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ABSTRACT 
 

This report summarizes the results of a three-year research project sponsored by the U.S. 
Department of Energy (DOE) Nuclear Energy University Program (NEUP) to develop and 
implement advanced acceleration schemes for the DOE NEAMS neutronics code PROTEUS-
SN. The project team included the University of Massachusetts Lowell, The Ohio State 
University, University of Michigan, and Argonne National Laboratory. 

The PROTEUS code is a high-fidelity capable deterministic neutron transport code based on 
unstructured finite element meshes, which solves the steady-state and transient neutron 
transport problem using the 2nd-order discrete ordinate method (SN2ND), the method of 
characteristics (MOC), and the advanced nodal transport method (NODAL). The DSA scheme 
has been implemented in PROTEUS to speed up SN transport calculations. The existing DSA 
scheme employs a consistent finite element formulation on the same fine mesh structure as the 
SN solution While the use of consistent discretizations makes the DSA method effective, it 
does not necessarily make it efficient because the numerical solution of a discretized elliptic 
diffusion problem itself can be costly, particularly when the problem size becomes large. 

We developed a new discontinuous Galerkin (DG) discretization of the diffusion equation, 
called DG-DSA, which can effectively and efficiently accelerate the SN transport iterations. 
As compared with the previous work, the novelty of our method is that the diffusion equation 
is solved on a coarse-mesh grid using the DG methods, and the DG diffusion discretization 
incorporates local hp adaptation, i.e., local adaptation of mesh size and/or polynomial degree, 
based on local total cross section (or optical thickness). Therefore, the resulting number of 
degrees of freedom (DOF) of the DG discretization is much less than the conventional 
consistent DSA discretizations, and thus DG-DSA can achieve significant improvement in 
computational efficiency. We implemented this scheme in PROTEUS-SN. 

In addition, we developed a new stabilization scheme named linear prolongation CMFD 
(lpCMFD). A novel feature of this scheme is that the conventional flat flux ratio–based scaling 
approach is replaced with a linear interpolation of the scalar flux differences at the coarse-mesh 
cell edges between the neutron transport and CMFD calculations. Fourier convergence analysis 
and numerical results show that lpCMFD is unconditionally stable and more effective than 
other CMFD based on acceleration schemes such as pCMFD, odCMFD. 

We also developed a new nonlinear diffusion acceleration scheme for solving neutron transport 
equations. This scheme, called LR-NDA, employs a local refinement approach on the 
framework of CMFD by solving a local boundary value problem of the scalar flux on the 
coarse-mesh structure to replace the piecewise constant scalar flux obtained by CMFD. The 
refined flux is then used to update the scalar flux in the neutron transport source iteration. It 
has been demonstrated that that LR-NDA is much more effective and stable than CMFD for a 
wide range of optical thicknesses. LR-NDA is a local adaptive method, which means LR-NDA 
does not necessarily require local refinement for all the coarse-mesh cells on the problem 
domain, i.e., it can be used only for relatively optically thick regions where the standard CMFD 
scheme would encounter the convergence problem. 



3 
 



4 
 

ACKNOWLEDGEMENTS 
We would like to thank the U.S. Department of Energy Office of Nuclear Energy for their 
support of this project through the Nuclear Energy University Program. 

 

  



5 
 

 

TABLE OF CONTENTS 
Abstract............................................................................................................................. 2 

ACKNOWLEDGEMENTS ...................................................................................................... 4 

Table of Contents .............................................................................................................. 5 

List of figures ..................................................................................................................... 7 

List of tables ...................................................................................................................... 9 

1. Introduction ............................................................................................................. 10 

2. Development of DG-DSA .......................................................................................... 10 

2.1 DG-DSA formulation and algorithm .............................................................................. 11 

2.2 Numerical Results ......................................................................................................... 16 
2.2.1 Numerical Convergence Study ..................................................................................................... 16 
2.2.2 Local 𝒑 Adaptation ....................................................................................................................... 18 
2.2.3 Local 𝒉 Adaptation ....................................................................................................................... 19 

2.3 Summary ...................................................................................................................... 22 

3. Development of lpCMFD .......................................................................................... 22 

3.1 lpCMFD FORMULATION AND ALGORITHM .................................................................... 23 

3.2 FOURIER ANALYSIS ....................................................................................................... 28 
3.2.1 Fourier Analysis Formulation for Fixed Source Problem .............................................................. 28 
3.2.2 Numerical Results of Fourier Analysis for Fixed Source Problem ................................................ 32 
3.2.3 Numerical Results of Fourier Analysis for Transient and Eigen Value Problems ......................... 34 

3.3 NUMEIRCAL RESULTS .................................................................................................... 38 
3.3.1 2-D Fixed Source Problem ............................................................................................................ 38 
3.3.2 2D K-Eigenvalues Problem ........................................................................................................... 40 

3.4 Demonstration of a lpCMFD method on MOC Solver .................................................... 42 
3.4.1 lpCMFD method on MOC ............................................................................................................. 42 
3.4.2 Track-based centroid calculation ................................................................................................. 44 
3.4.3 lpCMFD algorithm in MOC ........................................................................................................... 46 
3.4.4 Numerical results ......................................................................................................................... 47 

3.5 Summary ...................................................................................................................... 51 

4. Development of LR-NDA ........................................................................................... 52 

4.1 LR-NDA formulation and algorithm ............................................................................... 52 

4.2 Numerical convergence study ....................................................................................... 57 

4.3 Local adaptation of LR-NDA .......................................................................................... 59 



6 
 

4.4 Summary ...................................................................................................................... 61 

5. Implementations of DG-DSA in PROTEUS-SN ............................................................ 62 

5.1 Introduction ................................................................................................................. 62 

5.2 Input Files ..................................................................................................................... 64 

5.3 Creating Global Coarse Mesh ........................................................................................ 65 
5.3.1 Coarse Mesh specifications and Limitations ................................................................................ 67 

5.4 Creating Parallel Coarse Mesh ...................................................................................... 67 

5.5 Global Matrix Assembly ................................................................................................ 69 
5.5.1 Reference elements ..................................................................................................................... 69 
5.5.2 Basis functions ............................................................................................................................. 70 

5.6 Within group solver ...................................................................................................... 70 

5.7 Numerical Results ......................................................................................................... 71 

5.8 Summary ...................................................................................................................... 74 

6. Conclusions .............................................................................................................. 75 

References ....................................................................................................................... 76 

Appendix ......................................................................................................................... 78 

A. Local Discontinuous Galerkin Finite Element Method ....................................................... 78 

B. List of Publications supported by the project .................................................................... 83 
 

  



7 
 

LIST OF FIGURES  
Figure 2-1. Flowchart of the DG-DSA algorithm __________________________________________________ 12 
Figure 2-2. Spectral radius vs. 𝛴𝑡. _____________________________________________________________ 17 
Figure 2-3. Numerical results of local 𝑝 adaptation. ______________________________________________ 19 
Figure 2-4. Specifications of 2-D problem. ______________________________________________________ 20 
Figure 2-5. Numerical results of local ℎ adaptation. ______________________________________________ 21 
Figure 3-1. Flowchart of the lpCMFD algorithm for fixed source problems. ____________________________ 25 
Figure 3-2. 1-D mesh. ______________________________________________________________________ 25 
Figure 3-3. 2D mesh. _______________________________________________________________________ 26 
Figure 3-4. SN Scalar Flux Updating Comparison for CMFD and lpCMFD. ______________________________ 28 
Figure 3-5. Convergence comparison (𝑝 = 5). ___________________________________________________ 33 
Figure 3-6. Convergence comparison (𝑝 = 10). __________________________________________________ 34 
Figure 3-7. Verification of Fourier analysis with numerical results for selected cases. ___________________ 35 
Figure 3-8. Comparison between CMFD and lpCMFD. _____________________________________________ 36 
Figure 3-9. Threshold of convergence for lpCMFD ________________________________________________ 37 
Figure 3-10. Comparison of SlpCMFD and conventional CMFD ______________________________________ 38 
Figure 3-11. Specifications of 2D fixed-source problem. ___________________________________________ 39 
Figure 3-12. Numerical results of lpCMFD for 2D fixed-source problem. _______________________________ 40 
Figure 3-13. Specifications of 2D k-eigenvalue problem. ___________________________________________ 41 
Figure 3-14. Numerical results of lpCMFD for 2D K-eigenvalue problem. ______________________________ 42 

Figure 3-15. Linear interpolation to get  ____________________________________________________ 44 
Figure 3-16. Track-based method for calculating the centroids. _____________________________________ 45 
Figure 3-17. lpCMFD flow chart in MOC ________________________________________________________ 47 
Figure 3-18. Geometry and cross section of the 2D1G test problem. __________________________________ 48 

Figure 3-19. 2-norm of residuals vs. MOC iterations, 2D1G test problem. __________________________ 48 
Figure 3-20. Power distribution and relative errors of the 2D1G test problem. __________________________ 49 
Figure 3-21. Geometry and fuel configuration of the 2D C5G7 problem. ______________________________ 50 

Figure 3-22. 2-norm of  residuals vs. MOC iterations, 2D C5G7 problem. _________________________ 50 
Figure 3-23. Power distribution and relative errors of the 2D C5G7 problem. ___________________________ 51 
Figure 4-1. Flow chart of the LR-NDA algorithm for fixed source problems. ____________________________ 53 
Figure 4-2. Local refinement mesh for 2D problem. _______________________________________________ 54 
Figure 4-3. Flowchart of the LR-NDA algorithm for k-eigenvalue problems. ____________________________ 56 
Figure 4-4. Convergence performance comparison between CMFD and LR-NDA. ________________________ 58 
Figure 4-5. Specifications of 2D k-eigenvalue problem. ____________________________________________ 59 
Figure 4-6. Numerical results of LR-NDA for 2D k-eigenvalue problem. _______________________________ 60 
Figure 5-1. Coarse pin cell superimposed on a fine pin cell with fuel in the radial region (yellow) and moderator 
in the background region (blue). ______________________________________________________________ 63 
Figure 5-2. Mapping between fine and coarse grid _______________________________________________ 64 
Figure 5-3. DG-DSA implementation flowchart __________________________________________________ 64 
Figure 5-4. Sample UFMESH input file _________________________________________________________ 65 
Figure 5-5. Flowchart for global coarse mesh generation __________________________________________ 66 
Figure 5-6. Flowchart for parallel coarse mesh generation _________________________________________ 68 
Figure 5-7. Flowchart for assembling global diffusion matrix _______________________________________ 69 
Figure 5-8. Linear triangular (Left) and quadrilateral (Right) reference elements. _______________________ 70 
Figure 5-9. Flux distribution and Specifications of the assembly. _____________________________________ 71 
Figure 5-10. Numerical results for GMRES iterative method ________________________________________ 72 

df

effk

effk



8 
 

Figure 5-11. Numerical results for CG iterative method ____________________________________________ 72 
Figure 5-12. Number of diffusion iterations for using CG iteration method ____________________________ 73 
Figure 5-13. Number of diffusion iterations for using GMRES iteration method _________________________ 73 
 

  



9 
 

LIST OF TABLES 
Table 2-1. Computational Performance Comparison* _____________________________________________ 21 

Table 3-1.  and iteration cycles for different CMFD schemes, 2D1G test problem. ___________________ 48 

Table 3-2.  and iteration cycles for different CMFD schemes, 2DC5G7 problem. ____________________ 49 
Table 4-1. Computational Performance Comparison of the 2-D k-eigenvalue Problem ___________________ 61 
Table 5-1. Computational Performance Comparison using CG method ________________________________ 74 
Table 5-2. Computational Performance Comparison using GMRES method ____________________________ 74 
 

  

effk

effk



10 
 

1. INTRODUCTION 
This report summarizes our work on the development and implementation of advanced 
acceleration schemes for neutron transport calculations, including DG-DSA, lpCMFD, and 
LR-NDA. These newly developed schemes have improved current acceleration techniques, and 
they can be implemented in any neutron transport codes to improve the computational 
efficiency. In the following, we will discuss in detail these methods with a focus on the theory, 
numerics and implementation.   

 

2. DEVELOPMENT OF DG-DSA 
There has been considerable research on diffusion synthetic acceleration (DSA) of transport 
source iterations.1-4 The DSA method is based on the use of a diffusion calculation for 
approximating the iterative error of the transport source iteration. Most work was focused on 
the development of so-called consistent (or partially consistent) diffusion discretizations in 
order to obtain the optimal convergence performance. While the use of consistent 
discretizations makes the DSA method effective, it does not necessarily make it efficient 
because the numerical solution of a discretized elliptic diffusion problem itself can be costly, 
particularly when the problem size becomes large.  

Adams and Martin developed a DSA scheme based on a discontinuous finite element (DFE) 
diffusion discretization to accelerate DFE transport iterations.4 They noted that their DFE based 
DSA scheme was very effective, however, the efficient solution of the DFE diffusion equations 
in 2-D geometries remained an open question. A loss in the effectiveness of DSA for 
accelerating transport source iteration has been observed with certain SN discretizations on 
multi-dimensional grids in the presence of material discontinuities.5 Warsa et al showed 
through numerical experiments that replacing source iteration with a preconditioned Krylov 
method can efficiently solve problems that are virtually intractable with accelerated source 
iteration.6 In 2010, Wang and Ragusa developed the modified interior penalty (MIP) scheme 
based on discontinuous finite element discretization of the second-order diffusion equation for 
high-order discontinuous finite element spatial discretizations of the SN transport equation on 
locally refined unstructured meshes.7  It was found that MIP is stable and effective for realistic 
problems, even with distorted elements, but loses effectiveness for some highly heterogeneous 
configurations. Most recently, Roberts and Forget developed a two-grid multigroup diffusion 
preconditioner for application to multiplying fixed-source transport problems using the SN 
method. It was found that the coarse-mesh diffusion preconditioner performs quite well, 
especially when used with a fine-mesh diffusion smoother and transport-correction.8 

In this chapter, we present a new discontinuous Galerkin (DG) discretization of the diffusion 
equation, called DG-DSA, which can effectively and efficiently accelerate the SN transport 
iterations. As compared with the previous work, the novelty of our method is that the diffusion 
equation is solved on a coarse-mesh grid using the DG methods, and the DG diffusion 



11 
 

discretization incorporates local ℎ𝑝  adaptation, i.e., local adaptation of mesh size and/or 
polynomial degree, based on local total cross section (or optical thickness). Therefore, the 
resulting number of degrees of freedom of the DG discretization is much less than the 
conventional consistent DSA discretizations, and thus DG-DSA can achieve significant 
improvement in computational efficiency.  

The remaining chapter is organized as follows. In Sec. 2.1, we present in detail the formulation 
and algorithm of the DG-DSA method. A numerical study of DG-DSA is carried out in Sec. 
2.2, focusing on various numerical aspects such as convergence performance, local ℎ𝑝 
adaptation, and penalty. Sec. 2.3 concludes the chapter with a brief summary and discussion. 

2.1 DG-DSA FORMULATION AND ALGORITHM 

We introduce the DG-DSA method based on monoenergetic SN neutron transport fixed-source 
problems. The scattering and neutron source are assumed isotropic. The flowchart of the DG-
DSA algorithm is shown in Fig. 2-1.    
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Figure	2-1.	Flowchart	of	the	DG-DSA	algorithm	

The 𝑙CD  iteration cycle begins with the SN transport equation with iteration indices on 2-D 
Cartesian geometry is expressed as 

𝜇 F
FG
𝜓IJKL(𝑥, 𝑦, 𝜇, 𝜂) + 𝜂 F

FT
𝜓IJKL(𝑥, 𝑦, 𝜇, 𝜂) + 𝛴U𝜓

IJKL(𝑥, 𝑦, 𝜇, 𝜂) = 		 VW
X
𝜙I(𝑥, 𝑦) +

																																																																							Z
X
𝑄(𝑥, 𝑦)	,	 	 	 	 	 										(2-1)	

where	𝜙 and 𝜓 are the scalar flux and angular flux, respectively. ΣC and Σ] are the total cross 
section and scattering cross section. 	𝜇 and 𝜂 are the neutron angular directions. 𝑥 and 𝑦 are the 
spatial positions. 𝑄 is the external neutron source. 𝑙 is the source iteration index and 𝑙 + 1/2 is 
the intermediate step.  

During each source iteration, the diffusion is utilized to approximate the transport iterative flux 
error as  
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− F
FG
` Z
aVb

F
FG
𝛿𝜙IJZ/d(𝑥, 𝑦)e − F

FT
` Z
aVb

F
FT
𝛿𝜙IJZ/d(𝑥, 𝑦)e + 𝛴f𝛿𝜙IJZ/d(𝑥, 𝑦) =

																																																				𝛴g[𝜙IJZ/d(𝑥, 𝑦) − 𝜙I(𝑥, 𝑦)]	,		 	 	 	 					(2-2)	
where 𝛴f is the absorption cross section.  

We solve the above diffusion equation with primal discontinuous Galerkin method (DG)10, 
which is a commonly used method for solving elliptic and parabolic problems.  

−∇ ∙ l𝐷∇	𝛿𝜙(𝑥, 𝑦)n + Σf𝛿𝜙(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) , in Ω	,   (2-3a) 

Reflective BC:  −𝐷∇	𝛿𝜙(𝑥, 𝑦) ∙ 𝒏 = 0	,        on Γstu	,       (2-3b) 

Vacuum BC:  −𝐷∇	𝛿𝜙(𝑥, 𝑦) ∙ 𝒏 = Z
d
	𝛿𝜙(𝑥, 𝑦)	,    on  Γvfw	,     (2-3c) 

where Ω is a polygonal domain in ℝd, Γstu and Γvfw are disjoint sets that partition the domain 
boundary. 𝒏 is a unit normal vector to the boundary exterior to Ω. The functions 𝐷 and 𝑓 are 
defined as  

𝐷 = Z
ayb

       (2-4a) 

and 

𝑓(𝑥, 𝑦) = Σg[𝜙IJZ/d(𝑥, 𝑦) − 𝜙I(𝑥, 𝑦)] .    (2-4b) 

Multiplied by a test function υ and integrated over an element 𝐸 gives 

−∫ υ	∇ ∙ (𝐷∇	𝛿𝜙)	} + ∫ Σf𝛿𝜙	υ} = ∫ 𝑓	υ} 	,					∀𝐸 ∈ 	ℰ ,   (2-5) 

where ℰ is the discretization of Ω, i.e. the mesh. Appling the Green’s theorem on the first term 

−∫ υ	∇ ∙ (𝐷∇	𝛿𝜙)	} = ∫ 𝐷∇	𝛿𝜙 ∙ ∇	υ} − ∫ 𝐷∇	𝛿𝜙 ∙ 𝒏𝑬	υF} 	,				∀𝐸 ∈ 	ℰ	,  (2-6) 

where 𝒏𝑬 denotes an outward normal vector to, 𝜕𝐸, the boundary of an element 𝐸. Summing 
over all the elements gives 

∑ ∫ (𝐷∇	𝛿𝜙 ∙ ∇	υ} +}∈ℰ Σf𝛿𝜙	υ) − ∑ ∫ [𝐷∇	𝛿𝜙 ∙ 𝒏𝒆υ]tt∈���b − ∑ ∫ (𝐷∇	𝛿𝜙 ∙tt∈����∪����

𝒏𝒆)υ = ∑ ∫ 𝑓υ}}∈ℰ 	,     (2-7) 

where Γ��U  is a set containing only interior edges and 𝒏𝒆 is an outward unit normal vector of 
edge 𝑒. Two new operators are introduced: jump [∙] and average {∙}  

Interior edge: {υ} = Z
d
lυ|}K� +	υ|}L�n  ,          (2-8a) 

 [υ] = υ|}K� −	υ|}L�	,   ∀𝑒 = 	𝜕𝐸Zt ∩ 𝜕𝐸dt ,     (2-8b) 
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Boundary edge: {υ} = [υ] = υ|}K�	,  ∀𝑒 = 	𝜕𝐸Zt ∩ 𝜕Ω	,     (2-8c) 

where 𝜕Ω is the boundary of the domain Ω.  For heterogeneous diffusion, we can employ a 
diffusion weighted average9, which is defined as: 

{υ} =
�|�L�

�|�K�
J�|�L�

υ|}K� +
�|�K�

�|�K�
J�|�L�

υ|}L� .      (2-9) 

Clearly, the usual arithmetic average is recovered when 𝐷|}K� = 𝐷|}L�. 

For continuous and second order differentiable functions, the jump and average operators are 
defined as: 

 [𝛿𝜙] = 0	,    ∀𝑒 ∈ Γ��U	,     (2-10a) 

 [𝐷∇	𝛿𝜙 ∙ 𝒏𝒆] = 0	,  ∀𝑒 ∈ Γ��U	,     (2-10b) 

 {𝐷∇	𝛿𝜙 ∙ 𝒏𝒆} = 	𝐷∇	𝛿𝜙 ∙ 𝒏𝒆	, 	∀𝑒 ∈ Γ��U	.       (2-10c) 

Applying Eqs. (2-8) and (2-10) in Eq. (2-7), it is straightforward to obtain the variational 
formulation (or weak formulation) of Eq. (2-3):  

∑ ∫ (𝐷∇	𝛿𝜙 ∙ ∇	υ} +}∈ℰ Σf𝛿𝜙	υ) − ∑ ∫ {𝐷∇	𝛿𝜙 ∙ 𝒏𝒆}[υ]tt∈���b +

																																																		Z
d
∑ ∫ [𝛿𝜙][υ]tt∈���� = ∑ ∫ 𝑓υ	}}∈ℰ .                    (2-11) 

Using the smoothness of the solution 𝛿𝜙 expressed in Eq. (10a), we can add the following two 
terms to the weak formulation:  

  𝜖 ∑ ∫ {𝐷∇υ	 ∙ 𝒏𝒆}[𝛿𝜙]tt∈���b 	+ ∑ ∫ ��
|t|
[𝛿𝜙][	υ]tt∈���b = 0	,     (2-12) 

where |𝑒|  is the edge length, 𝜎t  is a nonnegative real penalty number and 𝜖  is another 
parameter that may take the value of {-1, 0, 1}. Thus, the variational formulation can be 
rewritten as:  

𝑎�(𝛿𝜙, υ) = 	𝐿(υ)	,       (2-13) 

where 𝑎�(𝛿𝜙, υ) and 𝐿(υ) are bilinear and linear forms defined as:   

𝑎�(𝛿𝜙, υ) 	= ∑ ∫ (𝐷∇	𝛿𝜙 ∙ ∇	υ} +}∈ℰ Σf𝛿𝜙	υ) − ∑ ∫ {𝐷∇	𝛿𝜙 ∙ 𝒏𝒆}[υ]t 	t∈���b +
Z
d
∑ ∫ [𝛿𝜙][υ]tt∈���� + 𝜖 ∑ ∫ {𝐷∇υ	 ∙ 𝒏𝒆}[𝛿𝜙]tt∈���b 	+ ∑ ∫ ��

|t|
[𝛿𝜙][	υ]tt∈���b   ,       (2-14a) 

𝐿(υ) = ∑ ∫ 𝑓υ}}∈ℰ 	.     (2-14b) 

For heterogeneous diffusion, we can introduce a diffusion-dependent penalty parameter9, 𝛾t, 
which is defined as: 
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𝛾t =
d�|�L�

�|�K�

�|�K�
J�|�L�

.     (2-15) 

 Applying the above harmonic mean of the diffusion coefficients on the penalty term in 
Eq. (14a) gives the modified penalty term: 

     ∑ ∫ ����
|t|

[𝛿𝜙][	υ]tt∈���b .    (2-16) 

Using the harmonic mean of the diffusion coefficients to penalize jumps can tune 
automatically the amount of penalty and therefore enhance the numerical stability. 

Depending on the choice of parameter 𝜖 , the methods are named differently. A detailed 
discussion of these three types of DG methods can be found in Reference 10. 

𝜖 =  
−1,										Symmetric	interior	penalty	Galerkin	(SIPG)									
+1,										Nonsymmetric	interior	penalty	Galerkin	(NIPG)
0,													Incomplete	interior	penalty	Galerkin	(IIPG)								

 . (2-17) 

DG-DSA utilizes a finite element space 𝒟ª(ℰ), the space of discontinuous polynomials. The 
global basis functions of 𝒟ª(ℰ) have a support contained in each element. 

𝒟ª(ℰ) = span{𝑃�}: 1 ≤ i ≤ 𝑁}, 𝐸 ∈ ℰ} ,    (2-18a) 

with 

𝑃�}(𝑥, 𝑦) = 	 ¯
𝑝�}(𝑥, 𝑦)	,				(𝑥, 𝑦) ∈ 𝐸
0	,																	(𝑥, 𝑦) ∉ 𝐸 ,    (2-18b) 

where {𝑝�}} is a set of local basis functions that are chosen to be monomial basis functions, 
translated from the interval (-1,1) for quadrilateral mesh:  

𝑝�}(𝑥, 𝑦) = 	 ±
G²G³´K/L
d(G³´K²G³)

µ
¶
· T²T¸´K/L
d(T¸´K²T¸)

¹
º
, 𝐼 + 𝐽 = 𝑖	, 0 ≤ 𝑖 ≤ 𝑘} ,  (2-18c) 

and (𝑥¿JZ/d, 𝑦ªJZ/d) is the midpoint of an element 𝐸 bounded by (𝑥¿, 𝑥¿JZ) ∩ (𝑦ª, 𝑦ªJZ). This 
yields the local dimension 

𝑁} =
(ª�JZ)(ª�Jd)

d
 ,     (2-18d) 

where 𝑘} is the highest polynomial degree of an element 𝐸. 

Finally, the DG-DSA method is solving for (𝛿𝜙�À)IJZ/d(𝑥, 𝑦) in 𝒟ª(ℰ) space such that  

𝑎�l(𝛿𝜙�À)IJZ/d(𝑥, 𝑦), υn = 	𝐿(υ)	,														∀υ ∈ 𝒟ª(ℰÁ)	.  (2-19) 

When the local basis functions are employed, the solution (𝛿𝜙�À)IJZ/d(𝑥, 𝑦) can be expressed 
as 
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(𝛿𝜙�À)IJZ/d(𝑥, 𝑦) = ∑ ∑ 𝛼�}
Ã�
�ÄZ}∈ℰ 𝑃�}(𝑥, 𝑦),   (2-20) 

where 𝛼�} is the 𝑖-th unknown real number of an element 𝐸 to be solved for.  

Substituting Eq. (2-20) into Eq. (2-19) gives 

𝑨𝜶 = 𝒃	,     (2-21a) 

where 𝜶 is a vector with components of 𝛼�}, 𝒃 is a vector of 𝐿 ·𝑃¿}
′¹, and 𝑨 is a sparse matrix 

expressed as 

𝐴 = ∑ ∑ 𝑎�l𝑃�}, 𝑃¿}
ÉnÃ�

�ÄZ}∈ℰ  ,  ∀𝐸Ê ∈ 	ℰ,				∀1 ≤ 𝑗 ≤ 𝑁}É.  (2-21b) 

At the end of the 𝑙CD  source iteration, the scalar flux can be updated in the next transport 
iteration as 

𝜙IJZ(𝑥, 𝑦) = 	𝜙IJZ/d(𝑥, 𝑦) + (𝛿𝜙�À)IJ
K
L(𝑥, 𝑦)	.    (2-22) 

The transport source iteration will continue until the convergence criterion is satisfied.  

The DG-DSA method is locally adaptive, which means that both the mesh size and the 
polynomial degree are locally adjustable based on local total cross sections. The penalty 
number, 𝜎t, is chosen to give the optimum performance based on a scoping analysis, which 
will be discussed later.   

2.2 NUMERICAL RESULTS 

2.2.1 NUMERICAL CONVERGENCE STUDY 

A numerical study of the DG-DSA acceleration performance was carried out based on a 2-D 
SN fixed-source model problem, which is a homogeneous 6cm	 × 	6cm  square with the 
reflective boundary on the left and bottom sides and the vacuum boundary on the top and right 
sides. The domain is discretized into 5×5 uniform coarse-mesh cells. The fine-mesh number 
in each coarse-mesh cell is 12×12. The numerical solution for the SN transport was obtained 
on the fine-mesh grid (60 × 60) using the level-symmetric S12 quadrature set for angular 
discretization and the diamond difference (DD) method for spatial discretization. The DG-DSA 
results were obtained on various coarse-mesh grids, which was determined based on the total 
cross section. The coarse-mesh (5 × 5) was used for small cross sections (ΣU ≤ 1	cm²Z), and 
the fine-mesh (60 × 60) was used for large cross sections (ΣU ≥ 6	cm²Z). For medium cross 
sections (1 < ΣU < 6	cm²Z) , the DG-DSA mesh size was determined by maintaining the 
optical thickness (i.e., ΣCΔ, where	Δ is the coarse-mesh size) around 1.2. The symmetric interior 
penalty Galerkin method (SIPG) was used with piecewise linear polynomials and the optimized 
penalty number. The S12 with DG-DSA was implemented in MATLAB.    

In order to characterize the convergence behavior, we estimate the spectral radius numerically 
as defined by 
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𝜌 = lim
I→Ó

ÔÕÖ´K²ÕÖÔ
ÔÕÖ²ÕÖ×KÔ

   .                     (2-23) 

Note that the convergence is rapid when 𝜌 ≪ 1, and it slows down when 𝜌 increases. When 
𝜌 ≥ 1 the scheme fails to converge.  

Fig. 2-2 presents the numerical spectral radius of DG-DSA as a function of the total cross 
section for various scattering ratios, c. It shows that the DG-DSA method is very effective and 
stable for a wide range of total cross sections (or optical thickness). The general trend is that 
the convergence rate decreases with the increase in total cross sections up to ΣU ≈ 200	cm²Z 
(i.e., the optical thickness of 20), thereafter the spectral radius decreases because the SN solution 
tends to the diffusion limit. In addition, the spectral radius increases with the scattering ratio in 
general.   

 

Figure	2-2.	Spectral	radius	vs.	𝛴U.	

The above convergence analysis can be used to develop the local mesh refinement strategy for 
DG-DSA. For example, in a typical light water reactor, the total cross section of water in fast 
neutron groups is less than 1 cm²Z, and it is larger than 1 cm²Z in thermal groups. The total 
cross section of the fuel is typically less than 1 cm²Z . Therefore, for fast group transport 
calculations, the DG-DSA mesh can be as large as fuel pin size (~1.2	cm) or even larger. Only 
for thermal groups, it requires a relatively fine-mesh.  

It is interesting to note that in most neutron transport codes the conventional “consistent” DSA 
discretization uses the same mesh as the transport discretization, which typically has more than 
100 cells in a fuel pin. However, our DG-DSA discretization can have less than 20 cells to 
achieve the same convergence performance. This is why our DG-DSA scheme can be very 
efficient. Detailed comparisons are given in the following subsections. 
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2.2.2 LOCAL 𝒑 ADAPTATION 

We study the local 𝑝 (polynomial degree) adaptivity of the DG-DSA method based on a 2-D 
monoenergetic transport fixed-source problem with a homogeneous cross section. Similar to 
the problem in Sec. 2.2.1, the model problem is a 6cm × 6cm  square with the reflective 
boundary on left and the bottom sides and the vacuum boundary on the top and right sides. The 
domain is divided into 5 × 5 uniform coarse-mesh cells. The fine-mesh number in each coarse-
mesh is 12 × 12 . The numerical SN transport solutions were obtained on the fine-mesh 
(60 × 60)	using DD for spatial discretization and the level-symmetric 𝑆Zd quadrature set for 
angular discretization. The DG-DSA solutions were obtained on the coarse-mesh (5 × 5), using 
piecewise constant (P0), linear (P1), and quadratic (P2) polynomials, respectively. 

The numerical results are presented in Fig. 2-3. The converged flux is shown in Fig. 2-3a; and 
the flux relative error, the relative difference between two successive iterations, as a function 
of transport iteration is shown in Fig. 2-3b. It shows that the DG-DSA acceleration scheme is 
more effective with higher polynomials, but the computational saving decreases with 
increasing polynomial degree (e.g., P1 vs. P2). The use of higher polynomials is more 
expensive because of a larger number of degrees of freedom. For nuclear neutron transport 
problems, we recommend P1 for the region of large total cross sections (ΣU > 1	cm²Z), and P1 
or P0 for small cross sections (ΣU < 1	cm²Z).    

 

(a) Converged scalar flux 
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	(b)	Flux	relative	error	vs.	iteration	number	

Figure	2-3.	Numerical	results	of	local	𝑝	adaptation.	

2.2.3 LOCAL 𝒉 ADAPTATION 

In this section, we solve the same problem as above with inhomogeneous cross sections as 
shown in Fig. 2-4. The problem has 5 × 5 uniform coarse-mesh cells, and each coarse cell 
consists of 12×12 fine-mesh cells. This case is a mimic of a mini fuel assembly. The numerical 
solutions for the SN transport were obtained on the fine-mesh (60 × 60) using the level-
symmetric S12 quadrature set for angular discretization and the diamond difference (DD) 
method for spatial discretization. The DG-DSA solutions were obtained on both the fine-mesh 
(FM) and coarse-mesh (CM) grids. Piecewise linear polynomial functions were used for the 
DG-DSA solutions. It should be noted that a local mesh refinement, 6 × 6, was applied to the 
absorbing region (in orange), where the optical thickness is large. The resulting mesh is a 
nonconforming mesh with some hanging nodes. The total number of cells in the DG-DSA mesh 
is 252, while the SN mesh has 3600 cells.  

The numerical results are shown in Fig. 2-5. The converged scalar flux is plotted in Fig. 2-5a. 
The convergence performance, i.e., the flux relative error vs. transport sweep number, is 
illustrated in Fig. 2-5b. The results of the SN source iteration without acceleration are shown 
for comparison. It shows that DG-DSA can effectively converge the SN iterations on the coarse-
mesh as on the fine-mesh.  
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Figure	2-4.	Specifications	of	2-D	problem.	

 

(a)	Converged	scalar	flux	
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(b)	Flux	relative	error	vs.	iteration	number	

Figure	2-5.	Numerical	results	of	local	ℎ	adaptation.	

The comparison of computing time is summarized in Table 2-1 for the above problem.  It shows 
that DG-DSA is very effective when solved on a “consistent” fine-mesh (e.g., H12P1), but 
computationally inefficient because the discretized linear diffusion system is very large with 
the number of degrees of freedom of 10800, while it is only 675 for the coarse-mesh solution 
of H3P1. It is found that for DG-DSA the piecewise linear function always outperforms the 
pricewise constant function (e.g., H3P1 vs. H3P0 or H6P0).  This case demonstrates that the 
DG-DSA method can effectively and efficiently accelerate the transport iteration by using a 
coarse-mesh grid.  

In addition, as compared with continuous Galerkin (CG) methods, an advantage of the DG 
methods is that they can be discretized on a nonconforming mesh which enables flexible 
implementation of local ℎ𝑝 adaptation, while the CG implementation on the nonconforming 
mesh is much more involving and complicated. It should be noted that in this study the linear 
system of DG-DSA, i.e., Eq. (2-21a), was solved simply using the MATLAB built-in 
“backslash” function.  

Table	2-1.	Computational	Performance	Comparison*	

 
SI 

DG-DSA 
H12P0b H12P1 H6P0 H6P1 H3P0 H3P1 

Number of DOFa 302400 3600 10800 900 2700 225 675 
Transport iteration 

number 
325 15 15 16 15 22 15 

Transport time (s)c 49.70 2.46 2.48 2.43 2.33 3.44 2.32 
DG-DSA time (s)c - 3.52 62.28 0.18 2.07 0.13 0.24 

Total calculation time 
(s) 49.70 5.98 64.76 2.61 4.40 3.57 2.56 

Speedup 1 8.3 0.77 19.04 8.31 13.92 19.41 
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* Computational results were obtained with MATLAB R2018a on MacBook Pro with 
Processor 2.9 GHz Intel Core i7. 

a SI: The unmember of degrees of freedom is the total number of angular flux unknowns; 
DG-DSA: The total number of polynomial coefficients. 

b H12P0: H12 denotes a mesh refinement of 12 × 12 for each coarse-mesh cell and P0 
denotes a piecewise constant function for DG-DSA. 

c Measured by the MATLAB tic-toc function. 

2.3 SUMMARY 

In this chapter, we have presented our newly developed diffusion synthetic acceleration 
method, DG-DSA, for speeding up the convergence of neutron transport calculations. This new 
DSA method can greatly improve the computational efficiency of the conventional DSA 
methods by using the DG methods. The novelty of DG-DSA is that it reduces the number of 
degrees of freedom by discretizing the diffusion equation on a coarse-mesh grid with local ℎ𝑝 
adaption. Our numerical results have demonstrated its rapid convergence performance and 
efficiency. In addition, it is worth mentioning that for LWR applications DG-DSA can further 
employ mesh adaptation for different neutron energy group, i.e., the mesh for fast group 
calculations can be coarser than that for thermal groups (e.g., pin or quarter assembly size) 
since the total cross sections of water and fuel in fast groups are smaller than thermal group 
cross sections.  

It is found that the acceleration performance of DG-DSA is sensitive to the penalty number, 
𝜎t, although the solution of the DG-DSA itself is numerically stable for a wide range of penalty. 
For small total cross sections (< 0.8 cm²Z), the convergence rate of DG-DSA is not much 
sensitive to the penalty. When the cross section increases, the penalty should be increased to 
obtain the optimal convergence performance. 

3. DEVELOPMENT OF LPCMFD 
The coarse-mesh finite difference (CMFD) method is being widely used for accelerating 
neutron transport calculations. A well-known issue with CMFD is that it will become unstable 
and even fail when the optical thickness becomes large, which has been reported in various 
numerical and theoretical studies. 12-14 

A number of stabilization techniques have been developed to improve the stability of CMFD. 
One is the under-relaxation approach, which arbitrarily applies some damping on the drift flux 
coefficient to stabilize CMFD.12 However, a judicious choice of under-relaxation has to be 
problem dependent and nonoptimal relaxation will hurt the convergence. A variant of CMFD 
method, called the partial-current-based CMFD (pCMFD), is found to be unconditionally 
stable for monoenergetic infinite homogenous problems, but become slower than CMFD for 
problems with intermediate and smaller optical thickness. 15 A new optimally diffusive coarse-
mesh finite difference (odCMFD) method, which generalizes CMFD by adding an artificial 
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term to the diffusion coefficient, is unconditionally stable and faster than CMFD.16-17 A two-
level pCMFD acceleration schemes which augments a fine-mesh based acceleration with a 
fixed source in a coarse mesh based acceleration with power iteration, is introduced Cho et al.18 
It was shown that for optically thick coarse mesh cell, this scheme enhances the convergence 
performance of pCMFD. A recent stabilization technique uses linear weighting on two 
neighboring coarse-mesh cell flux ratios to replace the conventional prolongation method of 
CMFD.19 The weighting factors between the two coarse-mesh cells are determined based on 
the geometric centroids. Essentially, it is still a nonlinear flux updating method. 

In this chapter, we present a new stabilization scheme, named linear prolongation CMFD 
(lpCMFD). A novel feature of this scheme is that the conventional flat-flux-ratio based scaling 
approach is replaced with a linear interpolation of the scalar flux differences at the coarse-mesh 
cell edges between the neutron transport and CMFD calculations. The new flux update uses a 
linear additive approach, which has some similarity with the diffusion synthetic acceleration 
method (DSA). Larsen and Kelley in Reference 20 show that the linearized form of the CMFD 
method is algebraically equivalent to the coarse-mesh DSA method.  

The remainder of this chapter is organized as follows. The formulation and algorithm of 
lpCMFD are presented in Sec. 3.1. In Sec. 3-2, a detailed Fourier analysis of the lpCMFD 
convergence is presented. The effectiveness and stability of the lpCMFD method are 
demonstrated based on a 2D neutron transport fixed source problem and a 2D k-eigenvalue 
problem in Sec. 3-3. Sec 3.4 covers the fourier analysis of lpCMFD for transient and eigen 
value problems. The lpCMFD method is used with MOC solver and its demonstration is shown 
Sec 3.5.  

3.1 LPCMFD FORMULATION AND ALGORITHM 

The formulation and algorithm of the lpCMFD scheme are presented in this section. The 
flowchart of the lpCMFD algorithm for fixed source problems is shown in Fig. 3-1. The 𝑙th 
iteration cycle begins with the neutron transport calculation: 

Ω ∙ ∇𝜓IJZ/d+	ΣU𝜓IJZ/d = yW
Xæ
(𝜙I + 𝑄) ,      (3-1) 

where	𝜙 and 𝜓 are the scalar flux and angular flux, Σg and ΣU are scattering cross section and 
total cross section defined on the fine-mesh,	Ω is the neutron direction, and 𝑄 is the external 
neutron source. 𝑙 is the source iteration index and 𝑙 + 1/2 is the intermediate step. 

During each transport source iteration, the coarse-mesh flux is obtained by solving the CMFD 
equation, 

∇ ∙ ± ²Z
ayb,çè

𝛻 + �̂�ëì
IJZ/dµΦIJZ + (ΣU,ëì − Σg,ëì)ΦIJZ = 𝑄 ,      (3-2) 

where ΦIJZ  is the coarse-mesh scalar flux. 	ΣU,ëì  and Σg,ëì  are the total cross section and 
scattering cross section defined on the coarse-mesh. �̂�ëì

IJZ/dis the drift coefficient (or nonlinear 
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coupling coefficient) which is calculated using the information from the 𝑙 + 1/2 step transport 
source iteration,  

�̂�ëì
IJZ/d =

∫ îïïðÖ´K/L	J	 K
ñòb,çè

∇ÕóÖ´K/LK
×K

ÕÖ´K/L
 ,                (3-3) 

where 𝜙ôIJZ/d is the averaged transport calculated scalar flux on the coarse-mesh. In the flux 
update step, our lpCMFD scheme replaces the following conventional flat flux scaling 
approach:  

𝜙IJZ = 𝜙IJZ/d õÖ´K

ÕóÖ´K/L
 ,                           (3-4) 

with a linear prolongation approach: 

𝜙IJZ = 𝜙IJZ/d + 𝛿𝜙 .         (3-5) 

A linear interpolation is used to obtain the fine delta flux inside the cell based on the delta flux 
at the cell boundary: 

𝛿𝜙 = Linear	Interpolation(𝛿Φ÷ë) .      (3-6)       
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Figure	3-1.	Flowchart	of	the	lpCMFD	algorithm	for	fixed	source	problems.	

For 1D problems, we have the boundary delta flux defined as 

 

 

Figure	3-2.	1-D	mesh.																					

𝛿Φ÷ë =  
𝛿Φ�²Z/d =

Z
d
ùlΦ�²Z

IJZ − 𝜙ô�²Z
IJZ/dn + lΦ�

IJZ − 𝜙ô�
IJZ/dnú

𝛿Φ�JZ/d =
Z
d
ùlΦ�

IJZ − 𝜙ô�
IJZ/dn + lΦ�JZ

IJZ − 𝜙ô�JZ
IJZ/dnú

 ,             (3-7) 

 

where Φ�²Z
IJZ, Φ�

IJZ, and Φ�JZ
IJZ are the CMFD flux values on the coarse-mesh cells 𝑖 − 1, 𝑖, and 

𝑖 + 1, respectively, as shown in Fig. 3-2. 𝜙ô�²Z
IJZ/d, 𝜙ô�

IJZ/d, and 𝜙ô�JZ
IJZ/d are the corresponding 
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averaged transport flux values. Using linear interpolation between the boundary delta flux 
values of each coarse-mesh cell gives the fine delta flux inside the coarse-mesh cell as: 

             𝛿𝜙�(𝑥) = 𝛿Φ�²Z/d +
G²G�×K/L

G�´K/L²G�×K/L
(𝛿Φ�JZ/d − 𝛿Φ�²Z/d) .    (3-8) 

For 2D problems, we have the boundary delta flux defined on the square mesh shown in Fig. 
3-3 as 

 

Figure	3-3.	2D	mesh.	

𝛿Φ÷ë

=

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝛿Φ�²Zd,¿²

Z
d
=
1
4
ÿ·Φ�²Z,¿²Z
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 (3-9) 

Using bilinear interpolation on the four corner delta flux values of each coarse-mesh cell gives 
the fine delta flux inside the coarse-mesh cell as: 

𝛿𝜙�,¿(𝑥, 𝑦) = Bilinear	Interpolationl𝛿Φ�²Z/d,¿²Z/d, 𝛿Φ�JZ/d,¿²Z/d, 𝛿Φ�JZ/d,¿JZ/d, 𝛿Φ�²Z/d,¿JZ/dn 

= 𝑎𝑥 + 𝑏𝑥𝑦 + 𝑐𝑦 + 𝑑 ,     (3-10) 

where  

𝑎 = &õ�´K/L,³×K/L²&õ�×K/L,³×K/L

∆G
 ,     (3-11a) 

𝑏 = &õ�´K/L,³´K/L²&õ�×K/L,³´K/LJ&õ�×K/L,³×K/L²&õ�´K/L,³×K/L

	∆G∆T
 ,   (3-11b) 
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𝑐 = &õ�×K/L,³´K/L²&õ�×K/L,³×K/L

∆T
 ,      (3-11c) 

𝑑 = 𝛿Φ�²Z/d,¿²Z/d .     (3-11d) 

It should be noted that if the coarse-mesh cell edge lies on the problem domain boundary, the 
delta scalar flux on this edge equals to the delta scalar flux of the coarse-mesh cell. 

Fig. 3-4 gives an illustrative comparison of SN scalar flux updating between the lpCMFD and 
CMFD methods. It can be seen that the updated scalar flux for the transport calculation is 
always kept continuous across the coarse-mesh boundary in lpCMFD, while it is usually not 
the case for CMFD.  

 

(a) Delta flux in each coarse-mesh cell. 

 

 

(b) Linearized delta flux in each coarse-mesh cell. 
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 (c) Comparison of flux correction between CMFD and lpCMFD. 

Figure	3-4.	SN	Scalar	Flux	Updating	Comparison	for	CMFD	and	lpCMFD.	

3.2 FOURIER ANALYSIS 

In order to study the convergence performance and stability of lpCMFD, we perform detailed 
Fourier analysis in this section. First in Sec. 3.2.1, the Fourier analysis formulation of the 
linearized lpCMFD method is presented, and the spectral radius of the error iteration matrix is 
derived. Then in Sec. 3.2.2, the Fourier spectral radius results are compared with the numerical 
results for various scattering ratios. At last, in Sec. 3.2.3, the numerical results of Fourier 
analysis for eigenvalue problems are presented.  

3.2.1 FOURIER ANALYSIS FORMULATION FOR FIXED SOURCE PROBLEM 

The Fourier analysis is performed based on an 1D homogeneous problem with a uniform mesh 
and a specified number 𝑝 of fine-mesh cells per coarse cell. Eqs. (3-1) through (3-8) are firstly 
linearized near the exact solution. Then the error terms in the linearized equations are expressed 
as Fourier modes. The spectral radius can be obtained from the error iteration matrix. The 
Fourier analysis is carried out on a single coarse-mesh cell with periodic boundary conditions. 
The number of fine-mesh cells in the coarse-mesh cell is 𝑝. The coarse-mesh spacing is ∆. The 
fine-mesh spacing is ℎ = ∆/𝑝.  

We first define the following Fourier ansatz: 

𝜓)�,ª
(IJZ) = 𝐸�,ª

(IJZ)𝑒�yb*Áª ,                      (3-12a) 

𝜙)ª
(IJZ) = 𝑆ª

(IJZ)𝑒�yb*∆Áª ,                      (3-12b) 

𝜙)Z,ª²Z/d
(IJZ/d) = 𝑈ª

(IJZ/d)𝑒�yb*∆Á(ª²Z/d) ,                (3-12c) 
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Φ,¿
(IJZ/d) = 𝐶(IJZ/d)𝑒�yb*∆¿ ,                  (3-12d) 

Φ,Z,¿²Z/d
(IJZ/d) = 𝐺(IJZ/d)𝑒�yb*∆(¿²Z/d) ,               (3-12e) 

Φ,¿
(IJZ) = 𝑅(IJZ)𝑒�yb*∆¿ .                        (3-12f) 

The tilde notation above a variable represents the first order error term near the exact solution. 
𝜓), 𝜙), and Φ,  are the Fourier fine-mesh angular flux, fine-mesh scalar flux, and the coarse-mesh 
average scalar flux, respectively. The superscripts 𝑙 and 𝑙 + 1/2 denote the CMFD iteration 
index and the intermediate transport iteration index, respectively. The subscript 𝑘 is the fine-
mesh index in each coarse-mesh cell, and 𝑘 − 1/2 denotes the left edge of the fine-mesh cell 
𝑘. 𝑗 is the coarse-mesh index, 𝑗 − 1/2 denotes the left edge of the coarse-mesh cell 𝑗. The 
subscript 1 denotes the edge current. The subscript 𝑛 denotes the neutron direction. 𝐸, 𝑆, 𝑈, 𝐶, 
𝐺, and 𝑅 are the coefficients of the Fourier ansatz terms. 𝜆 is the Fourier frequency.  

Eq. (1) is discretized using the step characteristic method in space and the numerical quadrature 
set in angle. The discretized linearized transport equation is expressed as follows: 

𝜇�l𝜓)�,ªJZ d⁄
IJZ d⁄ − 𝜓)�,ª²Z d⁄

IJZ d⁄ n + ΣUℎ𝜓)�,ª
IJZ d⁄ = yW

d
ℎ𝜙)ªI  ,            (3-13a) 

𝜓)�,ª
IJZ d⁄ = ZJ3�

d
𝜓)�,ªJZ d⁄
IJZ d⁄ + Z²3�

d
𝜓)�,ª²Z d⁄
IJZ d⁄  ,             (3-13b) 

        𝛼� = 	
ZJt×òb4/5�

Z²t×òb4/5�
− d6�

ybÁ
 .                   (3-13c) 

The linearized form of Eq. (3-2) (detailed derivation can be found in Reference 20), is given as 
follows: 

Φ,J
(IJZ) − `2 +

ΣfΔd

𝐷ëì
eΦ, (IJZ) + Φ,²(IJZ) 

=	 Z
�çè

·Φ,Z,JZ d⁄
(IJZ d⁄ ) − Φ,Z,²Z d⁄

(IJZ d⁄ )¹ + Φ,J
(IJZ d⁄ ) − 2Φ, (IJZ/d) + Φ,²(IJZ d⁄ ),   (3-14) 

where 𝐷ëì is the diffusion coefficient on the coarse-mesh. Φ,J
(IJZ) and Φ,²(IJZ) are the fluxes of 

the right and left coarse-mesh cells, respectively. Φ,Z,JZ d⁄
(IJZ d⁄ ) and Φ,Z,²Z d⁄

(IJZ d⁄ )	are the currents at the 
right and left edges of the coarse-mesh cell, respectively.  

With the periodic boundary conditions on the coarse-mesh cell edges, we can linearize the left 
and right-side boundary conditions Eq. (3-7) as  

𝛿Φ78 =
Z
d
l𝑒²�yb*9 + 1n𝛿: ,                     (3-15a) 

𝛿Φ7; =
Z
d
l𝑒�yb*9 + 1n𝛿: ,                       (3-15b) 
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where 

𝛿: = Φ, (IJZ) − Φ, (IJZ/d) .                      (3-16) 

Then we linearize the flux updating Eq. (3-8) of lpCMFD as follows, 

 

𝜙)ªIJZ = 𝜙)ª
IJZ/d + (dª²Z)&,t�òb<=J[d>²(dª²Z)]&,t×�òb<=

X>
+ &,

d
 , 1 ≤ 	𝑘 ≤ 𝑝.    (3-17) 

The key part in Fourier analysis is to find the error transition matrix for the fine-mesh scalar 
flux error terms. Based on the single coarse-mesh cell with periodic boundary conditions, we 
first define vectors 𝑬�

IJZ/dand 𝑺𝒄I  to store the fine-mesh edge angular and center scalar fluxes, 
respectively, which are given as follows: 

 

𝑬�
IJKL =

⎣
⎢
⎢
⎢
⎡ 𝜓)�,Z d⁄

IJZ d⁄

𝜓)�,ZJZ d⁄
IJZ d⁄

⋮
𝜓)�,>²Z d⁄
IJZ d⁄

⎦
⎥
⎥
⎥
⎤

>×Z

,                           (3-18a) 

𝑺𝒄I =

⎣
⎢
⎢
⎢
⎡𝜙
)ZI

𝜙)dI
⋮
𝜙)>I ⎦
⎥
⎥
⎥
⎤

>×Z

.	                             (3-18b) 

After the 𝑙th source iteration calculation of transport equation, the 𝑙 + 1/2 intermediate step 
fine-mesh edge angular flux is obtained as follows,  

𝑬�
IJZ/d = 𝒀�²Z

yW
d
𝑺𝒄I  ,                         (3-19) 

where 𝒀� is matrix for the transport calculation. 𝒀� is expressed as,  

 

𝒀� =

⎣
⎢
⎢
⎢
⎢
⎡ − 6�

Á
+ ΣU(

Z²3�
d
) 6�

Á
+ ΣU(

ZJ3�
d
) 0 0 0

0 	− 6�
Á
+ ΣU(

Z²3�
d
) 6�

Á
+ ΣU(

ZJ3�
d
) 0 0

0 0 0 ⋱ 0
[6�
Á
+ ΣU ·

ZJ3�
d
¹]𝑒�yb*9 0 0 0 − 6�

Á
+ ΣU(

Z²3�
d
)⎦
⎥
⎥
⎥
⎥
⎤

>×>

  (3-20) 

The fine-mesh center scalar flux is derived as follows, 

𝑺𝒄
IJZ/d = ∑ 𝑤�𝑷�𝑬�

IJZ/dÃ
�ÄZ = ∑ 𝑤�𝑷�𝒀�²Z

yW
d
𝑺𝒄IÃ

�ÄZ = 𝑯𝑺𝒄I  ,         (3-21) 

where 𝑁 is number of angular quadrature set points, and 
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𝑷� =

⎣
⎢
⎢
⎢
⎢
⎡

Z²3�
d

ZJ3�
d

0 0 0

0 Z²3�
d

ZJ3�
d

0 0
0 0 0 ⋱ 0

ZJ3�
d
𝑒�yb*9 0 0 0 Z²3�

d ⎦
⎥
⎥
⎥
⎥
⎤

>×>

 ,                    (3-22a) 

 

𝑯 = ∑ 𝑤�𝑷�𝒀�²Z
yW
d

Ã
�ÄZ  .     (3-22b) 

 

Matrix 𝑯 is the iteration matrix for the transport source iteration calculation. 

Based on the variables defined above, the coarse-mesh average scalar flux and left edge current 
are obtained as follows,  

𝑪IJZ/d = Z
>
× [1 ⋯ 1]Z×> ∑ 𝑤�𝑷�𝒀�²Z

yW
d
𝑺𝒄IÃ

�ÄZ  ,          (3-23a) 

𝑮IJZ/d = [1 0 ⋯ 0]Z×> ∑ 𝑤�𝜇�𝒀�²Z
yW
d
𝑺𝒄IÃ

�ÄZ  .         (3-23b) 

From the above derivation, we find that all the quantities needed at the 𝑙 + 1/2 step can be 
expressed in terms of 𝒀�, 𝑺𝒄I , and 𝑷�. By substituting Eq. (3-23) into Eq. (3-14), we have 

𝑹IJZ𝑒�yb*9 − `2 +
ΣfΔd

𝐷ëì
e𝑹IJZ + 𝑹IJZ𝑒²�yb*9 

= 9
�çè

l𝑒�yb*9/d − 𝑒²�yb*9/dn𝑮IJZ/d + 𝑪IJZ/d𝑒�yb*9 − 2𝑪IJZ/d + 𝑪IJZ/d𝑒²�yb*9  .   (3-24) 

From Eq. (3-24), we can obtain 

𝑹IJZ − 𝑪IJZ/d = 	 ∆l	t
�òb<=/L²t×�òb<=/Ln𝑮Ö´K/LJy�9L	𝑪Ö´K/L

�çè[d QR](yb*9)²d]²y�9L	
 .             (3-25) 

Using Eqs. (3-17) and (3-25), the iteration equation for the fine-mesh scalar flux error of 
lpCMFD is obtained as follows, 

𝑺wIJZ = (𝑯+ 	𝜽	(𝑹− 𝑪)	)𝑺wI  ,                     (3-26)  

where 𝜽 is defined as 

𝜽 = (	𝜃Z			𝜃d	. . . 	𝜃>)U ,                        (3-27a) 

	𝜃ª = 	
d>J(d>²dªJZ)t×�òb<=J(dª²Z)t�òb<=

X>
	 , 1 ≤ 𝑘 ≤ 𝑝 .            (3-27b) 

The matrix l𝑯+ 	𝜽	(𝑹− 𝑪)n is the final error iteration matrix for lpCMFD. Its spectral radius 
as a function of Fourier frequency is given as 
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𝜔(𝜆) = max ±𝑎𝑏𝑠 ·𝑒𝑖𝑔l𝑯+ 	𝜽	(𝑹− 𝑪)n¹µ .            (3-28) 

Fourier frequency that satisfies the periodic boundary condition is expressed as follows  

𝜆 =	 dæg
yb8

 , 𝑠 = 1, 2,… , 𝐽 − 1 ,                  (3-29) 

where 

𝐽 = 8
9
 ,                        (3-30) 

where 𝐿 denotes the domain size of the 1D problem. The spectral radius is defined as 

𝜌 = maxl𝜔(𝜆)n	.                    (3-31) 

3.2.2 NUMERICAL RESULTS OF FOURIER ANALYSIS FOR FIXED SOURCE 

PROBLEM 

The model problem considered in this section is a homogeneous 50-centimeter slab with the 
reflective right boundary and vacuum left boundary. The fine-mesh size is 0.1cm. The fine-
mesh number in each coarse mesh is 𝑝. The numerical solutions were obtained using the Gauss-
Legendre S10 quadrature set for angular discretization and the step characteristic (SC) method 
for spatial discretization. 

For comparison with the Fourier analysis results, the numerical spectral radius of the lpCMFD 
convergence is calculated by 

𝜌 = ÔÕÖ´K²ÕÖÔ
ÔÕÖ²ÕÖ×KÔ

 .                 (3-32) 

For comparison, the theoretical spectral radius results of CMFD, lpCMFD, odCMFD and 
pCMFD are also showing in Figs. 3-5 and 3-6 for scattering ratios of 0.6, 0.8, 0.9, and 0.99, 
respectively. Fig. 3-5 is for 𝑝 = 5 , and Fig. 3-6 is for 𝑝 = 10 . The coarse-mesh optical 
thickness is ΣUΔ. 
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Figure 3-5. Convergence comparison (𝑝 = 5). 
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a) Scattering ratio c = 0.6 b) Scattering ratio c = 0.8 

  

c) Scattering ratio c = 0.9 d) Scattering ratio c = 0.99 
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c) Scattering ratio c = 0.9 d) Scattering ratio c = 0.99 

Figure 3-6. Convergence comparison (𝑝 = 10). 
 

The following observations can be drawn from the above convergence study for the 1D model 
problem: 

1. For large scattering ratios (> 0.9), CMFD is only effective for the coarse-mesh optical 
thickness less than 1. It becomes unstable and fails to converge when the thickness is 
larger than 2. 

2. pCMFD is unconditionally stable, but the convergence performance is worse than 
lpCMFD and odCMFD for moderate optical thickness. 

3. lpCMFD is unconditionally stable for the whole range of the optical thickness tested. 
For the optical thickness less than 1, the convergence performance of lpCMFD is 
similar to CMFD and odCMFD. It becomes more effective and stable than CMFD for 
the optical thickness larger than 1 when the scattering ratio becomes large. 

4. The results of numerical spectral radius of lpCMFD are consistent with the theoretical 
Fourier results. 

3.2.3 NUMERICAL RESULTS OF FOURIER ANALYSIS FOR TRANSIENT AND 

EIGEN VALUE PROBLEMS 

The Fourier analysis for the eigenvalue problems is discussed in this section. The quadrature 
sets used are S[ and the total cross section is assumed to be 1 cm²Z. The Fourier analysis results 
are compared with the numerical results first to verify the Fourier analysis. Then the Fourier 
analysis results of lpCMFD and CMFD are compared with each other to show the performance 
improvement with linear prolongation. The parameter space where the lpCMFD is 
unconditionally stable is then examined.  

3.2.3.1 VALIDATION OF FOURIER ANALYSIS IN EIGENVALUE PROBLEMS 

The Fourier analysis was verified by comparing the theoretical results from Fourier analysis 
with the results from direct numerical simulation in k-eigenvalue problems and are shown in 
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Fig. 3-7. Despite the difference in the parameters used, it shows the theoretical results agree 
very well with the code numerical results. When the coarse mesh optical thickness ΣUΔ is 1, the 
numerical results converge very quickly which results in a large error in the estimate of the 
spectral radius of the numerical solution. Δ is the size of the coarse mesh. However, the overall 
agreement between theoretical and numerical investigation results indicates that the theoretical 
results are sufficient to investigate the properties of lpCMFD. In the following investigations, 
only the Fourier analysis results are used. Moreover, by comparing the plots in Fig. 3-7a and 
Fig. 3-7b, it is apparent that when M=1 (M is the number of transport sweeps) the spectral 
radius is independent of scattering ratio c in lpCMFD. 

 
(a) c = 0.3 

 
(a) c = 0.9 

 
Figure	3-7.	Verification of Fourier analysis with numerical results for selected cases. 
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3.2.3.2 COMPARISON BETWEEN LPCMFD AND FPCMFD 

The performance of lpCMFD and CMFD can be compared using the results in Fig. 3-8. When 
the coarse cell optical thickness ΣCΔ > 5, for CMFD, the spectral radius is greater than 1, the 
method is unstable, whereas for lpCMFD, the spectral radius is less than 1. The lpCMFD 
method is stable even when the coarse mesh optical thickness is as large as 40. These results 
suggest that linear prolongation makes CMFD much more stable, thus there is a much larger 
parameter space where lpCMFD to be stable.   

 

(a) CMFD 

 
(b) lpCMFD 

 
Figure	3-8.	Comparison	between	CMFD	and	lpCMFD.	
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3.2.3.3 FINE MESH OPTICAL THICKNESS THRESHOLD IN LPCMFD 

For the model problem with large size and a large number of coarse meshes, it is found that 
there is a fine mesh optical thickness threshold for the lpCMFD, as shown in Fig. 3-9: 

1. The threshold is almost a constant for different number of fine cells. 
2. With the number of coarse mesh increasing, the threshold decreases and converges to 

a constant which is around 2.46. It should be noted that M= 1 is the most unstable 
option.  Therefore, it can be concluded that there is a fine cell optical thickness threshold 
for which the lpCMFD is stable no matter how large the size of coarse mesh is. 
 

 

Figure	3-9.	Threshold	of	convergence	for	lpCMFD	

3.2.3.4 UNCONDITIONALLY STABLE VERSION OF LPCMFD (SLPCMFD) 

The diffusion coefficient can be modified to make the lpCMFD more stable as Eq. (3-32) 
shows. 

D^_ =
1
3ΣC

+ θ^_(ΣCΔ)Δ (3 − 32) 

𝜃fî is named as the artificially diffusive and is applied to the diffusion coefficient. For the 
lpCMFD, the 𝜃fî is determined by Eq. (3-33): 

𝜃^_ =  
0,																																		ΣUℎ < 0
0.25(ΣCh − 1), 	1 ≤ ΣCℎ ≤ 2
0.25,																												ΣCℎ ≥ 2

		 (3 − 33) 
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The lpCMFD with the 𝜃fî defined in Eq. (3-33) is named as SlpCMFD. The spectral radius of 
SlpCMFD with lpCMFD and other mainstream variants of CMFD methods are compared in 
Fig. 3-10 for various number of q, which represents the number of fine cells per coarse cell. As 
indicated in the figure, the SlpCMFD converges faster than any mainstream CMFD methods 
analyzed. It has comparable stability with the other unconditionally stable methods in small 
and large optical thickness region but is more stable in intermediate optical thickness region. 

 

(a)	𝑞 = 4																																																						(b)	𝑞 = 10 

 

(c)	𝑞 = 20 

Figure	3-10.	Comparison	of	SlpCMFD	and	conventional	CMFD	

3.3 NUMEIRCAL RESULTS 

Two monoenergetic neutron transport model problems are studied to demonstrate the 
effectiveness and stability of lpCMFD as compared with CMFD. The first problem is a 2D 
fixed-source problem, and the second one is a 2D k-eigenvalue problem. 

3.3.1 2-D FIXED SOURCE PROBLEM 

In this section, the 2D fixed-source problem is employed to test the stability and effectiveness 
of lpCMFD. Neutron scattering is assumed isotropic. The model problem considered is a 
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5cm × 5cm square with the reflective boundary condition on the four sides. The external 
neutron source is homogenous in the domain with the constant value of 1/cmd. The domain is 
divided into 25 uniform coarse-mesh cells as shown in Fig. 3-11. The fine-mesh number per 
each coarse-mesh cell is 10 × 10 . Numerical solutions for the SN neutron transport were 
obtained using the diamond difference (DD) method for spatial discretization and the Gauss-
Legendre S12 quadrature set for angular discretization.  

 

 

Figure	3-11.	Specifications	of	2D	fixed-source	problem.	

In this problem, a cross section perturbation was introduced in the coarse-mesh cell close to 
the bottom left corner of the problem domain (marked as the red square in Fig. 3-11). The 
CMFD method without under-relaxation cannot converge for this problem as expected. In order 
to have the CMFD method converge, the under-relaxation factor should be at least smaller than 
0.73. Numerical results for CMFD, CMFD with under-relaxation factor, and lpCMFD are 
shown in Fig. 3-12. 

 

(a) Converged scalar flux 
 

ΣU = 3.0	cm²Z, 𝑐
= 0.99 

ΣU = 10.0	cm²Z, 𝑐 = 0.1 
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(b) Flux relative error vs. iteration number 

 
Figure	3-12.	Numerical	results	of	lpCMFD	for	2D	fixed-source	problem.	

Fig. 3-12a plots the converged scalar flux, and Fig. 3-12b shows the convergence comparison 
between lpCMFD and CMFD. The relative flux relative residual (2-norm) is used as the 
convergence performance index. It is shown that lpCMFD needs about 49 transport sweeps, 
while the CMFD scheme with an optimal under-relaxation factor of 0.73 takes 253 transport 
sweeps to converge. This study demonstrates that lpCMFD is more effective than the under-
relaxed CMFD method. 

3.3.2 2D K-EIGENVALUES PROBLEM 

In this section, the 2D monoenergetic k-eigenvalue problem with large optical thickness is 
setup to test the stability and effectiveness of lpCMFD. Neutron scattering is assumed isotropic. 
The model problem considered is a 5cm × 5cm square with the reflective boundary condition 
on four sides. The domain is divided into 25 uniform coarse-mesh cells as shown in Fig. 3-13. 
The fine-mesh number in each coarse-mesh cell is 10 × 10. Numerical solutions for the SN 
neutron transport were obtained using the diamond difference (DD) method for spatial 
discretization, and the Gauss-Legendre S12 quadrature set for angular discretization.  
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Figure	3-13.	Specifications	of	2D	k-eigenvalue	problem.	

In this problem, a cross section perturbation was introduced in the center coarse-mesh cell in 
the problem domain (marked as the red square in Fig. 3-13). The optical thickness of white 
coarse-mesh cells is 10. The CMFD method without under-relaxation cannot converge for this 
problem. The fine delta flux values in each coarse-mesh cell were calculated using bilinear 
interpolation on the four corner delta flux values of the coarse-mesh cell. Our testing shows 
that in order to have the CMFD method converge, the under-relaxation factor should be at least 
smaller than 0.15. Numerical results for lpCMFD and CMFD are presented in Fig. 3-14. 

 

 

(a) Normalized converged scalar flux 
 

 

Σg = 9.0	cm²Z, ΣU = 10.0	cm²Z, 𝜐Σu
= 1.0	cm²Z 

Σg = 8.1	cm²Z, ΣU = 9.0	cm²Z, 𝜐Σu
= 0.99	cm²Z 
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(b) Flux residual vs. iteration number 

 
Figure	3-14.	Numerical	results	of	lpCMFD	for	2D	K-eigenvalue	problem.	

Fig. 3-14a shows the normalized converged scalar flux. The relative flux residual (2-norm) is 
used as the convergence performance index. It is shown in Fig. 3-14b that lpCMFD converges 
at about 220 transport sweeps, which is much less than 544 transport sweeps taken by the 
CMFD scheme with an optimal under-relaxation factor of 0.15. This study demonstrates that 
lpCMFD is more effective than the under-relaxed CMFD method. 

3.4 DEMONSTRATION OF A LPCMFD METHOD ON MOC SOLVER  

Method of Characteristics (MOC) is a very popular method to solve neutron transport 
equations. In this section, lpCMFD is applied on a code based on MOC method. Track-based 
centroids calculation method is introduced to find the centroids coordinates for random shapes 
of fine cells. And the numerical results are given to demonstrate the stability and efficiency of 
lpCMFD method on MOC. 

3.4.1 LPCMFD METHOD ON MOC 

Considering the multi-group steady state Boltzmann neutron transport equation: 

𝜴 ⋅ 𝛻𝜓(𝒙,𝜴) + 𝛴U,g(𝒙)𝜓g(𝒙,𝜴) = hi h (𝒙,
g,g′→g

Xæ

j

À

g′ÄZ

𝜴 ⋅ 𝜴′)𝜓g′(𝒙,𝜴′)𝑑𝛺′+ 

Z
Xæ

lm(𝒙)
ªeff

∑ 𝑣∑ (𝒙)u,g′
À
g'ÄZ 𝜙g′(𝒙)        (3-34) 

where  represents the angular flux while  represents the scalar flux. Make the discrete 
ordinates approximation for the angular variables, then set up and solve the equation for the 

1.0E-09

1.0E-07

1.0E-05

1.0E-03

1.0E-01

1.0E+01

1.0E+03

1 10 100 1000

Re
la

tiv
e 

Fl
ux

 R
es

id
ua

l

Transport Sweep #

CMFD CMFD with under-relaxation lpCMFD

y f



43 
 

chosen set of directions. And we can get the flux distribution based on the solution on the 
characteristic rays, which is the essential of Method of Characteristic (MOC). 

Divide the problem domain into coarse cells and homogenize the coarse cells. Then set up the 
angular-integrated neutron balance equation: 

     (3-35) 

where  is the coarse mesh flux at the  MOC iteration,  and  are the total and 

scattering cross section of the coarse mesh. And  is the drift coefficient which can be 
obtained by   

                               (3-36) 

where  is the coarse cell-averaged scalar flux at the  MOC iteration. Solve Eq. 3-35 to 
obtain the flux of the coarse cells. Then use the coarse mesh flux to update the scalar flux in 
Eq. (3-34) so that MOC iteration can be effectively accelerated. 

Conventionally, the scalar flux  in Eq. (3-34) is updated directly by 

       (3-37) 

However, in this report, a linear prolongation is applied to update : 

       (3-38) 

where  is defined as 

       (3-39) 

and it can be obtained by linear interpolation using the delta fluxes of the neighbor cells as 
depicted in Fig. 3-15.  
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Figure	3-15.	Linear	interpolation	to	get	 	

In 2D case, to find the delta flux  at point (x,y) in coarse cell , the delta fluxes at the four 

corners of coarse cell  is supposed to be obtained first. And the delta flux at each corner is 
the averaged delta flux of the four coarse cells which share the same vertex. In other words, 

 

𝛿𝜙�p =
1
4
(𝛿𝜙Ãq + 𝛿𝜙Ã + 𝛿𝜙q + 𝛿𝜙ë)																																				(3 − 40a)

𝛿𝜙�t =
1
4
(𝛿𝜙Ã + 𝛿𝜙Ã} + 𝛿𝜙} + 𝛿𝜙ë)																																						(3 − 40b)

𝛿𝜙gp =
1
4
(𝛿𝜙q + 𝛿𝜙ë + 𝛿𝜙rq + 𝛿𝜙r)																																						(3 − 40c)

𝛿𝜙gt =
1
4
(𝛿𝜙ë + 𝛿𝜙} + 𝛿𝜙r + 𝛿𝜙r})																																								(3 − 40d)

 

And then  is obtained by bi-linear interpolation of , ,  and ： 

                                           (3-41) 

where 

𝑎 =
𝛿𝜙gt − 𝛿𝜙gp

𝛥𝑥
																																																															(3 − 42a)

𝑏 =
𝛿𝜙�t − 𝛿𝜙�p + 𝛿𝜙gp − 𝛿𝜙gp

𝛥𝑥𝛥𝑦 																															(3 − 42b)

𝑐 =
𝛿𝜙�p − 𝛿𝜙gp

𝛥𝑦 																																																														(3 − 42c)

𝑑 = 𝛿𝜙ë																																																																																	(3 − 42d)

 

3.4.2 TRACK-BASED CENTROID CALCULATION 

In MOC method, the centroids coordinates of a region can be calculated with the track-based 
method.21  

df
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Fig. 3-16 illustrates the ray tracing process in a quarter pin cell, which is regarded as a coarse 
cell in CMFD. The fuel region is divided into eight regions. The cladding region and moderator 
region are divided into four regions respectively. Note that the rays in Fig. 3-16 only represents 
a part of characteristic rays for four angles. In actual MOC sweeper, there are tens to hundreds 
of parallel rays for each angle that traverses the whole cell.  

 

Figure	3-16.	Track-based	method	for	calculating	the	centroids.	

Assuming the fine cell we are interested in is the green cell. A characteristic ray with an 
azimuthal angle  enters the cell  from the point , and goes out from the point

. In an MOC sweeper, the coordinates of the outgoing point   is usually 

unknown. But it can be determined with the incoming point coordinates  and track 

length , as described by Eq. (3-43).  

                                         (3-43a) 

                                                 (3-43b) 

where  is the azimuthal angle and  is the polar angle of the ray. The subscript  

represents the angle of the ray, including polar angle  and azimuthal angle ;  represents 
the cell number and  represents the ray number.    

In practical application, the scaled track length  instead of  is usually used. And the 

relation between   and  is  

                                                       (3-44) 

where  is the renormalization factor and in 2D case,   is defined as the ratio of the cell's 

actual area to  the area that all rays in azimuthal angle  traversed:  
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                                                  (3-45) 

where  is the area of cell ;  is the distance  between the rays with azimuthal angle  

and  is the  track length of the -th ray with azimuthal angle  in cell .   

In MOC method, an integration over cell  can be numerically evaluated using track data, as 
shown by Eq. (3-46) 

	

= 																																												(3-46) 

where  is the quadrature weight in direction  corresponding to the product quadrature set 
chosen in the MOC sweeper.   

Thus, the angular-dependent coordinates of the centroid of cell   can be calculated 

by Eq. (3-47).  Eq. (3-47) is not only can be applied to calculate the centroid of a polygon cell 
as depicted in Fig. 3-16, it can be also applied for any other shapes of cells.  

                                    (3-47a) 

                                             (3-47b) 

3.4.3 LPCMFD ALGORITHM IN MOC 

The algorithm of lpCMFD in an MOC code is described by the flow chart Fig. 3-17. The main 
steps different from the conventional CMFD are colored to blue in the flow chart. Compared 
with conventional CMFD, lpCMFD requires to find the neighbor cells for all the coarse cells 
and calculate the centroids coordinates for all the fine cells at the beginning. Another difference 
lies in the step where fine cell fluxes are updated with flux results in coarse cells. For lpCMFD, 
the fluxes in fine cells are updated with Eq. (3-38) while for conventional CMFD, they are 
updated with Eq. (3-37).  

Note that the first two steps are only needed to be done one time before the transport iterations. 
The results are stored and then applied in the MOC iterations when needed. Compared with 
conventional CMFD, the flux updating step in lpCMFD only requires one more linear 
interpolation calculation, as formulated in Eq. (3-41) and Eq. (3-42), which can also be quickly 
done.  Therefore, lpCMFD will not increase the total calculation cost significantly.  
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Figure	3-17.	lpCMFD	flow	chart	in	MOC	

3.4.4 NUMERICAL RESULTS  

Two neutron transport problems are modeled and numerically simulated to demonstrate the 
effectiveness of lpCMFD. The results of conventional CMFD and odCMFD are given as well 
for comparison.  

3.4.4.1 2D 1 GROUP TEST PROBLEM 

A simple 2-D monoenergetic neutron transport problem (2D1G test problem) is studied in Sec. 
3.3.2 to show the stability of lpCMFD. In this section, the same problem is simulated for MOC 
solver. As shown in Fig. 3-18, the problem domain is a 5cm 5cm square with a perturbation 
zone at the center. The size of coarse mesh is 1.0cm and each coarse cell contains a 10  10 
fine mesh.  And the four boundaries are all set to reflective boundary condition.  

´
´
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Figure	3-18.	Geometry	and	cross	section	of	the	2D1G	test	problem.	

Neutron transportation of this case is simulated by a MOC-based code. Different CMFD 
schemes including conventional CMFD, odCMFD and lpCMFD, were applied and the 
numerical results are shown in Table 3-1.  

Table	3-1.	  and iteration cycles for different CMFD schemes, 2D1G test problem.	

Scheme iterations  error 
CMFD - Diverge - 
odCMFD 264 1.0058431 9.358541E-09 
lpCMFD 125 1.0058433 1.454771E-09 
lpCMFD ratio LI 122 1.0058433 4.821690E-09 

 

Figure	3-19.	2-norm	of	 residuals	vs.	MOC	iterations,	2D1G	test	problem.	
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In Table 3-1, the last column “error'” refers to the 2-norm residual of -eigenvalue and the last 

row “lpCMFD ratio LI” refers to using linear interpolation on the ratio of fluxes   instead 

of the difference . Fig. 3-19 shows how the residuals of   changes as the 
MOC iteration number increasing.  

The results of conventional CMFD shows that this case is an unstable problem and 
conventional CMFD cannot reach the convergence. odCMFD and lpCMFD both can stabilize 
the MOC iteration though odCMFD takes more than two times iteration cycles than lpCMFD. 
lpCMFD with ratio linear interpolation makes the iteration even a little faster. The left side 
figure in Fig. 3-20 shows the power distribution normalized by the maximum value of this 
2D1G problem calculated by lpCMFD. Use the power distribution calculated by odCMFD as 
the reference, the relative error of the power distribution between odCMFD and lpCMFD is 
shown in Fig. 3-20. As indicated, the relative error is very limited.  

Table	3-2.	  and iteration cycles for different CMFD schemes, 2DC5G7 problem. 

Scheme iterations  error 
CMFD - Diverge - 
odCMFD 27 1.1871162 6.551761E-09 
lpCMFD 19 1.1871142 6.436066E-09 
lpCMFD ratio LI 17 1.1871142 4.086793E-09 

 

 

Figure	3-20.	Power	distribution	and	relative	errors	of	the	2D1G	test	problem.	

3.4.4.2 2D C5G7 PROBLEM 

The 2D C5G7 benchmark is a well-known problem that can be used for the verification of 
neutron transport code.22 In this section, a 2D C5G7 problem is calculated to verify lpCMFD 
method on MOC. The model of the 2D C5G7 problem is 1/4 of a whole core, as depicted by 
Fig. 3-21.   

k
1

1/2f

+

+

Fl

l

1 1/2df f+ +=F -l l
effk

effk

effk



50 
 

The 2D C5G7 benchmark is a heterogeneous problem consisting of UO2 and mixed oxide 
(MOX) fuel. The 1/4 C5G7 core contains 9 assemblies, which are two UO2 assemblies, two 
MOX fuel assemblies and five reflector assemblies. Each fuel assembly contains 17 17 fuel 
pins and the configuration of fuel pins is shown in Fig. 3-21. The size of each pin cell is 1.26cm

1.26cm and the radius of the fuel pin with cladding is 0.54cm. Each pin cell is divided into 
16 fine cells as illustrated by the pin cell mesh in the upper right corner of Fig. 3-21. The fuel 
region is divided into two concentric circles with four fine cells in each circle while the 
moderator region is divided into eight fine cells.  

For the whole 1/4 core, the upper and left boundaries are set to reflective boundary condition 
while the other two boundaries are set to vacuum boundary condition due to the symmetry in 
the core. The number of MOC outer iterations for different CMFD schemes are listed in Table. 
II. And Fig. 3-22 shows how the residuals of  decreases as the MOC iteration number 
increasing. 

 

Figure	3-21.	Geometry and fuel configuration of the 2D C5G7 problem. 

 

Figure	3-22. 2-norm of  residuals vs. MOC iterations, 2D C5G7 problem. 
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As indicated, the 2D C5G7 problem is unstable for conventional CMFD and it fails to converge. 
odCMFD and lpCMFD can both stabilize the CMFD algorithm and get converged results, 
while lpCMFD performs better than odCMFD. As well, the linear interpolation for the ratio of 
fluxes is applied. The result shows it can reduce two more iterations compared to using linear 
interpolation for the difference of fluxes. Besides, the maximum value normalized power 
distribution of the 2D C5G7 problem and the relative error (odCMFD results as reference) are 
illustrated in Fig. 3-23. The result shows that lpCMFD obtains nearly the same power 
distribution as odCMFD. Besides, as for the run time, lpCMFD takes nearly the same time per 
iteration as odCMFD and there is no remarkable difference (less than 1%).  

 

Figure	3-23.	Power	distribution	and	relative	errors	of	the	2D	C5G7	problem.	

3.5 SUMMARY  

This chapter presents our latest work on the development and assessment of the nonlinear 
acceleration scheme lpCMFD for neutron transport calculations. lpCMFD utilizes the linear 
prolongation technique instead of the conventional flat prolongation used in CMFD to update 
the neutron transport scalar flux. The new scheme can greatly stabilize the CMFD. The 
convergence study of the acceleration scheme lpCMFD based on Fourier analysis for the 1D 
SN fixed source problem is presented. The Fourier analysis results show that lpCMFD is 
unconditionally stable for the whole range of the optical thickness tested. The convergence 
performance of lpCMFD is similar to CMFD for the optical thickness less than 1, and is more 
effective and stable than CMFD for the optical thickness larger than 1. It has also been 
demonstrated for the 2D fixed source and k-eigenvalue problems that lpCMFD is more 
effective than the CMFD method with under-relaxation. 

Furthermore, the linear prolongation CMFD method is applied on a MOC code. A track-based 
method is applied to calculate the centroids coordinates for the fine cells. And according to the 
numerical results of the 2D1G test problem and the 2D C5G7 problem, it proves that lpCMFD 
can stabilize the CMFD iterations on MOC method effectively and lpCMFD method performs 
better than odCMFD on reducing the outer MOC iterations. 
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4. DEVELOPMENT OF LR-NDA 
In order to improve the effectiveness and stability of the coarse-mesh finite difference method 
(CMFD), we developed a new nonlinear diffusion acceleration scheme for solving neutron 
transport equations. This scheme, called LR-NDA, employs a local refinement approach on the 
framework of CMFD by solving a local boundary value problem of the scalar flux on the 
coarse-mesh structure to replace the piecewise constant scalar flux obtained by CMFD. The 
refined flux is then used to update the scalar flux in the neutron transport source iteration. In 
this report, a detailed convergence study of LR-NDA is carried out based on a 2D fixed source 
problem, and it shows that LR-NDA is much more effective and stable than CMFD for a wide 
range of optical thickness. In addition, we demonstrate that LR-NDA is a local adaptive 
method. It doesn’t necessarily require local refinement for all the coarse-mesh cells on the 
problem domain, i.e., it can be only used for relatively optically thick regions where the 
standard CMFD scheme would encounter the convergence problem. 

The section is organized as follows. A brief overview of the formulation and algorithm of LR-
NDA is given in Sec. 4.1. Sec. 4.2 is devoted to a detailed study of the convergence 
performance of LR-NDA and its comparison with CMFD based on a 2D fixed source problem. 
Sec. 4.3 discusses local adaptivity of LR-NDA with a simple 2D k-eigenvalue problem. A brief 
summary and discussion is given in Sec. 4.4. 

4.1 LR-NDA FORMULATION AND ALGORITHM  

In our previous study,23 a monoenergetic SN fixed source neutron transport problem in slab 
geometry was used to study the convergence behavior of LR-NDA. In this report, we extend 
our study of the convergence behavior of LR-NDA for 2D problems by using a monoenergetic 
SN fixed source neutron transport equation with isotropic scattering and neutron source. The 
flow chart of the LR-NDA algorithm is shown in Fig. 4-1. There are three levels of mesh 
structures employed in LR-NDA. The SN transport equation is first solved on the fine-mesh 
grid, and the CMFD equation is then solved on the coarse-mesh. Finally, local refinement, 
solving a local BVP of the scalar flux, is carried out on the local refined mesh.   
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Figure	4-1.	Flow	chart	of	the	LR-NDA	algorithm	for	fixed	source	problems.	

The 𝑙th iteration cycle begins with the SN transport equation with iteration indices is expressed 
as  

𝜇 F
FG
𝜓IJKL(𝑥, 𝑦, 𝜇, 𝜂) + 𝜂 F

FT
𝜓IJKL(𝑥, 𝑦, 𝜇, 𝜂) + 𝛴U𝜓

IJKL(𝑥, 𝑦, 𝜇, 𝜂) = 		 VW
X
𝜙I(𝑥, 𝑦) +

																																																																							Z
X
𝑄(𝑥, 𝑦)	,	 	 	 	 	           (4-1)	

where	𝜙 and 𝜓 are the scalar flux and angular flux, respectively. 𝛴g and 𝛴U are the scattering 
cross section and total cross section. 	𝜇 and 𝜂 are the neutron angular directions. 𝑥 and 𝑦 are 
the spatial positions. 𝑄 is the external neutron source. 𝑙 is the source iteration index and 𝑙 +
1/2 is the intermediate step. 

During each SN source iteration, the coarse-mesh flux is obtained by solving the CMFD 
equation, 

    ∇ ∙ ± ²Z
aVb,çè

𝛻 + �̂�ëì
IJZ/dµΦIJZ + (𝛴U,ëì − 𝛴g,ëì)ΦIJZ = 𝑄,         (4-2) 
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where ΦIJZ and 𝑄 are the coarse-mesh scalar flux and coarse-mesh averaged external neutron 
source.	𝛴U,ëì and 𝛴g,ëì are the total cross section and scattering cross section defined on the 
coarse-mesh. �̂�ëì

IJZ/dis the drift coefficient which is calculated using the information from the 
𝑙 + 1/2  step SN source iteration. For the 2D coarse-mesh, we define �̂�ëì

IJZ/d  in x and y 
directions on the coarse-mesh edge, 

�̂�ëì,G
IJZ/d =

∫ 𝜇𝜓𝑙+1/2(𝑥,𝑦,𝜇,𝜂)𝑑𝜇	+	 1
3𝛴𝑡,𝐶𝑀

𝜕Φ𝑙+1/2
𝜕𝑥

1
−1

Φ𝑙+1/2
,           (4-3) 

�̂�ëì,T
IJZ/d =

∫ 𝜂𝜓𝑙+1/2(𝑥,𝑦,𝜇,𝜂)𝑑𝜂	+	 1
3𝛴𝑡,𝐶𝑀

𝜕Φ𝑙+1/2
𝜕𝑦

1
−1

Φ𝑙+1/2
,           (4-4) 

where the denominator in Eqs. (4-3) and (4-4) is the averaged value of the scalar flux of two 
neighboring coarse-meshes relative to the coarse-mesh edge. After solving Eq. (4-2), we 
employ two types of flux update. For coarse-mesh cells with small optical thickness, the SN 
source iteration scalar flux for the 𝑙 + 1 cycle is updated using the same scaling approach as in 
the standard CMFD: 

𝜙IJZ = 𝜙IJZ/d õÖ´K

ÕóÖ´K/L
 ,                        (4-5) 

where	𝜙ôIJZ/d is obtained by averaging the calculated transport scalar flux on the coarse-mesh. 

For coarse-mesh cells with large optical thickness, a local refinement calculation is performed 
on these coarse-mesh cells by solving the following local neutron diffusion equation with the 
fixed boundary conditions on the local mesh: 

𝛻 ∙ ·²Z
aVb

𝛻 + �̂�wì
IJZ/d¹𝜙IxwfIIJZ + (𝛴U − 𝛴g)𝜙IxwfIIJZ = 𝑄,           (4-6) 

where 𝜙IxwfIIJZ  is the scalar flux on the local mesh, �̂�wì
IJZ/dis the drift coefficient which is defined 

on the local mesh and calculated using the information from 𝑙 + 1/2 step SN source iteration.  

 

 (a) Coarse-mesh                  (b) Local refinement mesh 

Figure	4-2.	Local refinement mesh for 2D problem. 
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𝜙IxwfIIJZ  in Eq. (4-6) is the scalar flux on the local refinement mesh point, marked as green points 
in Fig. 4-2. The �̂�wì

IJZ/d in Eq. (4-6) is defined on the fine-mesh edges, including �̂�wì,G
IJZ/d and 

�̂�wì,T
IJZ/d, 

�̂�wì,G
IJZ/d =

∫ 𝜇𝜓𝑙+1/2(𝑥,𝑦,𝜇,𝜂)𝑑𝜇	+	 13𝛴𝑡
𝜕𝜙𝑙+1/2

𝜕𝑥
1
−1

𝜙𝑙+1/2
,              (4-7) 

�̂�wì,T
IJZ/d =

∫ 𝜂𝜓𝑙+1/2(𝑥,𝑦,𝜇,𝜂)𝑑𝜂	+	 13𝛴𝑡
𝜕𝜙𝑙+1/2

𝜕𝑦
1
−1

𝜙𝑙+1/2
,                 (4-8) 

where the denominator in Eqs. (4-7) and (4-8) is the averaged value of the scalar flux of two 
neighboring fine-meshes relative to the fine-mesh edge. The boundary scalar flux (marked as 
the red points in Fig. 4-2) for the local BVP are obtained by weighting the transport flux values 
at the mesh points on the coarse-mesh edges with the coarse-mesh flux ratio between the 
CMFD and SN transport results. There are two types of mesh points, i.e., coarse-mesh corner 
points and coarse-mesh side points. The boundary flux at each corner mesh point is defined in 
Eq. (4-9), and the boundary flux at each side mesh point is defined in Eq. (4-10). 

𝜙÷ë,wxs�tsIJZ = Z
X
( õ

Ö´K

ÕóÖ´K/L
y
8_÷

+ õÖ´K

ÕóÖ´K/L
y
;_÷

+ õÖ´K

ÕóÖ´K/L
y
8_U

+ õÖ´K

Õó Ö´K/L
y
;_U
)	𝜙wxs�ts

IJZ/d ,     (4-9) 

𝜙÷ë,g�îtIJZ = Z
d
( õ

Ö´K

ÕóÖ´K/L
y
J
+ õÖ´K

ÕóÖ´K/L
y
²
)	𝜙g�ît

IJZ/d,                  (4-10) 

where 𝜙wxs�ts
IJZ/d  and 𝜙g�ît

IJZ/d are the transport flux at the corner and side mesh point, respectively. 
The subscripts “L_B”, “R_B”, “L_T” and “R_T” denote the left bottom, right bottom, left top, 
and right top coarse-mesh cells surrounding the corner-mesh point, respectively. The subscripts 
“+” and “−” denote the right and left sides of the coarse-mesh cell edge in the 𝑥 direction, or 
the top and bottom sides of the coarse-mesh cell edge in the 𝑦 direction. If local refinement is 
applied for coarse-mesh cells which share the boundary with the problem domain, Eqs. (4-9) 
and (4-10) can be used to calculate the boundary conditions for local refinement calculations 
with appropriate simplification for the corner or side mesh points. 

After solving Eq. (4-6), the calculated local mesh points scalar flux along with the BVP 
boundary mesh point flux, is averaged to obtain the center flux of each fine-mesh cell which is 
used to update the scalar flux in the next transport sweeping, 

𝜙
�JKL,¿J

K
L

IJZ = 	 Z
X
l	𝜙�,¿IJZ + 	𝜙�JZ,¿IJZ + 	𝜙�,¿JZIJZ + 	𝜙�JZ,¿JZIJZ n,              (4-11) 

where	𝑖 and	𝑗 are the indices of the mesh point in the local refinement mesh as shown in Fig. 
4-2.   

The source iteration will continue until the convergence criterion is satisfied. The following 
flowchart illustrates that the LR-NDA scheme is used for k-eigenvalue problems, as shown in 
Fig. 4-3. 
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Figure	4-3.	Flowchart	of	the	LR-NDA	algorithm	for	k-eigenvalue	problems.	
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In Fig. 4-3, 𝑚 stands for the power iteration index, 𝜀Z is the convergence criterion for the power 
iteration in the CMFD calculation and 𝜀d	is the convergence criterion for the k-eigenvalue. A 
local refinement calculation level is added into the two-level Transport/CMFD algorithm. After 
the CMFD power iteration is done, the new coarse-mesh flux and 𝑘tuu  are obtained. For 
coarse-mesh cells with small optical thickness, Eq. (4-5) is still used to update the SN transport 
sweep scalar flux for the 𝑙 + 1 cycle. For coarse-mesh cells with large optical thickness, a local 
refinement calculation is performed on these coarse-mesh cells by solving the following local 
neutron diffusion equation with the fixed boundary conditions on the local mesh obtained with 
Eqs. (4-9) and (4-10), 

𝛻 ∙ ·²Z
aVb

𝛻 + �̂�wì
IJZ/d¹𝜙IxwfIIJZ + (𝛴U − 𝛴g)𝜙IxwfIIJZ = }V�

ª���
𝜙IxwfIIJZ ,       (4-12) 

where 𝜐	is the mean number of neutrons produced per fission, 𝛴u is the fission cross section 
and 𝑘tuu is the eigenvalue calculated from CMFD. Similarly, after solving Eq. (4-12), the SN 
transport sweep scalar flux for the 𝑙 + 1 cycle is updated with Eq. (4-11). 

 In addition, it is worthwhile to mention that the LR-NDA method can be utilized to 
accelerate other transport solvers, such as the Method of Characteristics (MOC) and Monte 
Carlo methods. 

4.2 NUMERICAL CONVERGENCE STUDY 

A numerical study of the LR-NDA convergence performance was carried out based on a 2D 
model problem, which is a homogeneous 10cm × 10cm square with the vacuum boundary 
condition for four sides. The domain is discretized into 10 × 10 uniform coarse-mesh cells. 
The fine-mesh number in each coarse-mesh cell is 10 × 10. The numerical solutions were 
obtained using the Gauss-Legendre S12 quadrature set for angular discretization and the 
diamond difference (DD) method for spatial discretization.  Both CMFD and LR-NDA 
acceleration schemes were implemented in the MATLAB code for the problem. 

In order to characterize the convergence behavior, we calculated the spectral radius numerically 
as defined by 

𝜌 = ÔÕÖ´K²ÕÖÔ
ÔÕÖ²ÕÖ×KÔ

 .                      (4-13) 

Fig. 4-4 presents the spectral radius results for CMFD and LR-NDA as a function of coarse-
mesh optical thickness (i.e., 𝛴U,ëìΔ, where	Δ is the coarse-mesh size), for the scattering ratios 
of 0.6, 0.8, 0.9, and 0.99. 
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(a) scattering ratio c = 0.6          (b) scattering ratio c = 0.8 

  
(c) scattering ratio c = 0.9 (d) scattering ratio c = 0.99 

Figure	4-4.	Convergence	performance	comparison	between	CMFD	and	LR-NDA.	

Similar to our previous 1D findings,24 the following observations can be drawn from the 2D 
results: 

1. For small scattering ratio, i.e., 𝑐 = 0.6 or 0.8, CMFD is stable for the whole range of 
the optical thickness.  

2. When the scattering ratio increases to 0.99, CMFD is only effective for the optical 
thickness less than 1. It becomes unstable and fails to converge when the optical 
thickness is larger than 2.  

3. The convergence performance of LR-NDA is almost the same with CMFD for the 
optical thickness less than 1, and is more effective and stable than CMFD for the optical 
thickness larger than 1.  

4. In addition, it is interesting to note that the spectral radius of LR-NDA first increases 
with the optical thickness up to 10 and thereafter tends to decrease. The improved 
performance of LR-NDA at high optical thickness is due to the fact that the diffusion 
solution becomes a better approximation to the SN solution at high optical thickness. 
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4.3 LOCAL ADAPTATION OF LR-NDA 

In this section, we study the local adaptivity of the LR-NDA scheme based on a 2D 
monoenergetic k-eigenvalue problem with large cross section variations in the domain. The 
model problem considered is a 5cm × 5cm square with the reflective boundary condition on 
the four sides. The domain is divided into 25 uniform coarse-mesh cells. The fine-mesh number 
in each coarse-mesh is 10 × 10 as shown in Fig. 4-5. Similar to the above 2D fixed source 
problem, the numerical solutions for the SN neutron transport were obtained using the DD 
method for spatial discretization, and the Gauss-Legendre S12 quadrature set for angular 
discretization. 

 

Figure	4-5.	Specifications	of	2D	k-eigenvalue	problem.	

In this problem, there are three local regions as shown in color, which have very large total 
cross sections, i.e., the local optical thickness is very large. It should be pointed out that the 
cross sections are arbitrarily given to make it a very challenging problem for numerical 
solution. For this problem, the standard CMFD scheme fails to converge the SN iteration.  

To study the local adaptivity of LR-NDA, we consider three types of local refinement. The first 
case is that local refinement is only applied for those three-diagonal coarse-mesh cells (in 
color). In the second case, local refinement calculation is applied for the 3 × 3 coarse-mesh 
cells containing those three optically thick cells. The last case is that local refinement is applied 
for all the coarse-mesh cells in the domain (i.e., 5 × 5). Numerical results for these three local 
adaptation cases are presented in Fig. 4-6.  
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(a) Normalized converged scalar flux     

 

 (b) keff relative error vs. iteration number 

Figure	4-6.	Numerical	results	of	LR-NDA	for	2D	k-eigenvalue	problem.	

Fig. 4-6a shows the normalized converged scalar flux. The flux changes significantly in those 
three optically thick regions. The 𝑘tuu relative error is used as the convergence performance 
index. The error criterion 𝜀d is 10²[ (Fig. 4-3). The error criterion 𝜀Z for the power iteration in 
CMFD is 10²Zd. It is shown that the second case with local refinement for the 3 × 3 cells is 
similar to the case where local refinement is applied for the whole domain (5 × 5). It is 
noteworthy to point out that the first case, where local refinement is only applied on the three-
diagonal coarse-mesh cells, is still very effective, although requires more iterations. This study 
demonstrates that LR-NDA is a local adaptive method and it can be easily implemented for 
any region of the problem domain, which means that it can be only used for optically thick 
regions where CMFD could have the convergence problem.  
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The computing time for each case is summarized in Table 4-1. It is shown that LR-NDA can 
significantly reduce the number of transport sweeps. Compared to the CPU time spent on the 
transport sweep and CMFD calculations, the time spent on the local refinement calculation is 
much less. In addition, local refinement calculations for each coarse-mesh cell can be 
parallelized to make the computational cost negligible. 

Table 4-1. Computational Performance Comparison of the 2-D k-eigenvalue Problem 

 

Computation with a single CPU (Intel (R) Xeon (R) E5-2630 v3 @ 2.40 GHz); 

𝑀 = 5, the coarse-mesh number in the 𝑥 or 𝑦 direction in the problem domain; 

𝑃 = 10, the fine-mesh number in the 𝑥 or 𝑦 direction in each coarse-mesh; 

𝑁 = 12, the S12 quadrature set. 

4.4 SUMMARY  

This section presents the development and assessment of the nonlinear LR-NDA acceleration 
scheme for neutron transport calculations. LR-NDA incorporates a local refinement solution 
on the coarse-mesh structure based on the CMFD framework. The convergence study of LR-
NDA based on the 2D SN fixed source problem has demonstrated that LR-NDA can greatly 
improve the stability and effectiveness of CMFD.  

 
No Acceleration LR-NDA 

(Transport Sweep) (3) (3 × 3) (5 × 5) 

Number of unknowns 𝑀d × 𝑃d × ((𝑁 + 2)𝑁 2⁄ ) 
 

(𝑃 − 1)d × 3 
 

(𝑃 − 1)d × 3d 
 

(𝑃 − 1)d × 5d 
 (5d × 10d × 84) (9d × 3) (9d × 3d) (9d × 5d) 

Number of transport sweep 1483 51 36 32 

Transport calculation time (s) 1895.6 64.5 45.2 40.4 

CMFD power iteration number 0 6495 4597 4078 

CMFD calculation time (s) 0 2.2 1.5 1.4 

Total local refinement calculation 
time (s) 0 6.9 × 10²d 1.8 × 10²Z 3.2 × 10²Z 

Local refinement calculation time 
for one coarse mesh (s) 0 2.3 × 10²d 2.0 × 10²d 1.3 × 10²d 

Total calculation time (s) 1895.6 66.8 46.9 42.1 

Speedup 1 28.4 40.4 45.0 
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In addition, it is demonstrated that LR-NDA is a local adaptive method and it can be easily 
implemented for any region of the problem domain where the standard CMFD method would 
become ineffective or unstable. It should be pointed out that computational cost of local 
refinement is negligible as compared with the CMFD cost because of its local compactness and 
efficient parallel implementation. This novel feature will make it very computationally 
attractive for large 2D/3D neutron transport problems. 

5. IMPLEMENTATIONS OF DG-DSA IN PROTEUS-SN 

5.1 INTRODUCTION 

A discontinuous Galerkin diffusion synthetic acceleration scheme (DG-DSA) is implemented 
in a standalone PROTEUS neutronics code. PROTEUS is a three-dimensional, highly scalable, 
high-fidelity deterministic neutron transport code based on the second-order even-parity 
formulation, which is discretized using continuous Galerkin finite element method in space, 
discrete ordinates approximation in angle, and multigroup approximation in energy. Because 
continuous Galerkin finite element method is applied to discretize the spatial domain, the 
degrees of freedom become the number of vertices. PROTEUS solves both forward and 
backward eigenvalue problems using power iteration with neutron up-scattering treatments 
where each within-group system of equations is solved using SSOR-preconditioned conjugate 
gradient method with diffusion synthetic acceleration.11 On the other hand, in DG-DSA 
method, only the synthetic diffusion equation is discretized using discontinuous Galerkin finite 
element method and solved on a coarser grid. For a discontinuous Galerkin method, the degrees 
of freedom become dependent on the polynomial degree of the trial function for each element 
rather than the number of vertices. Therefore, the advantages of utilizing DG-DSA method 
compared to the existing DSA in PROTEUS are employing a coarser grid and adapting the 
polynomial degree of trial functions. This local hp adaptation can significantly decrease the 
number of unknowns if an appropriate number of polynomial degrees are used thus improving 
the computational efficiency.  

As a two-level method, constructing the parallel coarse mesh is an important step. The focus 
of the chapter is on the implementation of the two-dimensional parallel coarse mesh solver for 
diffusion synthetic acceleration, which is used to reduce computational cost and speed up 
convergence of the overall calculations. In the implementation, the coarse mesh is obtained 
from the user defined fine mesh. The fine mesh must be defined on a square pin-cell assembly 
format where each pin-cell consists of two sections pin and background. We defined the coarse 
mesh such that it has only two blocks (pin and background) and each block consist of exactly 
eight equal elements (triangular for pin region and quadrilateral for background region).  

To illustrate the specifications of the coarse mesh generated in PROTEUS, a single fuel pin 
model is shown in Fig. 5-1 where the coarse pin cell is superimposed on a fine pin cell. The 
yellow pin region represents the fuel consisting of two concentric and four azimuthal 
subdivisions per octant whereas the blue background region represents the moderator with four 
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azimuthal subdivisions per octant. The total number of fine-mesh elements in the pin cell is 96 
while it is 16 elements for coarse-mesh. The coarse mesh vertices are defined at the center node 
and at the intersections between the octant lines and the outermost pin radius and the cell 
boundaries. If multiple materials are assigned to a single coarse element, for instance, if there 
is a cladding material surrounding the fuel in the pin region, then only the innermost material, 
i.e., the fuel, is assigned to the coarse element. This assumption is viable for practical problems 
due to the relatively small volume of the cladding material compared to the fuel volume.  

 

Figure	5-1.	Coarse	pin	cell	superimposed	on	a	fine	pin	cell	with	fuel	in	the	radial	
region	(yellow)	and	moderator	in	the	background	region	(blue).	

Once the fine and coarse global meshes are constructed based on the input files, the fine mesh 
is partitioned on-the-fly into the number requested domains using METIS library; then the 
coarse mesh partitioning is obtained directly from the corresponding fine mesh partition. At 
the end of the process, each processor owns a piece from both the fine and coarse mesh, called 
the local mesh. Each processor can see its local mesh as well as one more layer of ghost set of 
elements and their vertices. The combined mesh of local and ghost mesh is called the visible 
mesh.   

After the locally visible meshes are generated, they are processed to obtain the finite element 
spatial matrices using the Gaussian numerical integration. The spatial matrices are then 
stenciled, and the preconditioners are set using PETSc library.  

In the within-group solver, the flux values calculated from the neutron transport equations need 
to be mapped to the visible coarse mesh in order to utilize the DG-DSA method. The mappings 
between coarse-mesh and fine-mesh for restriction and interpolation steps are shown in Figure 
5-2. Each coarse element is mapped to the corresponding inner fine elements and the fine 
vertices that it contains.  
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Figure	5-2.	Mapping	between	fine	and	coarse	grid	

A coarse-mesh generation flowchart and its utilization in PROTEUS is shown in Figure 5-3. 
As seen from the figure, there are four main parts: 1) reading input to generate global fine and 
coarse grids, 2) decomposing the global grids to locally owned meshes for parallel 
computations, 3) setting up the solver by assembling transport and diffusion matrices, and 4) 
solving the within-group transport and diffusion equations on the fine and coarse meshes, 
respectively. The rest of the section discusses the detailed implementation of each step.  

 

Figure	5-3.	DG-DSA	implementation	flowchart	

5.2 INPUT FILES 

To perform a PROTEUS simulation, four text input files are required: a driver input file, a 
mesh input file (.nemesh, .ascii or .ufmesh), a material assignment file (.assignment), and a 
cross-section input file (.isotxs or .anlxs). The driver input file (.inp) controls the PROTEUS 
calculations by specifying the simulation parameters and also points to the other input files. 
The assignment file defines the materials in the geometric regions and provides material 
properties such as density and isotope concentrations. For our implementation, the driver input 
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file and mesh input file formats are modified to specify that the DG-DSA method is being used 
and to provide the necessary parameters. Two new keywords (USE_DG_DSA and 
DG_DSA_parameter) are added in the driver input file. The keyword USE_DG_DSA indicates 
whether DG-DSA is used for the PROTEUS simulation and if it is the case then the keyword 
DG_DSA_parameter,	𝜖, specifies the type of interior penalty Galerkin method as following 

𝜖 =  
−1,										Symmetric	interior	penalty	Galerkin	(SIPG)									
+1,										Nonsymmetric	interior	penalty	Galerkin	(NIPG)
0,													Incomplete	interior	penalty	Galerkin	(IIPG)	.							

 

There are numerous mesh file formats available in PROTEUS such as NEMESH, UFMESH, 
GRID and ASCII formats. The UFMESH is the most user-friendly mesh format among the 
four mentioned above because it utilizes keywords to generate two-dimensional Cartesian or 
hexagonal fuel assemblies. Therefore, it is chosen for the course mesh generation 
implementation. As mentioned earlier, the coarse mesh used for the DG-DSA method is fixed 
such that each pin-cell would have only two blocks and 16 coarse elements; thus, it does not 
need to be specified in the mesh input file. However, the polynomial degree of the trial 
functions and the penalty number for the interior penalty Galerkin method are specified in the 
mesh input file by the user. Thus, the UFMESH file format is slightly modified to get these 
parameters. Figure 5-4 demonstrates a sample UFMESH file for a single pin cell with two 
blocks: Fuel1 and Moderator. In the cell definition, the keywords PIN and BACKGROUND 
are followed by the material names, the number of subdivisions, and the outer most radius of 
the material (for only PIN region). For DG-DSA method, two parameters are added at the end 
of the cell definition to indicate the polynomial degree and the penalty number for that region. 
If DG method is not used, then these parameters are ignored. In this case, the polynomial degree 
is given to be 1 for both blocks while the penalty number is equal to 1.0 for the fuel and 0.3 for 
the moderator region. The DG-DSA method is based on the primary discontinuous Galerkin 
approach which employs interior penalty to stabilize the numerical solution. It is found that the 
acceleration performance of DG-DSA is sensitive to the penalty number and to achieve the 
optimal convergence performance the penalty number needs to be tuned for each problem, 
although it is numerically stable for a wide range of penalty.   

 

Figure	5-4.	Sample	UFMESH	input	file	

5.3 CREATING GLOBAL COARSE MESH 

In PROTEUS, the mesh input file is read in and stored in a datatype called “NTmesh” which 
stands for neutron transport mesh. It saves mesh information including the numbering of 
vertices and elements, vertex coordinates, vertex indices for each element, element type, and 
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boundary conditions. To store the mapping between coarse and fine grids, a new datatype, 
“CoarseMesh,” is created which contains coarse mesh information stored in NTmesh datatype 
structure and the mapping details. Fig. 5-5 illustrates the subroutine “SN2ND_Setup_Mesh” in 
PROTEUS which is responsible for reading the mesh input file and generating the global fine 
and coarse mesh on the root processor. The generated grids are then exported to text files to be 
read in by other processors later in the code in order to decompose the global meshes into 
locally owned meshes. In the flowchart, subroutines are shown in rectangular boxes. To add 
the DG-DSA implementation to the existing PROTEUS code, some subroutines are modified 
(in purple color), and some are added (in blue). The existing subroutines are in gray rectangles, 
and the outputs are written in rounded yellow rectangles. If DG-DSA is not specified in the 
driver input file, then the subroutine “PNTmesh_Legacy_Import” is called to generate only the 
fine grid. On the other hand, if DG-DSA is specified, then the subroutine 
“PNTmesh_Legacy_Import_DG” is called instead to generate both the fine and coarse grids. 

 

Figure	5-5.	Flowchart	for	global	coarse	mesh	generation	

First, the UFmesh input file is read in a subroutine “UFmesh_Read_Input_DG.”  The first 
keyword specified in UFmesh input file is the coordinate system either CARTESIAN or 
HEXAGONAL. Based on the keyword, the subroutine calls another subroutine to finish 
reading in the input file. In this implementation, only the Cartesian system is considered. The 
subroutine “UFmesh_Cartesian_Assembly_NTmesh_DG” reads each unique pin cell 
definitions and calls “UFmesh_GenericCell_NTmesh_DG” to obtain the number of elements 
and vertices in the pin cell and also to determine the coordinates of each vertex for both fine 
and coarse grids based on the given number of azimuthal and radial subdivisions and the radius 
of each pin material. In this process, the area of the fine pin cell region is preserved. The coarse 
mesh vertices are obtained at the center node and at the intersections between the octant lines 
and the outermost pin radius and the cell boundaries. Then, all the unique pin cells are merged 
in a subroutine “UFmesh_MergeByGrid_DG” based on the given grid. At last, the fine and 
course Cartesian assemblies are constructed and stored in forms of NTmesh and Coarsemesh 
datatype.  

The boundary conditions specified in the driver input are applied to the fine and coarse grids 
in the subroutine “NTmesh_ApplyBCAliases.” Mesh surfaces are defined in the existing 
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subroutine “NTmesh_Surfaces_LegacyMap.” Since the global meshes are fully defined 
including boundary conditions and surface mapping, they can be exported into a text file to 
generate PNTmesh type structure (Parallel Neutron Transport mesh) and PCMesh type 
structure (Parallel Coarse Mesh). To write down the mapping between the coarse and fine 
meshes, new subroutines “PCMesh_Export” and “CoarseMesh_Export_ASCII_Block” are 
created.  

5.3.1 COARSE MESH SPECIFICATIONS AND LIMITATIONS 

As mentioned earlier, the coarse mesh is generated such that both the pin and the background 
regions would contain exactly eight elements each. If more than one material is present in the 
pin region, for example, fuel and cladding, then the code assumes that the volume of the 
innermost material is relatively large compared to the outer materials thus assigns the pin 
region to the innermost material only, i.e., fuel. PROTEUS can handle duct for fuel assemblies; 
however, for the current state of the implementation, it has not been considered for DG-DSA 
calculation yet. Other limitations mentioned earlier are listed below: 

- Two-dimentional Cartesian system only 
- UFMESH is the only input mean to generate a coarse mesh  

5.4 CREATING PARALLEL COARSE MESH 

The coarse mesh partitioning flowchart is shown in Figure 5-6. The subroutines are represented 
in rectangles, and the comments are written in rounded yellow rectangles. The purpose of the 
modified subroutine “SN2ND_Setup_GetMesh” is to generate both parallel neutron transport 
mesh (PNTmesh) and parallel coarse diffusion mesh (PCMesh) based on the global NTmesh 
and CoarseMesh that have been generated and exported to text files in the subroutine 
“SN2ND_Setup_Mesh”. If DG-DSA is not specified in the driver input file, then the subroutine 
“PNTmesh_Import” is called to generate only the parallel fine grid. On the other hand, if DG-
DSA is used in the calculation, then the subroutine “PCMesh _Import” is called instead to 
generate both the parallel fine and coarse grids.  
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Figure	5-6.	Flowchart	for	parallel	coarse	mesh	generation	

First, every vertex and every element in the fine mesh needs to be assigned to a particular 
processor, and this process can be achieved in PROTEUS by calling an external mesh 
partitioning library METIS. The coarse mesh partitioning is then obtained directly from the 
corresponding fine mesh partition. The subroutine “PCMesh_DefinePartitioning” assigns 
coarse elements to a processor which owns most of the fine elements that the coarse element 
mapped to. For example, let a coarse element contains eight fine elements, three of which are 
owned by proc A and five by proc B. Because proc B owns more fine elements than proc A, 
the coarse element is assigned to proc B but it is ensured that the other three fine elements are 
visible to proc B.  Coarse mesh vertices are assigned to the processor which owns the 
corresponding fine vertex. Based on the vertex and element assignments, the subroutine 
“PCMesh_SegmentMesh” defines the ghost coarse elements and the coarse vertices for each 
processor and stores them in a PNTmesh_type format which does not contain the mapping 
detail between the fine and coarse local meshes. Since the visible coarse mesh (local + ghost) 
is defined, the surface information can be extracted in the subroutine and stored in the 
PCMesh_Surfaces_type.  

At last, the subroutine “PNTmesh_SegmentMesh_DG” defines the parallel fine mesh and the 
mapping between fine and coarse parallel meshes. In the restriction step, to get a value on a 
coarse mesh, every fine element that contained in the coarse element are required, thus when 
defining the visible fine mesh, it is ensured in the subroutine “PNTmesh_SegmentBlock_DG” 
that the processor who owns a coarse element should also have access to all the fine elements 
that it contains. After ghost elements and vertices are determined, the mapping between global 
and local meshes are obtained and stored in PNTmesh_type. Now, both coarse and fine meshes 
are partitioned, and the mapping between the local and global mesh is established. Using the 
mapping between global fine and coarse meshes, local coarse mesh can be mapped to local fine 
mesh and stored them in PCMesh_type.  
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5.5 GLOBAL MATRIX ASSEMBLY  

After the locally visible meshes are generated, they are processed to obtain the finite element 
spatial matrices using the Gaussian numerical integration. The flowchart for assembling global 
diffusion matrix is shown in Figure 5-7. Once the control data, cross section and mesh data are 
read in, the finite element spatial matrices are computed in the subroutine 
“SN2ND_Setup_Solve.” PROTEUS is capable of partitioning both space and angle domain. 
Since the diffusion equation does not depend on angle, it only needs to be assembled and solved 
on a single set of spatial domains. PROTEUS uses PETSc library to solve linear systems of 
equations. The PETSc objects including the matrix, vector, preconditioner, vector 
scatter/gather mapping are initiated and stored under the name of “Toplevel_DG” which is in 
“Mat_Vector” datatype format. The matrix stencil for coarse mesh is determined in the 
subroutine “FEM_Stencil_DG.” Using the reference elements and the basis functions, the 
spatial integrals are computed and stenciled to construct the diffusion matrix. The subroutines 
“FEM_Solve_Volumetric_DG”, “FEM_Solve_Surface_DG”, and 
“FEM_Solve_Boundary_DG” are responsible for integrating over each unit coarse element, 
internal surface, and boundary surface respectively. The PETSc matrix is then finalized, and 
the preconditioner is set.  

 

 

Figure	5-7.	Flowchart	for	assembling	global	diffusion	matrix	

5.5.1 REFERENCE ELEMENTS 

PROTEUS generates a hybrid unstructured mesh, containing different mesh types. Unlike the 
continuous Galerkin finite element method, the discontinuous Galerkin method comprises the 
interface integrals between adjacent elements. The following reference elements shown in 
Figure 5-8 were utilized to compute the numerical integrals using the Gauss – Legendre 
quadrature.  
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Figure	5-8.	Linear	triangular	(Left)	and	quadrilateral	(Right)	reference	elements.	

5.5.2 BASIS FUNCTIONS 

Monomial basis functions which are independent of element types were chosen for the 
implementation. Because there are no constraints between elements, the basis functions are 
supported locally. For instance, the quadratic functions (𝑝 = 2) in 2-D are defined below, 
where 𝜙� are basis functions and 𝜉, 𝜂 are the reference coordinates: 

𝜙j(𝜉, 𝜂) = 1,           𝜙Z(𝜉, 𝜂) = 𝜉,        𝜙d(𝜉, 𝜂) = 𝜂    

𝜙a(𝜉, 𝜂) = 𝜉d,           𝜙X(𝜉, 𝜂) = 𝜉𝜂,        𝜙�(𝜉, 𝜂) = 𝜂d    

5.6 WITHIN GROUP SOLVER  

In each within group iteration, the second order neutron transport equations discretized using 
a continuous Galerkin method is solved by the SSOR preconditioned conjugate (CG) method. 
The CG method is applicable for solving systems of linear equations with positive-definite and 
symmetric matrix.  Because the discontinuous Galerkin method produces an asymmetrical 
matrix, the diffusion equation is solved using the generalized minimal residual method 
(GMRES) with the block Jacobi preconditioner. The performance of the solver might be 
dependent on the element ordering. For simplicity the coarse mesh numbering is adapted from 
the fine mesh numbering in PROTEUS, and thus the element ordering in the implementation 
is may not be the optimum.  

The DG-DSA method is a two-level method that solves the equation Au = b by introducing 
coarser discretizations and utilizing low order polynomial degrees: 

1. 𝐴ëxfsgt	       – Precompute coarse operator  
2. 𝑏ëxfsgt = 	𝑃U𝑏w��t      – Restrict residual element 
3. 𝐴ëxfsgt𝑢ëxfsgt = 	𝑏ëxfsgt     – Solve coarse scale problem 
4. 𝑢w��t = 𝑃𝑢ëxfsgt     – Prolongate solution.  

 

The coarse grid operator is precomputed and stored in the subroutine “SN2ND_Setup_Solve.” 
The subroutine “DGDSA_FineToCoarse” computes the coarse grid right-hand side by 
applying the restriction. The coarse system of linear equations is then solved for flux error 
using GMRES asymmetrical linear solver. The scalar flux error solution on a coarse grid is 
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then mapped to the fine grid in the subroutine “DGDSA_CoarseToFine.” The solution is then 
used for updating the neutron transport scalar flux.  

5.7 NUMERICAL RESULTS 

A numerical study of the DG-DSA acceleration scheme was carried out based on a 2-D 
monoenergetic neutron transport fixed source problem for an assembly of 17 × 17 fuel pins, 
with reflective boundary conditions on the north and west faces and vacuum boundary 
conditions on the south and east faces as shown in Fig. 5-9. The radius of each fuel pin is 0.54 
cm and the rod pitch is1.26 cm. The fuel, represented by the blue pins, has the total cross section 
of 0.7 cm-1 with the scattering ratio of 0.6. The water, in the red region, has the total cross 
section of 2 cm-1 with the scattering ratio of 0.99. Each fuel pin is discretized using 4 concentric 
rings surrounded by 3 rings in the moderator, and 8 azimuthal sectors per quadrant. Carlson’s 
level symmetric cubature was used with 6 points per octant. The total number of fine cells in 
the transport mesh is 64736, while the DG-DSA mesh has 4624 cells. The converged scalar 
flux is plotted in Fig. 5-9. 

 

 

Figure	5-9.	Flux	distribution	and	Specifications	of	the	assembly.	

Since the global matrix for the DG-DSA method is asymmetric, the GMRES iterative method 
is utilized from PETSc library to invert the global matrix for diffusion equation. In PROTEUS, 
both the transport and existing diffusion matrices are symmetric thus, as a default, the conjugate 
gradient (CG) method is used. Convergence performance highly depends on the solver type 
and preconditioner used, thus, the transport and the original diffusion equations are also solved 
using GMRES with block Jacobi preconditioner for comparison.   

The convergence performance, i.e., the flux relative error vs. transport sweep number, is 
illustrated in Figs. 5-10 and 5-11. The results of the SN source iteration without acceleration 
are shown for comparison. In the figure, DSA depicts the results obtained with the original 
DSA scheme in PROTEUS-SN, which uses the same fine mesh and CG-FEM discretization as 
the SN solution.  Unlike the original CG based DSA method, DG-DSA is p (polynomial degree) 
adaptive, thus we considered two cases: 1) 𝑝 = 1 for both fuel and water regions and 2) 𝑝 = 0 
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for fuel and 𝑝 = 1  for water. As compared to the original DSA solution, both DG-DSA 
solutions can obtain similar performance on a much coarser mesh. In addition, DG-DSA can 
employ local 𝑝 adaptation and therefore further reduce the number of degrees of freedom 
(DOF). In DG-DSA method, the penalty number is tuned for the optimum convergence.  

 

 

Figure	5-10.	Numerical	results	for	GMRES	iterative	method	

 

 

Figure	5-11.	Numerical	results	for	CG	iterative	method	

The number of diffusion iterations per each transport iteration for both GMRES and CG 
iterative methods are shown in Figs. 5-12 and 5-13. Since DG-DSA generates much smaller 
matrix, it takes around 7 iterations to solve the diffusion equation, while it is between 15 and 
45 iterations for the original DSA acceleration.  
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Figure	5-12.	Number	of	diffusion	iterations	for	using	CG	iteration	method	

 

 

Figure	5-13.	Number	of	diffusion	iterations	for	using	GMRES	iteration	method	

The same problem is also solved on multiple processors. The comparison of computing time is 
summarized in Tables 5-1 and 5-2. The purpose here is to demonstrate and verify the 
implementation of the DG-DSA method and its parallelization. The following observations can 
be seen from the above the simple 2D model problem: 

1. DG-DSA is as effective as the original DSA method for reducing the number of source 
iterations. 

2. It is found that for DG-DSA the piecewise linear function outperforms the piecewise 
constant function; however, it is computationally less efficient because the discretized 
linear diffusion system is much larger.  

3. The setup time for DG-DSA, including reading input, generating coarse mesh, and 
building the global matrix (about 0.9 sec. in total for this problem) is no negligible.  
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4. The convergence performance depends on the linear solvers and preconditioners used. 
5. The number of iterations varies depending the number of processors used.  

 

Table	5-1.	Computational	Performance	Comparison	using	CG	method	

 1 Processor 2 Processors 3 Processors  
DSA DG 0-1 DG 1-1 DSA DG 0-1 DG 1-1 DSA DG 0-1 DG 1-1 

# Source Iterations 19 22 21 19 23 21 24 21 21 
Transport (s) 16.5 18.0 20.6 12.5 10.6 12.4 10.7 7.62 8.91 
Diffusion (s) 1.00 0.79 1.57 0.86 0.30 0.52 0.95 0.14 0.29 
Reading Input (s) 0.23 0.72 0.72 0.49 0.98 0.95 0.49 1.01 1.01 
Mesh Generation (s) 0.81 1.07 1.08 0.82 1.09 1.08 0.81 1.09 1.10 
DG-DSA matrix (s) 0.00 0.12 0.12 0.00 0.07 0.07 0.00 0.05 0.05 
Total Time (s) 20.3 22.7 26.1 16.2 14.3 16.3 14.4 11.2 12.6 

 

Table 5-2. Computational Performance Comparison using GMRES method 

 1 Processor 2 Processors 3 Processors  
DSA DG 0-1 DG 1-1 DSA DG 0-1 DG 1-1 DSA DG 0-1 DG 1-1 

# Source Iterations 22 20 20 17 23 20 23 23 24 
Transport (s) 16.6 19.2 18.5 9.40 11.2 12.9 7.17 8.21 8.00 
Diffusion (s) 0.62 1.05 2.06 0.28 0.35 0.72 0.26 0.22 0.42 
Reading Input (s) 0.24 0.71 0.70 0.48 0.94 1.85 0.49 1.00 1.00 
Mesh Generation (s) 0.81 1.08 1.08 0.81 1.07 1.54 0.82 1.10 1.09 
DG-DSA matrix (s) 0.00 0.12 0.12 0.00 0.06 0.12 0.00 0.05 0.05 
Total Time (s) 20.2 24.0 24.3 12.1 15.0 18.7 9.77 11.6 11.9 

 

5.8 SUMMARY 

The DG-DSA method has been implemented to accelerate the PROTEUS-SN code written in 
FORTRAN. The coarse mesh generation and the diffusion matrix construction are outlined in 
the chapter. At the current stage of the implementation, there are a few limitations in the DG-
DSA implementation. It is now only able to read UFMESH mesh input file, and limited to two-
dimensional Cartesian coordinate system, and a fixed coarse mesh. The objective of the 
implementation was to demonstrate the feasibility of the DG-DSA method. Based on the single 
assembly model problem, it can be seen that DG-DSA can effectively reduce the number of 
iterations. However, the computing time was not significantly improved compared to the 
existing DSA method, even though the degrees of freedom is relatively smaller. It may be due 
to the fact that the solvers and preconditioners are not optimized. Further improvements are 
needed to fully realize the efficiency of DG-DSA. 
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6. CONCLUSIONS 
In this report, we have summarized our development work on DG-DSA and its implementation 
in PROTEUS-SN. This new DSA method can greatly improve the computational efficiency of 
conventional DSA methods by using DG methods. The novelty of DG-DSA is that it reduces 
the number of DOF by discretizing the diffusion equation on a coarse-mesh grid with local ℎ𝑝 
adaption. Our numerical results have demonstrated its rapid convergence performance and 
efficiency. Future work is needed to further improve the DG-DSA performance by developing 
optimal linear solvers and preconditioners for the DG solver. 

In addition, we developed a new nonlinear acceleration scheme, lpCMFD, which utilizes the 
linear prolongation technique instead of the conventional flat prolongation used in CMFD to 
update the neutron transport scalar flux. The new scheme can greatly stabilize the CMFD. 
lpCMFD has been tested on a MOC code. A track-based method is applied to calculate the 
centroids coordinates for the fine cells. Based on the numerical results of the 2D1G test problem 
and the 2D C5G7 problem, it has demonstrated that lpCMFD can stabilize the CMFD iterations 
on MOC method effectively and lpCMFD method performs better than odCMFD on reducing 
the outer MOC iterations.  

In order to further improve the effectiveness and stability of CMFD, we developed a new 
scheme, called LR-NDA. This method employs a local refinement approach on the framework 
of CMFD by solving a local boundary value problem of the scalar flux on the coarse-mesh 
structure to replace the piecewise constant scalar flux obtained by CMFD. The refined flux is 
then used to update the scalar flux in the neutron transport source iteration. We have 
demonstrated that LR-NDA is a local adaptive method, which means LR-NDA does not 
necessarily require local refinement for all the coarse-mesh cells on the problem domain, i.e., 
it can be used only for relatively optically thick regions where the standard CMFD scheme 
would encounter the convergence problem. 
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APPENDIX 

A.    LOCAL DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD 

Beside the interior penalty discontinuous Galerkin (IPDG) method presented in the previously, 
another popular DG method for solving the diffusion equation is so called the local 
discontinuous Galerkin (LDG) method, which is a type of mixed finite element methods that 
were well-studied for the numerical approximation of the diffusion equation.  

Before we present the main idea of the LDG method and how it is applied to our DSA problem, 
we would like to first provide a comparison of the LDG and IPDG method. Both methods 
belong to the family of DG method, and share the nice properties of the DG finite element 
methods, including the high order approximation to the solution of the diffusion equation, the 
hp adaptivity, and easy to implement for arbitrary domain and boundary condition. The IPDG 
method could be more compact than the LDG method. The main challenge with the IPDG 
method is that it involves a penalty parameter 𝜎t to be tuned for each problem. The method is 
proven to be stable only for sufficiently large 𝜎t. On the other hand, the LDG method has no 
parameter to be tuned, hence is easier to use. It also provides both optimal order of 
approximation to both the unknown 𝑢 and its derivative 𝑢G. 

Next, let us present the main idea of the LDG method and show some preliminary numerical 
results of the applying it to solve our DSA problem. We again use the simple problem 

−∇ ∙ l𝐷∇	𝛿𝜙(𝑥, 𝑦)n + Σf𝛿𝜙(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) , in Ω	,  (A-1) 

as an example, to demonstrate the method. We first introduce the auxiliary variable 𝒒 and 
rewrite this problem as the system of first order equations: 

−∇ ∙ (𝑑	𝒒) + Σf𝛿𝜙(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) ,    (A-2) 

𝒒 = 𝑑	∇	𝛿𝜙(𝑥, 𝑦) ,     (A-3) 

where 𝑑 = √𝐷. After discretizing the domain 𝛺 as ℰ, Multiplied by test functions υ and 𝒘, 
and integrated over an element 𝐸 gives 

−∫ υ	∇ ∙ (𝑑	𝒒)	} + ∫ Σf𝛿𝜙	υ} = ∫ 𝑓	υ} 	,					∀𝐸 ∈ 	ℰ ,   (A-4) 

∫ 𝒒 ∙𝒘} = ∫ 𝑑	∇	𝛿𝜙} ∙𝒘	,					∀𝐸 ∈ 	ℰ .   (A-5) 

Appling the Green’s theorem yields the weak formulation of  

∫ 𝑑	𝒒 ∙ ∇	υ} − ∫ 𝑑𝒒 ∙ 𝒏𝑬	υF} + ∫ Σf𝛿𝜙	υ} = ∫ 𝑓	υ} 	,				∀𝐸 ∈ 	ℰ,  (A-6) 

∫ 𝒒 ∙𝒘} = −∫ 𝑑	𝛿𝜙} ∇ ∙𝒘+ ∫ 𝑑	𝛿𝜙	𝒘 ∙ 𝒏𝑬F} 	,				∀𝐸 ∈ 	ℰ.   (A-7) 
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The LDG method is designed based on the above weak formulation. First, we would like to 
define a finite element space 𝒟ª(ℰ) for the DG solution, which is the space of discontinuous 
polynomials. The global basis functions of 𝒟ª(ℰ) have a support contained in each element. 

𝒟ª(ℰ) = span{𝑃�}: 1 ≤ i ≤ 𝑁}, 𝐸 ∈ ℰ},   (A-8) 

with 

𝑃�}(𝑥, 𝑦) = 	 ¯
𝑝�}(𝑥, 𝑦)	,				(𝑥, 𝑦) ∈ 𝐸
0	,																	(𝑥, 𝑦) ∉ 𝐸 ,    (A-9) 

where {𝑝�}} is a set of local basis functions that are chosen to be monomial basis functions, 
translated from the interval (-1,1) for quadrilateral mesh:  

𝑝�}(𝑥, 𝑦) = 	 ±
G²G³´K/L
d(G³´K²G³)

µ
¶
· T²T¸´K/L
d(T¸´K²T¸)

¹
º
, 𝐼 + 𝐽 = 𝑖	, 0 ≤ 𝑖 ≤ 𝑘} ,  (A-10) 

and (𝑥¿JZ/d, 𝑦ªJZ/d) is the midpoint of an element 𝐸 bounded by (𝑥¿, 𝑥¿JZ) ∩ (𝑦ª, 𝑦ªJZ). This 
yields the local dimension 

𝑁} =
(ª�JZ)(ª�Jd)

d
,    (A-11) 

where 𝑘} is the highest polynomial degree of an element 𝐸. Similarly, we can define the finite 
element space 𝒟ª(𝐸) on each element 𝐸. For the LDG method, since the first order spatial 
derivative is defined as a new variable 𝒒, an additional DG polynomial space 𝒰ª(𝐸) is also 
needed. Although there is no constraint on how to choose this space, however, a typical choice 
of 𝒰ª(𝐸) is   

𝒰ª(𝐸) = 𝒟ª(𝐸) 	×…× 𝒟ª(𝐸).    (A-12) 

Finally, the LDG method to solve the diffusion equation is given by: we are solving for 
(𝛿𝜙�À, 	𝒒�À) in 𝒟ª(ℰ) ×𝒰ª(ℰ)  space such that on each element 𝐸, 

∫ 𝑑	𝒒�À ∙ ∇	υ} − ∫ 𝑑𝒒�À� ∙ 𝒏𝑬	υF} + ∫ Σf𝛿𝜙�À	υ} = ∫ 𝑓	υ} 	,				∀𝐸 ∈ 	ℰ,  (A-13) 

∫ 	𝒒�À ∙𝒘} = −∫ 𝑑	𝛿𝜙�À} ∇ ∙𝒘+ ∫ 𝑑	𝛿𝜙�À� 	𝒘 ∙ 𝒏𝑬F} 	,				∀𝐸 ∈ 	ℰ,   (A-14) 

hold for all test functions (υ,𝒘) in 𝒟ª(𝐸) ×𝒰ª(𝐸). Here, the two hatted terms 𝑑𝒒�À�  and 
𝛿𝜙�À�  are the so-called numerical fluxes, which are a single-valued function defined on the 
element interface. There have been many studies on how to choose the numerical fluxes 
correctly, and the main guideline is to ensure the stability of the resulting LDG method. 
Usually, we choose the following numerical fluxes 

𝑑𝒒�À� 	= 	 {𝑑𝒒�À} 	+	𝐶ZZ[	𝛿𝜙�À] 	+	𝐶Zd[𝑑𝒒�À],   (A-15) 

𝛿𝜙�À� 		= 	 {𝛿𝜙�À} −	𝐶Zd[	𝛿𝜙�À],    (A-16) 
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with the notations of jump [∙] and average {∙} defined earlier. Here the parameter 𝐶ZZ must be 
non-negative to ensure the stability, and the parameter 𝐶Zd  can be arbitrarily chosen. In 
practice, we often choose the parameter 𝐶Zd to be either ½ or - ½,	leading to the following 
simplified fluxes 

𝑑𝒒�À� 	= (𝑑𝒒�À)J 	+	𝐶ZZ[	𝛿𝜙�À],    (A-17) 

𝛿𝜙�À� 		= 	 (𝛿𝜙�À)²	,     (A-18) 

or  

𝑑𝒒�À� 	= (𝑑𝒒�À)² 	+	𝐶ZZ[	𝛿𝜙�À],    (A-19) 

𝛿𝜙�À� 		= 	 (𝛿𝜙�À)J.     (A-20) 

With this choice of numerical flux, the auxiliary variable 𝒒�À  can be solved from 𝛿𝜙�À  
locally, therefore in the computation, one can eliminate the auxiliary variable 𝒒�À , and the 
introduction of 𝒒�À  is just for the purpose of deriving the algorithm and won’t add any 
additional computational costs. After plugging in the numerical flux in the LDG method, we 
arrive the two equations given by  

𝑨𝟏𝜷+ 𝑨𝟐𝜶 = 𝒃𝟏	,     (A-21) 

𝑨𝟑𝜷 = 𝑨𝟒	𝜶,      (A-22) 

where 𝜶 is a vector with components being the coefficients of 𝛿𝜙�À  in each element 𝐸, and 𝜷 
is a vector with components being the coefficients of 𝒒�À  in each element 𝐸. The matrices 𝑨𝟏, 
𝑨𝟐, 𝑨𝟑, 𝑨𝟒 come from the discretization of the corresponding terms. A further simplification 
leads to  

(𝑨𝟏𝑨𝟑²𝟏𝑨𝟒 + 𝑨𝟐)𝜶 = 𝒃𝟏	,     (A-23) 

which can be solved for the unknown function 𝛿𝜙�À . 

A numerical study of the DG-DSA acceleration performance was carried out based on a 1-D 
SN fixed-source model problem. Here we carried out both LDG and IPDG methods, as outlined 
in the previous sections. The domain is set as [0, 50cm], with the reflective boundary on the 
left side and the vacuum boundary on the right side. The domain is discretized into 50 uniform 
coarse-mesh cells. The fine-mesh number in each coarse-mesh cell is 10. The LDG and IPDG 
methods were used with piecewise linear polynomials and the optimized penalty number. The 
S12 with DG-DSA was implemented in MATLAB.  The numerical results are shown in Fig. A-
1, from which we can easily observe that for this test case, there is no obvious difference in the 
numerical performance of the LDG and IPDG methods. However, we would like to mention 
that for the LDG method, there is no need to tune the penalty parameter. We have also changed 
the setup of the problem slightly, and the updated numerical results are shown in Fig. A-2. For 
this test case, the IPDG method performs slightly better than the LDG method. Overall, we 
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observe that for the one dimensional test problem, the difference between the performance of 
LDG and IPDG methods is not significant, and one can choose whatever method he/she prefers.  

 

(a): Converged scalar flux 

 

(b) Flux relative error vs. iteration number 

Figure	A-1:	Numerical	results	of	LDG	and	IPDG	DSA	method	for	the	first	1D	problem.	
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(a): Converged scalar flux 

 

 (b) Flux relative error vs. iteration number 

Figure	A-2:	Numerical	results	of	LDG	and	IPDG	DSA	method	for	the	second	1D	
problem.	
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