
regions would contain exactly eight elements each. If more than one material is present in the
pin region, for example, fuel and cladding, then the code assumes that the volume of the
innermost material is relatively large compared to the outer materials thus assigns the pin
region to the innermost material only, i.e., fuel. PROTEUS can handle duct for fuel assemblies;
however, for the current state of the implementation, it has not been considered for DG-DSA
calculation yet. Other limitations mentioned earlier are listed below:

- Two-dimentional Cartesian system only
- UFMESH is the only input mean to generate a coarse mesh

5.4 CREATING PARALLEL COARSE MESH

The coarse mesh partitioning flowchart is shown in Figure 5-6. The subroutines are represented
in rectangles, and the comments are written in rounded yellow rectangles. The purpose of the
modified subroutine “SN2ND_Setup_GetMesh” is to generate both parallel neutron transport
mesh (PNTmesh) and parallel coarse diffusion mesh (PCMesh) based on the global NTmesh
and CoarseMesh that have been generated and exported to text files in the subroutine
“SN2ND_Setup_Mesh”. If DG-DSA is not specified in the driver input file, then the subroutine
“PNTmesh_Import” is called to generate only the parallel fine grid. On the other hand, if DG-
DSA is used in the calculation, then the subroutine “PCMesh _Import” is called instead to
generate both the parallel fine and coarse grids.

68

Figure	5-6.	Flowchart	for	parallel	coarse	mesh	generation	

First, every vertex and every element in the fine mesh needs to be assigned to a particular
processor, and this process can be achieved in PROTEUS by calling an external mesh
partitioning library METIS. The coarse mesh partitioning is then obtained directly from the
corresponding fine mesh partition. The subroutine “PCMesh_DefinePartitioning” assigns
coarse elements to a processor which owns most of the fine elements that the coarse element
mapped to. For example, let a coarse element contains eight fine elements, three of which are
owned by proc A and five by proc B. Because proc B owns more fine elements than proc A,
the coarse element is assigned to proc B but it is ensured that the other three fine elements are
visible to proc B. Coarse mesh vertices are assigned to the processor which owns the
corresponding fine vertex. Based on the vertex and element assignments, the subroutine
“PCMesh_SegmentMesh” defines the ghost coarse elements and the coarse vertices for each
processor and stores them in a PNTmesh_type format which does not contain the mapping
detail between the fine and coarse local meshes. Since the visible coarse mesh (local + ghost)
is defined, the surface information can be extracted in the subroutine and stored in the
PCMesh_Surfaces_type.

At last, the subroutine “PNTmesh_SegmentMesh_DG” defines the parallel fine mesh and the
mapping between fine and coarse parallel meshes. In the restriction step, to get a value on a
coarse mesh, every fine element that contained in the coarse element are required, thus when
defining the visible fine mesh, it is ensured in the subroutine “PNTmesh_SegmentBlock_DG”
that the processor who owns a coarse element should also have access to all the fine elements
that it contains. After ghost elements and vertices are determined, the mapping between global
and local meshes are obtained and stored in PNTmesh_type. Now, both coarse and fine meshes
are partitioned, and the mapping between the local and global mesh is established. Using the
mapping between global fine and coarse meshes, local coarse mesh can be mapped to local fine
mesh and stored them in PCMesh_type.

SN2ND_Setup_GetMesh Is DGDSA used?

PNTmesh_Import

PCMesh_Import

NO

YES

PNTmesh_DefinePartitioning

PCMesh_DefinePartitioning

PCMesh_SegmentMesh(CoarseMesh)

PNTmesh_SegmentMesh_DG(Fine
mesh, mapping) PNTmesh_SegmentBlock_DG

Metis Partitioning Library

Added section: PCMesh is defined, the
mapping is determined

Outcome: Coarse mesh is defined in
PNTmesh_type. PCMesh_Surface is

defined.

Coarse mesh partition is determined
based on fine mesh partitioning and the

mapping

CoarseMesh_Import_ASCII_Block

CoarseMesh_Block_Transmit

69

5.5 GLOBAL MATRIX ASSEMBLY

After the locally visible meshes are generated, they are processed to obtain the finite element
spatial matrices using the Gaussian numerical integration. The flowchart for assembling global
diffusion matrix is shown in Figure 5-7. Once the control data, cross section and mesh data are
read in, the finite element spatial matrices are computed in the subroutine
“SN2ND_Setup_Solve.” PROTEUS is capable of partitioning both space and angle domain.
Since the diffusion equation does not depend on angle, it only needs to be assembled and solved
on a single set of spatial domains. PROTEUS uses PETSc library to solve linear systems of
equations. The PETSc objects including the matrix, vector, preconditioner, vector
scatter/gather mapping are initiated and stored under the name of “Toplevel_DG” which is in
“Mat_Vector” datatype format. The matrix stencil for coarse mesh is determined in the
subroutine “FEM_Stencil_DG.” Using the reference elements and the basis functions, the
spatial integrals are computed and stenciled to construct the diffusion matrix. The subroutines
“FEM_Solve_Volumetric_DG”, “FEM_Solve_Surface_DG”, and
“FEM_Solve_Boundary_DG” are responsible for integrating over each unit coarse element,
internal surface, and boundary surface respectively. The PETSc matrix is then finalized, and
the preconditioner is set.

Figure	5-7.	Flowchart	for	assembling	global	diffusion	matrix	

5.5.1 REFERENCE ELEMENTS

PROTEUS generates a hybrid unstructured mesh, containing different mesh types. Unlike the
continuous Galerkin finite element method, the discontinuous Galerkin method comprises the
interface integrals between adjacent elements. The following reference elements shown in
Figure 5-8 were utilized to compute the numerical integrals using the Gauss – Legendre
quadrature.

SN2ND_Setup_Solve Is DGDSA used?
YES

SN2ND_Build_PETSc_Link_DG

SN2ND_Build_DGDSA

SN2ND_Build_FinalizePrecond_DG

Initialize TopLevel_DG

Build stencil

Calculate spatial integrals

Construct diffusion matrix

Finilize TopLevel_DG

FEM_Stencil_DG

FEM_Solve_Volumetric_DG

FEM_Solve_Surface_DG

FEM_Solve_Boundary_DG

70

Figure	5-8.	Linear	triangular	(Left)	and	quadrilateral	(Right)	reference	elements.	

5.5.2 BASIS FUNCTIONS

Monomial basis functions which are independent of element types were chosen for the
implementation. Because there are no constraints between elements, the basis functions are
supported locally. For instance, the quadratic functions (𝑝 = 2) in 2-D are defined below,
where 𝜙� are basis functions and 𝜉, 𝜂 are the reference coordinates:

𝜙j(𝜉, 𝜂) = 1, 𝜙Z(𝜉, 𝜂) = 𝜉, 𝜙d(𝜉, 𝜂) = 𝜂

𝜙a(𝜉, 𝜂) = 𝜉d, 𝜙X(𝜉, 𝜂) = 𝜉𝜂, 𝜙�(𝜉, 𝜂) = 𝜂d

5.6 WITHIN GROUP SOLVER

In each within group iteration, the second order neutron transport equations discretized using
a continuous Galerkin method is solved by the SSOR preconditioned conjugate (CG) method.
The CG method is applicable for solving systems of linear equations with positive-definite and
symmetric matrix. Because the discontinuous Galerkin method produces an asymmetrical
matrix, the diffusion equation is solved using the generalized minimal residual method
(GMRES) with the block Jacobi preconditioner. The performance of the solver might be
dependent on the element ordering. For simplicity the coarse mesh numbering is adapted from
the fine mesh numbering in PROTEUS, and thus the element ordering in the implementation
is may not be the optimum.

The DG-DSA method is a two-level method that solves the equation Au = b by introducing
coarser discretizations and utilizing low order polynomial degrees:

1. 𝐴ëxfsgt	 – Precompute coarse operator
2. 𝑏ëxfsgt = 	𝑃U𝑏w��t – Restrict residual element
3. 𝐴ëxfsgt𝑢ëxfsgt = 	𝑏ëxfsgt – Solve coarse scale problem
4. 𝑢w��t = 𝑃𝑢ëxfsgt – Prolongate solution.

The coarse grid operator is precomputed and stored in the subroutine “SN2ND_Setup_Solve.”
The subroutine “DGDSA_FineToCoarse” computes the coarse grid right-hand side by
applying the restriction. The coarse system of linear equations is then solved for flux error
using GMRES asymmetrical linear solver. The scalar flux error solution on a coarse grid is

71

then mapped to the fine grid in the subroutine “DGDSA_CoarseToFine.” The solution is then
used for updating the neutron transport scalar flux.

5.7 NUMERICAL RESULTS

A numerical study of the DG-DSA acceleration scheme was carried out based on a 2-D
monoenergetic neutron transport fixed source problem for an assembly of 17 × 17 fuel pins,
with reflective boundary conditions on the north and west faces and vacuum boundary
conditions on the south and east faces as shown in Fig. 5-9. The radius of each fuel pin is 0.54
cm and the rod pitch is1.26 cm. The fuel, represented by the blue pins, has the total cross section
of 0.7 cm-1 with the scattering ratio of 0.6. The water, in the red region, has the total cross
section of 2 cm-1 with the scattering ratio of 0.99. Each fuel pin is discretized using 4 concentric
rings surrounded by 3 rings in the moderator, and 8 azimuthal sectors per quadrant. Carlson’s
level symmetric cubature was used with 6 points per octant. The total number of fine cells in
the transport mesh is 64736, while the DG-DSA mesh has 4624 cells. The converged scalar
flux is plotted in Fig. 5-9.

Figure	5-9.	Flux	distribution	and	Specifications	of	the	assembly.	

Since the global matrix for the DG-DSA method is asymmetric, the GMRES iterative method
is utilized from PETSc library to invert the global matrix for diffusion equation. In PROTEUS,
both the transport and existing diffusion matrices are symmetric thus, as a default, the conjugate
gradient (CG) method is used. Convergence performance highly depends on the solver type
and preconditioner used, thus, the transport and the original diffusion equations are also solved
using GMRES with block Jacobi preconditioner for comparison.

The convergence performance, i.e., the flux relative error vs. transport sweep number, is
illustrated in Figs. 5-10 and 5-11. The results of the SN source iteration without acceleration
are shown for comparison. In the figure, DSA depicts the results obtained with the original
DSA scheme in PROTEUS-SN, which uses the same fine mesh and CG-FEM discretization as
the SN solution. Unlike the original CG based DSA method, DG-DSA is p (polynomial degree)
adaptive, thus we considered two cases: 1) 𝑝 = 1 for both fuel and water regions and 2) 𝑝 = 0

72

for fuel and 𝑝 = 1 for water. As compared to the original DSA solution, both DG-DSA
solutions can obtain similar performance on a much coarser mesh. In addition, DG-DSA can
employ local 𝑝 adaptation and therefore further reduce the number of degrees of freedom
(DOF). In DG-DSA method, the penalty number is tuned for the optimum convergence.

Figure	5-10.	Numerical	results	for	GMRES	iterative	method	

Figure	5-11.	Numerical	results	for	CG	iterative	method	

The number of diffusion iterations per each transport iteration for both GMRES and CG
iterative methods are shown in Figs. 5-12 and 5-13. Since DG-DSA generates much smaller
matrix, it takes around 7 iterations to solve the diffusion equation, while it is between 15 and
45 iterations for the original DSA acceleration.

1.0E-13

1.0E-11

1.0E-09

1.0E-07

1.0E-05

1.0E-03

1.0E-01

1 10 100 1000

Fl
ux

 R
es

id
ua

l

Transport Iteration #

DSA

DG-DSA p=1,1

SI

DG-DSA p=0,1

DOFs
DSA: 60385

DG-DSA p=1,1: 13872
DG-DSA p=0,1: 9248

1.0E-13

1.0E-11

1.0E-09

1.0E-07

1.0E-05

1.0E-03

1.0E-01

1 10 100 1000

Fl
ux

 R
es

id
ua

l

Transport Iteration #

DSA

DG-DSA p=1,1

SI

DG-DSA p=0,1

DOFs
DSA: 60385

DG-DSA p=1,1: 13872
DG-DSA p=0,1: 9248

73

Figure	5-12.	Number	of	diffusion	iterations	for	using	CG	iteration	method	

Figure	5-13.	Number	of	diffusion	iterations	for	using	GMRES	iteration	method	

The same problem is also solved on multiple processors. The comparison of computing time is
summarized in Tables 5-1 and 5-2. The purpose here is to demonstrate and verify the
implementation of the DG-DSA method and its parallelization. The following observations can
be seen from the above the simple 2D model problem:

1. DG-DSA is as effective as the original DSA method for reducing the number of source
iterations.

2. It is found that for DG-DSA the piecewise linear function outperforms the piecewise
constant function; however, it is computationally less efficient because the discretized
linear diffusion system is much larger.

3. The setup time for DG-DSA, including reading input, generating coarse mesh, and
building the global matrix (about 0.9 sec. in total for this problem) is no negligible.

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Di
ffu

sio
n

Ite
ra

tio
ns

Transport Iteration

DSA

DG-DSA p=0,1

DG-DSA p=1,1

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Di
ffu

sio
n

Ite
ra

tio
ns

Transport Iteration

DSA

DG-DSA p=0,1

DG-DSA p=1,1

74

4. The convergence performance depends on the linear solvers and preconditioners used.
5. The number of iterations varies depending the number of processors used.

Table	5-1.	Computational	Performance	Comparison	using	CG	method	

 1 Processor 2 Processors 3 Processors
DSA DG 0-1 DG 1-1 DSA DG 0-1 DG 1-1 DSA DG 0-1 DG 1-1

Source Iterations 19 22 21 19 23 21 24 21 21
Transport (s) 16.5 18.0 20.6 12.5 10.6 12.4 10.7 7.62 8.91
Diffusion (s) 1.00 0.79 1.57 0.86 0.30 0.52 0.95 0.14 0.29
Reading Input (s) 0.23 0.72 0.72 0.49 0.98 0.95 0.49 1.01 1.01
Mesh Generation (s) 0.81 1.07 1.08 0.82 1.09 1.08 0.81 1.09 1.10
DG-DSA matrix (s) 0.00 0.12 0.12 0.00 0.07 0.07 0.00 0.05 0.05
Total Time (s) 20.3 22.7 26.1 16.2 14.3 16.3 14.4 11.2 12.6

Table 5-2. Computational Performance Comparison using GMRES method

 1 Processor 2 Processors 3 Processors
DSA DG 0-1 DG 1-1 DSA DG 0-1 DG 1-1 DSA DG 0-1 DG 1-1

Source Iterations 22 20 20 17 23 20 23 23 24
Transport (s) 16.6 19.2 18.5 9.40 11.2 12.9 7.17 8.21 8.00
Diffusion (s) 0.62 1.05 2.06 0.28 0.35 0.72 0.26 0.22 0.42
Reading Input (s) 0.24 0.71 0.70 0.48 0.94 1.85 0.49 1.00 1.00
Mesh Generation (s) 0.81 1.08 1.08 0.81 1.07 1.54 0.82 1.10 1.09
DG-DSA matrix (s) 0.00 0.12 0.12 0.00 0.06 0.12 0.00 0.05 0.05
Total Time (s) 20.2 24.0 24.3 12.1 15.0 18.7 9.77 11.6 11.9

5.8 SUMMARY

The DG-DSA method has been implemented to accelerate the PROTEUS-SN code written in
FORTRAN. The coarse mesh generation and the diffusion matrix construction are outlined in
the chapter. At the current stage of the implementation, there are a few limitations in the DG-
DSA implementation. It is now only able to read UFMESH mesh input file, and limited to two-
dimensional Cartesian coordinate system, and a fixed coarse mesh. The objective of the
implementation was to demonstrate the feasibility of the DG-DSA method. Based on the single
assembly model problem, it can be seen that DG-DSA can effectively reduce the number of
iterations. However, the computing time was not significantly improved compared to the
existing DSA method, even though the degrees of freedom is relatively smaller. It may be due
to the fact that the solvers and preconditioners are not optimized. Further improvements are
needed to fully realize the efficiency of DG-DSA.

75

6. CONCLUSIONS
In this report, we have summarized our development work on DG-DSA and its implementation
in PROTEUS-SN. This new DSA method can greatly improve the computational efficiency of
conventional DSA methods by using DG methods. The novelty of DG-DSA is that it reduces
the number of DOF by discretizing the diffusion equation on a coarse-mesh grid with local ℎ𝑝
adaption. Our numerical results have demonstrated its rapid convergence performance and
efficiency. Future work is needed to further improve the DG-DSA performance by developing
optimal linear solvers and preconditioners for the DG solver.

In addition, we developed a new nonlinear acceleration scheme, lpCMFD, which utilizes the
linear prolongation technique instead of the conventional flat prolongation used in CMFD to
update the neutron transport scalar flux. The new scheme can greatly stabilize the CMFD.
lpCMFD has been tested on a MOC code. A track-based method is applied to calculate the
centroids coordinates for the fine cells. Based on the numerical results of the 2D1G test problem
and the 2D C5G7 problem, it has demonstrated that lpCMFD can stabilize the CMFD iterations
on MOC method effectively and lpCMFD method performs better than odCMFD on reducing
the outer MOC iterations.

In order to further improve the effectiveness and stability of CMFD, we developed a new
scheme, called LR-NDA. This method employs a local refinement approach on the framework
of CMFD by solving a local boundary value problem of the scalar flux on the coarse-mesh
structure to replace the piecewise constant scalar flux obtained by CMFD. The refined flux is
then used to update the scalar flux in the neutron transport source iteration. We have
demonstrated that LR-NDA is a local adaptive method, which means LR-NDA does not
necessarily require local refinement for all the coarse-mesh cells on the problem domain, i.e.,
it can be used only for relatively optically thick regions where the standard CMFD scheme
would encounter the convergence problem.

76

REFERENCES
1. R. E. ALCOUFFE, “Diffusion Synthetic Acceleration Methods for the Diamond-

Differenced Discrete-Ordinates Equations,” Nucl. Sci. Eng., 64, 344 (1977).

2. E. W. LARSEN, “Unconditionally Stable Diffusion- Synthetic Acceleration Methods for
the Slab Geometry Discrete Ordinates Equations. Part I: Theory,” Nucl. Sci. Eng., 82, 47
(1982).

3. M. L. ADAMS and E. W. LARSEN., “Fast Iterative Methods for Discrete Ordinates
Particle Transport Calculations,” Prog. Nucl. Energy., 40, 3, (2002).

4. M. L. ADAMS and W. R. MARTIN, “Diffusion Synthetic Acceleration of Discontinuous
Finite Element Transport Iterations,” Nucl. Sci. Eng., 111, 145 (1992).

5. Y. AZMY, T. WAREING, and J. MOREL, “Effect of Material Heterogeneity on the
Performance of DSA for Even-Parity SN Methods,” Int. Conf. Mathematics and
Computation, Reactor Physics, and Environmental Analysis in Nuclear Applications,
Madrid, Spain, September 27–30, 1999, Vol. 1, p. 55 (1999).

6. J. S. WARSA, T. A. WAREING, and J. E. MOREL, “Krylov Iterative Methods and the
Degraded Effectiveness of Diffusion Synthetic Acceleration for Multidimensional SN
Calculations in Problems with Material Discontinuities,” Nucl. Sci. Eng., 147, 218 (2004).

7. Y. Q. WANG and J. C. RAGUSA, “Diffusion Synthetic Acceleration for High-Order
Discontinuous Finite Element SN transport Schemes and Applications to Locally Refined
Unstructured Meshes,” Nucl. Sci. Eng., 166, 145 (2010).

8. J. A. ROBERTS and B. FORGET, “Multigroup Diffusion Preconditioners for Multiplying
Fixed-Source Transport Problems,” J. Comput. Phys., 274, 455 (2014).

9. D. A. Di PIETRO and A. ERN, “Mathematical Aspects of Discontinuous Galerkin
Methods,” Springer, 2012.

10. B. RIVIERE, “Discontinuous Galerkin Methods for Solving Elliptic and Parabolic
Equations: Theory and Implementation,” Society for Industrial and Applied Mathematics,
2008.

11. E. R. SHEMON, M. A. SMITH, C. LEE, “PROTEUS-SN User Manual,” Tech. Rep.
ANL/NE-14/6, Argonne National Laboratory, 2014.

12. K. P. KEADY and E. W. LARSEN, “Stability of Sn K-Eigenvalue Iterations Using CMFD
Acceleration,” Proc. M&C, American Nuclear Society, Nashville, TN, April 19-23, (2015).

13. M. JARRETT, B. KOCHUNAS, A. ZHU, T. DOWNAR, “Analysis of Stabilization
Techniques for CMFD Acceleration of Neutron Transport Problems,” Nucl. Sci. Eng.
184(2), pp. 208-227 (2016).

77

14. N. Z. CHO, G. S. LEE, C. J. PARK, “Partial Current-Based CMFD Acceleration of the
2D/1D Fusion Method for 3D Whole-Core Transport Calculations,” Trans. Am. Nucl. Soc.,
88, 594 (2003).

15. N. Z. CHO, “Partial current-based CMFD (p-CMFD) method revisited,” Trans. Kor. Nucl.
Soc., Gyeongju, Korea, Octerber 25-26, 2012 (2012).

16. A. ZHU, M. JARRETT, Y. XU, B. KOCHUNAS, E. LARSEN, T. DOWNAR, “An
optimally diffusive Coarse Mesh Finite Difference method to accelerate neutron transport
equation,” Ann. Nucl. Energy. 95,116 (2016).

17. A. ZHU, et al, “Theoretical Convergence Rate Lower Bounds for Variants of Coarse Mesh
Finite Difference to Accelerate Neutron Transport Calculations,” Nucl. Sci. Eng., 186, 224-
238, (2017).

18. N.Z. CHO, S. YUK, “Two-Level Speedup Schemes for p-CMFD Acceleration in Neutron
Transport Calculation,” Nucl. Sci. Eng., 188(1), 1-14, (2017).

19. L. LI, K. SMITH AND B. FORGET, “Techniques for stabilizing Coarse-Mesh Finite
Difference (CMFD) in method of characteristics (MOC),” Proc. M&C 2015, Nashville, TN
(2015).

20. E. W. LARSEN AND B. W. KELLEY, “The Relationship between Coarse-Mesh Finite
Difference and Coarse-Mesh Diffusion Synthetic Acceleration,” Nucl. Sci. Eng., 178(1), 1-
15, (2014).

21. R. M. FERRER and J. D. RHODES, “The linear source approximation and particle
conservation in the Method of Characteristics for isotropic and anisotropic sources,”
Annals of Nuclear Energy,115, 209–219 (May 2018).

22. E. LEWIS, M. SMITH, and N. TSOULFANIDIS, “Benchmark specification for
deterministic 2-D/3-D MOX fuel assembly transport calculations without spatial
homogenization (C5G7 MOX),” OECD/NEA Report (01 2001).

23. S. XIAO et al., “Convergence Study of LR-NDA Using Fourier Analysis,” Trans. Am.
Nucl. Soc., San Francisco, California, June 11–15, 2017, American Nuclear Society
(2017).

24. D. WANG, S. XIAO, and R. MAGRUDER, “A Coarse- Mesh Nonlinear Diffusion
Acceleration Scheme with Local Refinement for Neutron Transport Calculation,” Trans.
Am. Nucl. Soc., Las Vegas, Nevada, November 6–10, 2016, American Nuclear Society
(2016).

78

APPENDIX

A. LOCAL DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD

Beside the interior penalty discontinuous Galerkin (IPDG) method presented in the previously,
another popular DG method for solving the diffusion equation is so called the local
discontinuous Galerkin (LDG) method, which is a type of mixed finite element methods that
were well-studied for the numerical approximation of the diffusion equation.

Before we present the main idea of the LDG method and how it is applied to our DSA problem,
we would like to first provide a comparison of the LDG and IPDG method. Both methods
belong to the family of DG method, and share the nice properties of the DG finite element
methods, including the high order approximation to the solution of the diffusion equation, the
hp adaptivity, and easy to implement for arbitrary domain and boundary condition. The IPDG
method could be more compact than the LDG method. The main challenge with the IPDG
method is that it involves a penalty parameter 𝜎t to be tuned for each problem. The method is
proven to be stable only for sufficiently large 𝜎t. On the other hand, the LDG method has no
parameter to be tuned, hence is easier to use. It also provides both optimal order of
approximation to both the unknown 𝑢 and its derivative 𝑢G.

Next, let us present the main idea of the LDG method and show some preliminary numerical
results of the applying it to solve our DSA problem. We again use the simple problem

−∇ ∙ l𝐷∇	𝛿𝜙(𝑥, 𝑦)n + Σf𝛿𝜙(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) , in Ω	, (A-1)

as an example, to demonstrate the method. We first introduce the auxiliary variable 𝒒 and
rewrite this problem as the system of first order equations:

−∇ ∙ (𝑑	𝒒) + Σf𝛿𝜙(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) , (A-2)

𝒒 = 𝑑	∇	𝛿𝜙(𝑥, 𝑦) , (A-3)

where 𝑑 = √𝐷. After discretizing the domain 𝛺 as ℰ, Multiplied by test functions υ and 𝒘,
and integrated over an element 𝐸 gives

−∫ υ	∇ ∙ (𝑑	𝒒)	} + ∫ Σf𝛿𝜙	υ} = ∫ 𝑓	υ} 	,					∀𝐸 ∈ 	ℰ , (A-4)

∫ 𝒒 ∙𝒘} = ∫ 𝑑	∇	𝛿𝜙} ∙𝒘	,					∀𝐸 ∈ 	ℰ . (A-5)

Appling the Green’s theorem yields the weak formulation of

∫ 𝑑	𝒒 ∙ ∇	υ} − ∫ 𝑑𝒒 ∙ 𝒏𝑬	υF} + ∫ Σf𝛿𝜙	υ} = ∫ 𝑓	υ} 	,				∀𝐸 ∈ 	ℰ, (A-6)

∫ 𝒒 ∙𝒘} = −∫ 𝑑	𝛿𝜙} ∇ ∙𝒘+ ∫ 𝑑	𝛿𝜙	𝒘 ∙ 𝒏𝑬F} 	,				∀𝐸 ∈ 	ℰ. (A-7)

79

The LDG method is designed based on the above weak formulation. First, we would like to
define a finite element space 𝒟ª(ℰ) for the DG solution, which is the space of discontinuous
polynomials. The global basis functions of 𝒟ª(ℰ) have a support contained in each element.

𝒟ª(ℰ) = span{𝑃�}: 1 ≤ i ≤ 𝑁}, 𝐸 ∈ ℰ}, (A-8)

with

𝑃�}(𝑥, 𝑦) = 	 ¯
𝑝�}(𝑥, 𝑦)	,				(𝑥, 𝑦) ∈ 𝐸
0	,																	(𝑥, 𝑦) ∉ 𝐸 , (A-9)

where {𝑝�}} is a set of local basis functions that are chosen to be monomial basis functions,
translated from the interval (-1,1) for quadrilateral mesh:

𝑝�}(𝑥, 𝑦) = 	 ±
G²G³´K/L
d(G³´K²G³)

µ
¶
· T²T¸´K/L
d(T¸´K²T¸)

¹
º
, 𝐼 + 𝐽 = 𝑖	, 0 ≤ 𝑖 ≤ 𝑘} , (A-10)

and (𝑥¿JZ/d, 𝑦ªJZ/d) is the midpoint of an element 𝐸 bounded by (𝑥¿, 𝑥¿JZ) ∩ (𝑦ª, 𝑦ªJZ). This
yields the local dimension

𝑁} =
(ª�JZ)(ª�Jd)

d
, (A-11)

where 𝑘} is the highest polynomial degree of an element 𝐸. Similarly, we can define the finite
element space 𝒟ª(𝐸) on each element 𝐸. For the LDG method, since the first order spatial
derivative is defined as a new variable 𝒒, an additional DG polynomial space 𝒰ª(𝐸) is also
needed. Although there is no constraint on how to choose this space, however, a typical choice
of 𝒰ª(𝐸) is

𝒰ª(𝐸) = 𝒟ª(𝐸) 	×…× 𝒟ª(𝐸). (A-12)

Finally, the LDG method to solve the diffusion equation is given by: we are solving for
(𝛿𝜙�À, 	𝒒�À) in 𝒟ª(ℰ) ×𝒰ª(ℰ) space such that on each element 𝐸,

∫ 𝑑	𝒒�À ∙ ∇	υ} − ∫ 𝑑𝒒�À� ∙ 𝒏𝑬	υF} + ∫ Σf𝛿𝜙�À	υ} = ∫ 𝑓	υ} 	,				∀𝐸 ∈ 	ℰ, (A-13)

∫ 	𝒒�À ∙𝒘} = −∫ 𝑑	𝛿𝜙�À} ∇ ∙𝒘+ ∫ 𝑑	𝛿𝜙�À� 	𝒘 ∙ 𝒏𝑬F} 	,				∀𝐸 ∈ 	ℰ, (A-14)

hold for all test functions (υ,𝒘) in 𝒟ª(𝐸) ×𝒰ª(𝐸). Here, the two hatted terms 𝑑𝒒�À� and
𝛿𝜙�À� are the so-called numerical fluxes, which are a single-valued function defined on the
element interface. There have been many studies on how to choose the numerical fluxes
correctly, and the main guideline is to ensure the stability of the resulting LDG method.
Usually, we choose the following numerical fluxes

𝑑𝒒�À� 	= 	 {𝑑𝒒�À} 	+	𝐶ZZ[𝛿𝜙�À] 	+	𝐶Zd[𝑑𝒒�À], (A-15)

𝛿𝜙�À� 		= 	 {𝛿𝜙�À} −	𝐶Zd[𝛿𝜙�À], (A-16)

80

with the notations of jump [∙] and average {∙} defined earlier. Here the parameter 𝐶ZZ must be
non-negative to ensure the stability, and the parameter 𝐶Zd can be arbitrarily chosen. In
practice, we often choose the parameter 𝐶Zd to be either ½ or - ½,	leading to the following
simplified fluxes

𝑑𝒒�À� 	= (𝑑𝒒�À)J 	+	𝐶ZZ[𝛿𝜙�À], (A-17)

𝛿𝜙�À� 		= 	 (𝛿𝜙�À)²	, (A-18)

or

𝑑𝒒�À� 	= (𝑑𝒒�À)² 	+	𝐶ZZ[𝛿𝜙�À], (A-19)

𝛿𝜙�À� 		= 	 (𝛿𝜙�À)J. (A-20)

With this choice of numerical flux, the auxiliary variable 𝒒�À can be solved from 𝛿𝜙�À
locally, therefore in the computation, one can eliminate the auxiliary variable 𝒒�À , and the
introduction of 𝒒�À is just for the purpose of deriving the algorithm and won’t add any
additional computational costs. After plugging in the numerical flux in the LDG method, we
arrive the two equations given by

𝑨𝟏𝜷+ 𝑨𝟐𝜶 = 𝒃𝟏	, (A-21)

𝑨𝟑𝜷 = 𝑨𝟒	𝜶, (A-22)

where 𝜶 is a vector with components being the coefficients of 𝛿𝜙�À in each element 𝐸, and 𝜷
is a vector with components being the coefficients of 𝒒�À in each element 𝐸. The matrices 𝑨𝟏,
𝑨𝟐, 𝑨𝟑, 𝑨𝟒 come from the discretization of the corresponding terms. A further simplification
leads to

(𝑨𝟏𝑨𝟑²𝟏𝑨𝟒 + 𝑨𝟐)𝜶 = 𝒃𝟏	, (A-23)

which can be solved for the unknown function 𝛿𝜙�À .

A numerical study of the DG-DSA acceleration performance was carried out based on a 1-D
SN fixed-source model problem. Here we carried out both LDG and IPDG methods, as outlined
in the previous sections. The domain is set as [0, 50cm], with the reflective boundary on the
left side and the vacuum boundary on the right side. The domain is discretized into 50 uniform
coarse-mesh cells. The fine-mesh number in each coarse-mesh cell is 10. The LDG and IPDG
methods were used with piecewise linear polynomials and the optimized penalty number. The
S12 with DG-DSA was implemented in MATLAB. The numerical results are shown in Fig. A-
1, from which we can easily observe that for this test case, there is no obvious difference in the
numerical performance of the LDG and IPDG methods. However, we would like to mention
that for the LDG method, there is no need to tune the penalty parameter. We have also changed
the setup of the problem slightly, and the updated numerical results are shown in Fig. A-2. For
this test case, the IPDG method performs slightly better than the LDG method. Overall, we

81

observe that for the one dimensional test problem, the difference between the performance of
LDG and IPDG methods is not significant, and one can choose whatever method he/she prefers.

(a): Converged scalar flux

(b) Flux relative error vs. iteration number

Figure	A-1:	Numerical	results	of	LDG	and	IPDG	DSA	method	for	the	first	1D	problem.	

82

(a): Converged scalar flux

 (b) Flux relative error vs. iteration number

Figure	A-2:	Numerical	results	of	LDG	and	IPDG	DSA	method	for	the	second	1D	
problem.	

83

B. LIST OF PUBLICATIONS SUPPORTED BY THE PROJECT

1. D. Wang, "The Asymptotic Diffusion Limit of Numerical Schemes for the SN Transport
Equation," submitted to Nuclear Science and Engineering.

2. D. Wang, T. Byambaakhuu, S. Schunert, Z. Wu, "Solving the SN Transport Equation
Using High Order Lax-Friedrichs WENO Fast Sweeping Methods," M&C 2019, Portland,
Oregon, USA, August 25-29, 2019.

3. T. Byambaakhuu, D. Wang, "Comparison of lpCMFD with Other CMFD Based
Acceleration Schemes," 2019 ANS Student Conference, Richmond, VA, April 4-9, 2019
(the best paper award).

4. D. Wang, T. Byambaakhuu, "High Order Lax-Friedrichs WENO Fast Sweeping Methods
for the SN Neutron Transport Equation," Nuclear Science and Engineering, (2019).
https://doi.org/10.1080/00295639.2019.1582316.

5. T. Byambaakhuu, D. Wang, S. Xiao, “A Coarse-Mesh Diffusion Synthetic Acceleration
Method with Local hp Adaptation for Neutron Transport Calculations,” Nuclear Science
and Engineering, 192, 2, 208 (2018). https://doi.org/10.1080/00295639.2018.1499338.

6. D. Wang, S. Xiao, “A Linear Prolongation Approach to Stabilizing CMFD,” Nuclear
Science and Engineering, 190, 1, 45 (2018).
https://doi.org/10.1080/00295639.2017.1417347.

7. S. Xiao, K. Ren, D. Wang, “A Local Adaptive Coarse-Mesh Nonlinear Diffusion
Acceleration Scheme for Neutron Transport Calculations,” Nuclear Science and
Engineering, 189, 3, 272 (2018). https://doi.org/10.1080/00295639.2017.1394088.

8. D. Wang, T. Byambaakhuu, K. Ren, “A Quadratic Characteristic Method for the SN
Solution,” PHYTRA4, Marrakech, Morocco, September 17-19, 2018 (invited).

9. D. Wang, S. Xiao, Y. Xu, T. Downar, E. Shemon, Y. Xing, “Stabilizing CMFD with Linear
Prolongation,” Proceedings of the PHYSOR 2018, Cancun, Mexico, April 22-26, 2018.

10. Q. Shen, Y. Xu, T. Downar, and D. Wang, “Stability Analysis of lpCMFD for Accelerating
SN method,” PHYSOR 2018, Cancun, Mexico, April 22-26, 2018.

11. D. Wang and T. Byambaakhuu, “A New Analytical SN Solution in Slab Geometry," Trans.
AM. Nucl. Soc., 117, 2017.

12. S. Xiao, K. Ren, D. Wang, Y. Xu, and T. Downar, “Convergence Study of LR-NDA Using
Fourier Analysis," Trans. AM. Nucl. Soc., 116, 2017.

13. D. Wang, S. Xiao, and R. Magruder, “A Coarse-Mesh Nonlinear Diffusion Acceleration
Scheme with Local Refinement for Neutron Transport Calculations," Trans. AM. Nucl.
Soc., 115, 2016.

	Website Cover Page Template
	15-8208 NEUP Final Report

