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Extreme-scale HPC system architectures introduce a 
number of complexities

 Performance Heterogeneity
 Accelerators

 Thermal throttling

 General system noise

 Responses to transient failures

 Energy Constraints

 Decreased system reliability

 Deep memory hierarchies
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Current imperative programming models and runtime systems 
require mitigation of challenges largely at application-

developer level



AMT research is focused on mitigating system 
complexities at the runtime system-level
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 Abstractions provide a 
separation of concerns

 Removal of system-level specifics 
from application code

 Task parallelism 

 Asynchrony, overlap of 
communication and computation

 Load balancing

AMT models are a shift from an imperative to declarative
programming paradigm



Imperative vs declarative programming: a simple 
example

5

DeclarativeImperative
Make me a sandwichGet a piece of bread

If likes mustard
Add mustard

If not vegetarian
Add meat

Add cheese
Add veggies
Put more bread on top
Cut in half

Programmer uses explicit 
statements to control program 

state and prescribe order of 
operations

Programmer expresses logic 
without prescribing control-flow



 Directed acyclic graph (DAG) encodes data-task dependencies

 Enables coarse-grained, distributed memory 
analog of instruction-level parallelism

 Data prefetching

 Out-of-order task execution 
based on runtime dependency analysis

 DAG can be annotated to capture

 Tasks’ read/write usage of data

 Task needs a subset of data

 Additional information enables runtime                                            
to reason more completely about 

 When and where to execute a task

 Whether to load balance

 Existing runtimes leverage DAGs with varying degrees of annotation

data-task graph

subset

reads

Asynchronous many task (AMT) models and runtime 
systems provide a declarative programming approach
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What is DARMA?
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DARMA is a C++ abstraction layer for asynchronous many-task 
(AMT) runtimes.

It provides a set of abstractions to facilitate the expression of 
tasking that map to a variety of underlying AMT runtime system 

technologies. 



How does DARMA simplify the shift from imperative to 
declarative programming? 
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Application

DARMA

Runtime

OS/ Hardware

Glue Code
(Specific to each runtime)

(Annotated imperative code)

The application “produces” work. 

Annotated imperative code is

processed by DARMA, which builds

the DAG incrementally at run-time.

The DAG is generalization of a

producer-consumer work queue

The runtime system is in charge of

control-flow and the order in which

it “consumes” tasks off of the DAG.
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What is DARMA?



 SNL is developing a new code base for plasma simulations

 Component based approach using the Trilinos framework

 The PIC component of Empire is the basis for our proxy app work

 Two sets on unknowns, mesh data and particles
 Domain decomposition on the fields and the particles can be out of 

balance, (e.g. particle collision work is out of balance)

 Calculations are localized so colocation is important

 Work can be created in one location and migrate to a different location 

 Potential solution – over decomposition
 Over decomposition breaks the problem up into more units than you have 

computational cores

 Load balance at a middle level of work

 Overlap computation and communication
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EMPIRE: ElectroMagnetic Plasma In Radiation 
Environments



 MiniPIC is an electrostatic PIC miniapp build on MPI+Kokkos.

 A proxy app SimplePIC was developed 
 Particle move kernel from MiniPIC on a structured mesh built on DARMA.

 3D with various boundary conditions

 MPI based version of SimplePIC was developed for benchmark purposes. 

 The current code design flow is: SimplePIC → MiniPIC → EMPIRE.

 SimplePIC and the DARMA backend were built up together  
 Every single new and experimental feature of DARMA was first tested on 

the SimplePIC (performance/productivity feedback)

 Made DARMA a more performant, productive, feature rich and robust 
programming model
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From MiniPIC and SimplePIC to EMPIRE



SimplePIC Proxy Overview

 SimplePIC includes only particle move kernel
 Push particles in constant applied field

 Does not solve Poisson eqn. – this is integrated into MiniPIC

 Domain Decomposition: 2-level 3D structured grid 
 Px

☓Py☓Pz grid of boxes (patches), nx☓ny☓nz grid within each box

 Computational costs:
 O(Nparticle) computation (memory bound), O(Nparticle

☓ patchsurf/patchvol) 
communication, 

 Proxy goal: serve as test ground for PIC algorithm design and 
development on DARMA
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SimplePIC Proxy Algorithm

• Decompose problem into patches and assign them to processing units

• For every patch initialize the swarm (particles on that patch)

• For each time step do (iteration)
• For each particle in the swarm do

• Advance particle until it reaches the patch interface or time expires

• If time is not expired do

• Put particle in the migrants (a buffer, corresponding to that patch interface) 

• Remove particle from swarm

• Compute the total number of migrants in the entire domain

• While total number of migrants > 0 do (micro-iterations)

• For every patch interface exchange the migrants

• For each interface do

• For each particle in migrants do

• Advance particle until it reaches the patch interface or time expires

• If time expired add particle to swarm, otherwise put in migrants

• Compute the total number of migrants
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Balanced and Unbalanced SimplePIC Studies
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 Balanced use case assesses overheads with respect to MPI-only 
implementation
 Every computational cell has N randomly placed particles (5 - 30), with 

random velocities (|v| = const). 

 Imbalanced use case assesses benefits of overdecomposition
and load balancing in DARMA
 Initially place 80% of particles into the 20% of the domain creating load 

imbalance in the system. 

 The computational experiment was designed such that the system will 
reach to a fully balanced state in 500 iterations and come to the initial 
state in 1000 iterations. 

 In all studies we kept CFL number to a value of 0.96, which 
translates into at most 3 micro-iterations per time step. 



Strong scaling of balanced SimplePIC 
up to 131K cores/2K nodes (KNL)
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1.4B particles
143M cells

138B particles
4.6B cells

Mutrino (KNL, 4K cores) Trinity (KNL, 131K cores)

 DARMA overhead with respect to MPI is -5-24%.

 On 4K cores, grain size is too small and, hence, 
degraded scaling.

 MPI scaling degradation is likely due to MPI only 
launch on KNL. 

 DARMA scales super-linearly up to 131K 
cores. 



Strong scaling of balanced SimplePIC 
up to 32K cores/2K nodes (Haswell)
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4.2B particles
141M cells

136B particles
4.5B cells

Mutrino (Haswell, 2K cores) Trinity (Haswell, 32K cores)

 DARMA scales consistently good on up to 
32K cores. 

 Slight overheads can be explained by the 
small problem size on higher core counts. 

 DARMA overhead with respect to MPI is 12-
19%.

 On 2K cores, grain size is too small and, 
hence, DARMA does not have perfect linear 
scaling.

 MPI scales ideally on up to 2K.



Strong scaling of imbalanced SimplePIC 
up to 131K cores/2K nodes (KNL)
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1.8B particles
55M cells
ODF = 8

40B particles
3.4B cells
ODF = 4

Mutrino (KNL, 4K cores) Trinity (KNL, 131K cores)

 For lower core counts, load balancing 
provides around 50% speedup.

 For higher core counts, at least at this 
overdecomposition level, speed up due to a 
load balancer is 20%. 

 These trends are similar for Haswell. 

 Similar trends are present on Trinity at 
these higher scales. 
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Time Profile Graph of Balanced SimplePIC for DARMA on 
2k Cores/64 nodes (Haswell) for 3 Iterations

 x-axis is time and 
y-axis are 
different cores

 Most of the time 
is spent executing 
application tasks

 There is a small 
amount of idle 
time (white) at 
the end of each 
iteration

ODF=1

ODF=8
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Percentage Utilization Graph of Balanced SimplePIC for 
DARMA on 2k Cores/64 nodes (Haswell) for 3 Iterations

ODF=1

ODF=8

 x-axis is time and y-axis is the 
proportional aggregate of work 
type spent across the worker 
cores

 With an overdecomposition 
factor of 8 (ODF=8) the data 
transfer time is slightly increased

 The idle time at the end of the 
iteration is slightly reduced with 
ODF=8 because the system is 
able to overlap communication 
with computation
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Time Profile Graph of Balanced SimplePIC for DARMA on 
2k Cores/64 nodes (Haswell) for last 2 micro iterations

ODF=1

ODF=8

 Processor utilization for 2 micro 
iterations 

 Note the scale: this is 25 
milliseconds

 Overdecomposition increases 
the execution time because data 
transfer is increased (note the 
increase in green and blue area) 

 More particles must cross the 
boundaries with smaller boxes

 Overall processor utilization is 
increased because there is more 
overlap with communication
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Load Balancing Frequency of SimplePIC for DARMA on 
2k Cores/64 nodes (Haswell)

ODF=1

ODF=8

 Calling load balancing only once 
improves the performance 
almost 2x.

 The optimal load balancing 
frequency for this particular 
case is 2 times.

 In general, optimal frequency 
depends on factors like the cost 
of load balancer, the grain size, 
overdecomposition factor.



Projection views of imbalanced SimplePIC 
for DARMA on 2K cores (Haswell)
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 Significant improvement 
in load imbalance with 
more frequent calls to 
load balancer. 

 The overhead (cost) of 
load balancer is 
essentially constant. 

 Over 2x CPU utilization 
increase after the first 
load balancer call (in both 
cases).



Conclusions on SimplePIC Performance Study

 Balanced SimplePIC study stressed DARMA overheads with 
respect to MPI. In the worst cases we are off by 25%. 

 Balanced SimplePIC also showed an excellent scalability on 
131K cores.

 Imbalanced SimplePIC demonstrated the benefits of 
overdecomposition and load balancing on 131k cores, while 
maintaining strong scalability.

 Addition of DSMC kernel will help increasing the grain size 
and do more computation and communication overlap.
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Lessons learned on productivity for SimplePIC proxy

 Manual (dynamic) overdecompositon and load balancing in 
MPI can be very tedious and error prone task even for 
structured PIC. For unstructured case, the situation is very 
complex. 

 Data decomposition in DARMA provides intuitive mechanisms 
for work load balancing, while runtime handles scheduling.

 DARMA abstractions are fairly intuitive and provide a 
productive environment for code design and development. 
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From SimplePIC to MiniPIC (and to EMPIRE)

 As designed, SimplePIC served as a test ground for a algorithmic 
exploration for MiniPIC (EMPIRE).

 MiniPIC was further simplified (Kokkos and MPI dependences 
were removed) and move kernel was DARMA-tized.

 DARMA-tization of the DSMC kernel is in progress.

 The prerequisites for DARMA to move forward (towards EMPIRE 
code base) are: Kokkos and MPI interoperability
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Future Work

 Focus on DARMA 
 Interoperability

 Hardening/Tuning

 Productivity tools (timers, performance profilers, debugging aides)

 Devops, documentation, and testing

 Focus on SimplePIC and MiniPIC
 Incorporate a collide kernel in SimplePIC

 DARMAtize MiniPIC completely

26


