
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Particle in Cell Algorithms and
Codes Toward the Next

Generation Architectures

Aram H. Markosyan, Chris Moore, Matthew
Bettencourt, Janine C. Bennett, Jonathan

Lifflander, David S. Hollman, Jeremiah
Wilke, Hemanth Kolla, Robert L. Clay (PM)

GEC 2017, Pittsburgh

November 9, 2017

SAND Number: SAND2017-9086 C

SAND2017-12244C

Outline

 AMT + DARMA Overview

 Introduction to SimplePIC

 Performance Results

 Conclusions and Future Work

Extreme-scale HPC system architectures introduce a
number of complexities

 Performance Heterogeneity
 Accelerators

 Thermal throttling

 General system noise

 Responses to transient failures

 Energy Constraints

 Decreased system reliability

 Deep memory hierarchies

3

Image courtesy of www.cal-design.org

Current imperative programming models and runtime systems
require mitigation of challenges largely at application-

developer level

AMT research is focused on mitigating system
complexities at the runtime system-level

4

Image courtesy of www.cal-design.org

 Abstractions provide a
separation of concerns

 Removal of system-level specifics
from application code

 Task parallelism

 Asynchrony, overlap of
communication and computation

 Load balancing

AMT models are a shift from an imperative to declarative
programming paradigm

Imperative vs declarative programming: a simple
example

5

DeclarativeImperative
Make me a sandwichGet a piece of bread

If likes mustard
Add mustard

If not vegetarian
Add meat

Add cheese
Add veggies
Put more bread on top
Cut in half

Programmer uses explicit
statements to control program

state and prescribe order of
operations

Programmer expresses logic
without prescribing control-flow

 Directed acyclic graph (DAG) encodes data-task dependencies

 Enables coarse-grained, distributed memory
analog of instruction-level parallelism

 Data prefetching

 Out-of-order task execution
based on runtime dependency analysis

 DAG can be annotated to capture

 Tasks’ read/write usage of data

 Task needs a subset of data

 Additional information enables runtime
to reason more completely about

 When and where to execute a task

 Whether to load balance

 Existing runtimes leverage DAGs with varying degrees of annotation

data-task graph

subset

reads

Asynchronous many task (AMT) models and runtime
systems provide a declarative programming approach

6

What is DARMA?

7

DARMA is a C++ abstraction layer for asynchronous many-task
(AMT) runtimes.

It provides a set of abstractions to facilitate the expression of
tasking that map to a variety of underlying AMT runtime system

technologies.

How does DARMA simplify the shift from imperative to
declarative programming?

8

Application

DARMA

Runtime

OS/ Hardware

Glue Code
(Specific to each runtime)

(Annotated imperative code)

The application “produces” work.

Annotated imperative code is

processed by DARMA, which builds

the DAG incrementally at run-time.

The DAG is generalization of a

producer-consumer work queue

The runtime system is in charge of

control-flow and the order in which

it “consumes” tasks off of the DAG.

9

What is DARMA?

 SNL is developing a new code base for plasma simulations

 Component based approach using the Trilinos framework

 The PIC component of Empire is the basis for our proxy app work

 Two sets on unknowns, mesh data and particles
 Domain decomposition on the fields and the particles can be out of

balance, (e.g. particle collision work is out of balance)

 Calculations are localized so colocation is important

 Work can be created in one location and migrate to a different location

 Potential solution – over decomposition
 Over decomposition breaks the problem up into more units than you have

computational cores

 Load balance at a middle level of work

 Overlap computation and communication
10

EMPIRE: ElectroMagnetic Plasma In Radiation
Environments

 MiniPIC is an electrostatic PIC miniapp build on MPI+Kokkos.

 A proxy app SimplePIC was developed
 Particle move kernel from MiniPIC on a structured mesh built on DARMA.

 3D with various boundary conditions

 MPI based version of SimplePIC was developed for benchmark purposes.

 The current code design flow is: SimplePIC → MiniPIC → EMPIRE.

 SimplePIC and the DARMA backend were built up together
 Every single new and experimental feature of DARMA was first tested on

the SimplePIC (performance/productivity feedback)

 Made DARMA a more performant, productive, feature rich and robust
programming model

11

From MiniPIC and SimplePIC to EMPIRE

SimplePIC Proxy Overview

 SimplePIC includes only particle move kernel
 Push particles in constant applied field

 Does not solve Poisson eqn. – this is integrated into MiniPIC

 Domain Decomposition: 2-level 3D structured grid
 Px

☓Py☓Pz grid of boxes (patches), nx☓ny☓nz grid within each box

 Computational costs:
 O(Nparticle) computation (memory bound), O(Nparticle

☓ patchsurf/patchvol)
communication,

 Proxy goal: serve as test ground for PIC algorithm design and
development on DARMA

12

SimplePIC Proxy Algorithm

• Decompose problem into patches and assign them to processing units

• For every patch initialize the swarm (particles on that patch)

• For each time step do (iteration)
• For each particle in the swarm do

• Advance particle until it reaches the patch interface or time expires

• If time is not expired do

• Put particle in the migrants (a buffer, corresponding to that patch interface)

• Remove particle from swarm

• Compute the total number of migrants in the entire domain

• While total number of migrants > 0 do (micro-iterations)

• For every patch interface exchange the migrants

• For each interface do

• For each particle in migrants do

• Advance particle until it reaches the patch interface or time expires

• If time expired add particle to swarm, otherwise put in migrants

• Compute the total number of migrants

13

Balanced and Unbalanced SimplePIC Studies

14

 Balanced use case assesses overheads with respect to MPI-only
implementation
 Every computational cell has N randomly placed particles (5 - 30), with

random velocities (|v| = const).

 Imbalanced use case assesses benefits of overdecomposition
and load balancing in DARMA
 Initially place 80% of particles into the 20% of the domain creating load

imbalance in the system.

 The computational experiment was designed such that the system will
reach to a fully balanced state in 500 iterations and come to the initial
state in 1000 iterations.

 In all studies we kept CFL number to a value of 0.96, which
translates into at most 3 micro-iterations per time step.

Strong scaling of balanced SimplePIC
up to 131K cores/2K nodes (KNL)

15

1.4B particles
143M cells

138B particles
4.6B cells

Mutrino (KNL, 4K cores) Trinity (KNL, 131K cores)

 DARMA overhead with respect to MPI is -5-24%.

 On 4K cores, grain size is too small and, hence,
degraded scaling.

 MPI scaling degradation is likely due to MPI only
launch on KNL.

 DARMA scales super-linearly up to 131K
cores.

Strong scaling of balanced SimplePIC
up to 32K cores/2K nodes (Haswell)

16

4.2B particles
141M cells

136B particles
4.5B cells

Mutrino (Haswell, 2K cores) Trinity (Haswell, 32K cores)

 DARMA scales consistently good on up to
32K cores.

 Slight overheads can be explained by the
small problem size on higher core counts.

 DARMA overhead with respect to MPI is 12-
19%.

 On 2K cores, grain size is too small and,
hence, DARMA does not have perfect linear
scaling.

 MPI scales ideally on up to 2K.

Strong scaling of imbalanced SimplePIC
up to 131K cores/2K nodes (KNL)

17

1.8B particles
55M cells
ODF = 8

40B particles
3.4B cells
ODF = 4

Mutrino (KNL, 4K cores) Trinity (KNL, 131K cores)

 For lower core counts, load balancing
provides around 50% speedup.

 For higher core counts, at least at this
overdecomposition level, speed up due to a
load balancer is 20%.

 These trends are similar for Haswell.

 Similar trends are present on Trinity at
these higher scales.

18

Time Profile Graph of Balanced SimplePIC for DARMA on
2k Cores/64 nodes (Haswell) for 3 Iterations

 x-axis is time and
y-axis are
different cores

 Most of the time
is spent executing
application tasks

 There is a small
amount of idle
time (white) at
the end of each
iteration

ODF=1

ODF=8

19

Percentage Utilization Graph of Balanced SimplePIC for
DARMA on 2k Cores/64 nodes (Haswell) for 3 Iterations

ODF=1

ODF=8

 x-axis is time and y-axis is the
proportional aggregate of work
type spent across the worker
cores

 With an overdecomposition
factor of 8 (ODF=8) the data
transfer time is slightly increased

 The idle time at the end of the
iteration is slightly reduced with
ODF=8 because the system is
able to overlap communication
with computation

20

Time Profile Graph of Balanced SimplePIC for DARMA on
2k Cores/64 nodes (Haswell) for last 2 micro iterations

ODF=1

ODF=8

 Processor utilization for 2 micro
iterations

 Note the scale: this is 25
milliseconds

 Overdecomposition increases
the execution time because data
transfer is increased (note the
increase in green and blue area)

 More particles must cross the
boundaries with smaller boxes

 Overall processor utilization is
increased because there is more
overlap with communication

21

Load Balancing Frequency of SimplePIC for DARMA on
2k Cores/64 nodes (Haswell)

ODF=1

ODF=8

 Calling load balancing only once
improves the performance
almost 2x.

 The optimal load balancing
frequency for this particular
case is 2 times.

 In general, optimal frequency
depends on factors like the cost
of load balancer, the grain size,
overdecomposition factor.

Projection views of imbalanced SimplePIC
for DARMA on 2K cores (Haswell)

22

 Significant improvement
in load imbalance with
more frequent calls to
load balancer.

 The overhead (cost) of
load balancer is
essentially constant.

 Over 2x CPU utilization
increase after the first
load balancer call (in both
cases).

Conclusions on SimplePIC Performance Study

 Balanced SimplePIC study stressed DARMA overheads with
respect to MPI. In the worst cases we are off by 25%.

 Balanced SimplePIC also showed an excellent scalability on
131K cores.

 Imbalanced SimplePIC demonstrated the benefits of
overdecomposition and load balancing on 131k cores, while
maintaining strong scalability.

 Addition of DSMC kernel will help increasing the grain size
and do more computation and communication overlap.

23

Lessons learned on productivity for SimplePIC proxy

 Manual (dynamic) overdecompositon and load balancing in
MPI can be very tedious and error prone task even for
structured PIC. For unstructured case, the situation is very
complex.

 Data decomposition in DARMA provides intuitive mechanisms
for work load balancing, while runtime handles scheduling.

 DARMA abstractions are fairly intuitive and provide a
productive environment for code design and development.

24

From SimplePIC to MiniPIC (and to EMPIRE)

 As designed, SimplePIC served as a test ground for a algorithmic
exploration for MiniPIC (EMPIRE).

 MiniPIC was further simplified (Kokkos and MPI dependences
were removed) and move kernel was DARMA-tized.

 DARMA-tization of the DSMC kernel is in progress.

 The prerequisites for DARMA to move forward (towards EMPIRE
code base) are: Kokkos and MPI interoperability

25

Future Work

 Focus on DARMA
 Interoperability

 Hardening/Tuning

 Productivity tools (timers, performance profilers, debugging aides)

 Devops, documentation, and testing

 Focus on SimplePIC and MiniPIC
 Incorporate a collide kernel in SimplePIC

 DARMAtize MiniPIC completely

26

