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Abstract. We investigate possible options to create a Dragonfly topology able to accom-
modate a specified number of end-points. We first observe that any Dragonfly topology can
be described with two main parameters, imbalance and density, dictating the distribution
of routers in groups, and the inter-group connectivity, respectively. We introduce an al-
gorithm that generates a dragonfly topology taking the desired number of end-points and
these two parameters as input. We calculate a variety of metrics on generated topologies
resulting from a a large set of parameter combinations. Based on these metrics, we isolate
the subset of topologies that present the best economical and performance trade-off. We
conclude by summarizing guidelines for Dragonfly topology design and dimensioning.
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1 Introduction

The Dragonfly topology, introduced by Kim et al. [1], is a direct topology, in which every
router accommodates a set of terminal connections leading to end-points, and a set of topological
connections leading to other routers. The Dragonfly concept fundamentally relies on the notion
of group. A collection of routers belonging to the same group are connected with intra-group
connections, while router pairs belonging to different groups are connected with inter-group
connections. In practical deployments, routers and associated end-points belonging to a group are
assumed to be compactly colocated in a very limited number of chassis or cabinets. This permits
to implement intra-group and terminal connections with short-distance, lower-cost electrical
transmission links. In return, inter-group connections are based on optical equipment that is
capable of spanning the tens of meters inter-cabinet distances.

Modularity is one of the main advantage provided by the dragonfly topology. Thanks to the
clear distinction between intra- and inter-group links, the final number of groups present within
one supercomputer does not affect the wiring within a group. Vendors can therefore propose
all-included, all-equipped cabinets corresponding to a group, letting supercomputer operators
free to decide how many such groups/cabinets they want to acquire. For instance, the XC40
architecture proposed by Cray consists of 1 to 241 groups/cabinets [2]. The fixed intra-group
wiring also makes upgrading a dragonfly based supercomputer relatively straightforward from
an hardware point-of-view, as only existing inter-group links might have to be reorganized. In
some cases, incumbent inter-group links can even be kept in place, and simply complemented
with additional inter-group links connecting the incumbent groups with the new ones, and the
new ones among themselves.

A dragonfly topology also guarantees a large path diversity between end-points, enabling
various flavors of adaptive, non-minimal routing schemes [1]. In presence of a congestion be-
tween two groups, traffic can be deflected to third party groups, then forwarded to the correct
destination. This feature allows the bandwidth available between two groups to be virtually
multiplied by a factor up to g — 2, where g is the number of groups.

However, besides its modularity and capability to leverage non-minimal routing schemes,
the Dragonfly topology takes into account the difference between electrical and optical cables.
Although the price gap is shrinking, optical links are still largely more expensive than their
electrical counterpart, and thus represent a considerable fraction of an interconnect total cost.



There is therefore a motivation to allow fine tuning of the expensive “optical bandwidth”. A
dragonfly cleanly separates the most expensive fraction of the bandwidth (optical) outside of the
cabinets whereas the least expensive part (electrical) is “hard-wired” inside the cabinet. As not
all parallel applications require the same balance between bandwidth and compute, adapting the
bandwidth available is an interesting feature. For instance, supercomputer operators interested in
compute power and less concerned with bandwidth-intensive workloads can save on the “optical
bandwidth” and invest in additional cabinets.

All these interesting features caused the Dragonfly topology to be the default choice for the
whole XC series of Cray [3], and thus to be widely adopted in the largest supercomputing plat-
forms. The dragonfly concept also triggered sustained interest from the scientific community,
with research papers addressing congestion in dragonflies [4] or optimizing throughput [5], and
possible inclusion of optical switching [6]. One can note across the literature, however, varying
ideas of what constitutes a Dragonfly. Here we aim at clarifying the Dragonfly definition, and
at showing what a Dragonfly can and cannot be. We first make the relatively trivial but im-
portant statement that a Dragonfly with fully-meshed intra-group connectivity is essentially a
2D-Flattened Butterfly (2D-FB), one dimension of which has been thinned (the one wired with
optical cables). We then show that a Dragonfly topology can be described by a) varying sizes of
the two dimensions of the “underlying” 2D-FB, and b) by the thinning of the optical dimension.
Having reduced Dragonfly to two parameters, we scan many designs and perform thorough ex-
ploration of the Dragonfly design space. We finally analyze the value of the identified designs
by mean of a cost model. Our analyses are related to the those reported by Camarero et al.[7],
but with focus on practical insights rather than graph theory.

2 Dragonfly variants description and construction

2.1 Definitions

We begin by introducing a notation, much inspired by the one originally given by Kim et al. [1].
We consider a Dragonfly as being made of g groups with a routers in each group, therefore with
a total of S = ag routers. Each router is accommodating p terminal connections to end-points.
Because we uniquely consider Dragonflies with fully-meshed intra-group connectivity, each router
also accommodates a — 1 intra-group connections to the other a — 1 routers of the group. Finally,
each router has h inter-group connections to routers located in other groups. We immediately
remark that under these assumptions, each router must offer at least radizx = p+h+a — 1
ports and that the topology can scale to N = Sp = agp terminals. The topology is also made
of ga(a — 1)/2 bi-directional electrical links, and gah/2 optical ones.

We additionally introduce A as the average distance in the Dragonfly graph, i.e. the average
of the minimal number of hops separating every possible node pair. We note that A is a function
of the a, g and h parameters, nevertheless we privilege the A notation to A(a, g, h) for brevity.
Next to the average global distance A, we also introduce J; as the average distance separating
node ¢ from other nodes.

We set the imbalance coefficient b € [—1,1] to represent how the sizes of the optical and
electrical dimensions match or mismatch, and d € [0,1] that captures the extent to which the
optical dimension is interconnected. These two parameters will be further described in subsection
2.4. Finally, because we are interested in comparing Dragonflies of similar scales, we introduce
Sdesired a8 a parameter imposing a minimal number of routers (hence S > Sgesired), and Nyesired
to impose a minimal number of end-points (N > Nyesired)-

2.2 Dragonfly construction

Six examples of Dragonflies all made of S = Sgesirea = 42 nodes are illustrated in Fig 1. We
call the case drawn in Fig.1a the canonical design. We take this case as the starting point for
our explorations. A Dragonfly is said to be canonical when ¢ = a + 1 and h = 1. In that



case, the number of inter-group connections associated to a group is ha = g — 1, i.e. a group
is exactly connected once to every other groups. This contrasts with the case shown in Fig.1b
which has the same g and a values but has h = 6 inter-group links per router. In this way, not
only is every group connected to every other group, but additionally every router is directly
connected to every other group (as h = g — 1). In that case, the Dragonfly becomes effectively
a 2D-FB. Through this example, we see that every router can be characterized by a (z,y)
coordinate, x giving the router position in the electrical dimension (i.e. within a group) and y
the group the router belongs to. We further remark that the size of the electrical dimension
is a (as € [0,a — 1]), and the size of the optical dimension is g (y € [0,g — 1]). The optical
dimension is minimally populated when h = 1 and maximally populated with h = g — 1. We
also notes that the cases in Fig 1a and Figlb have similar optical and electrical dimension sizes.
We can therefore describe the canonical case as minimal optical wiring with routers identically
distributed across electrical and optical dimensions.

(a) ”Canonical” Dragonfly (b) Dragonfly variant with (c) Dragonfly variant with
witha=6,9g=7, h=1. a=6,g=7,and h=26 a=14,g=3,and h =2
0% 0]

(d) Dragonfly variant with (e) Dragonfly variant with (f) Dragonfly variant with
a=3,g=14,and h=1 a=7g=6,and h=1 a=21l,g=2,and h=1

Fig. 1: Examples of 2-level Dragonfly variants parameterized using different combinations of a,
g, and h but with Sgesirea = 42. Purple links represent inter-group optical links, while blue links
represent intra-group electrical links.

Fig. 1c shows a case of great discrepancy between electrical and optical dimensions, with
the electrical dimension (@ = 14) much larger than the optical one (g = 3). We note that each
group has ah = 14 inter-group links, the total number of inter-group links is gah/2 = 21, and
thus that each pair of group is connected through 7 connections. This means that exactly half
of the routers in, say, group 0 are connected to group 1, and the other half to group 2.

Fig. 1d shows an opposite case of very small electrical dimension (a = 3, g = 14). We note that
even though more than one inter-group link is allocated to each router, the number of inter-group
links leaving each group is only ah = 3, which does not permit full inter-group connectivity. It
is not straightforward to pick which 3 among 13 other groups to form an inter-group connection
with, since there are many possible combinations. A similar problem of links/group mismatching
is faced in the example of Fig. 1le: each group has ah = 7 inter-group links at its disposal, whereas
only g — 1 = 5 neighboring groups must be reached. To allocate inter-groups links in these



“inharmonious” cases, a wiring algorithm is introduced in the next sub-section. Finally, in the
case shown in Fig. 1f, although h equals 1, is incidentally equals to g — 1. The resulting topology
is therefore a 2D-FB, and h can also not be made larger. Through these examples, we see that
the design space for getting a Dragonfly with S = 42 is quite wide already, demonstrating the
richness of designs when S scales to 1,000 or higher.

2.3 Dragonfly Graph Wiring Algorithm

As discussed in the previous section, in order to explore the entire design space, we need to be
able to generate a Dragonfly topology using any arbitrary combination of a, g, and h. Given
this set of parameters, we would like to distribute the global links between groups as evenly as
possible, in particular such that the diameter and the average global distance A are minimized,
and maintain fairness by avoiding “unevenly’ connected’ nodes with varying d; average distances.

The problem of allocating inter-group links that achieving optimal fairness, diameter or A (or
a combination thereof) is NP-hard. Instead of targeting global optimality, the wiring algorithm
we introduce is a greedy heuristic. The algorithm starts by considering every group as a vertex
in a secondary graph G = (V, E), and by allocating a X h links to each vertex Vi, € V, effectively
creating an inter-group topology. The destination V; of each newly added link is taken in the set
of vertices with the least number of connections so far. Note that the algorithm may select V;
even though one or more links have been awarded to the (Vj,V;) pair. Once the link has been
allocated to a group pair (V%,V;), the algorithm identifies the router with the least number of
connections so far within groups k£ and ¢ and allocates the link to said router. When the graph
is sparsely occupied by edges, every group is equally likely to be picked to from a link with
Vi, and global link allocation resembles the relative global link arrangement[10]. As the graph
becomes more saturated with edges, the algorithm tends to distribute links in a fair way by
selecting target groups with lowest global “reachability”, thus making global link arrangement
more random in all cases other than when g = ah + 1.

In the pseudocode listed below, 7;; is used to represent the total number of inter-group links
connecting group i to group j (and is symmetric for i and j). p; denotes the score of the group
1, which is used to account for both how many inter-group links the current target group k
has already formed with group i (accounted for by »  n; term), and how densely group i is
globally-linked to other groups (7).

Algorithm 1 Dragonfly Wiring Algorithm

1: define G := (V, E), s.t V is set of all the Dragonfly groups and E is the set of inter-group links

2: initialize n :=0,Vi,j € V

3: for K€V do

4 for d=0,....,axh do

5: for i € V. where i # k do

6: define p; := > mij, Vi, jstj#k
jev

7

8

pick ¢ s.t p; := mig p and > myy < (a X h)
i'e

jEV
: Nik = Nik + 1
9: end for
10: end for
11: end for

We evaluated the topologies obtained with our wiring algorithm, in terms of average global
distance A, diameter, and fairness. To measure the fairness level, we consider two metrics:
the first identifies 0,4, and d,,4, among all & values, i.e. the average distances seen from the
most and least centered node, respectively, and calculate the greatest difference in percent
(d = 100%). The second metric calculates the squared coefficient of variation across
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Fig.2: (a) Global average distance A, (b) topology diameter, (¢) maximum difference between
smaller and larger node average distance §;, and (d) squared coefficient of variation of §;.

the §; set. Results for a set of topologies with at least Sgesireq = 1000 are displayed in Fig. 2.
We observe that average distances A generally decreases as more links are added to the optical
dimension. In general, the larger the groups, g (thus smaller group sizes, a), the more reliant
the Dragonfly is on optical links to “reach” routers in other groups, as opposed to reaching
them directly via the intra-group electrical links. This translates into a larger A values for the
same h. Note that ripples appear for g = 45, revealing some limitations in the wiring algorithm.
More importantly, when a x h reaches or exceeds g — 1, both dimensions are fully populated,
and we obtain a 2D-FB topology with diameter of 2. At this point, additional inter-group
links are parallel to existing links, which does not affect A. In contrast, when g = 45, and
a = [%1 = 23, the diameter is 5 for h = 1 as shown in Fig. 2b. Hence, with ah = 23
inter-group links per group, all-to-all group connectivity cannot be guaranteed anymore.

Fig. 3 shows the sorted §; values for 16 datapoints of Fig. 2. The maximum difference d
between 6,5, and 0,4, is also displayed. For (g = 12,h = 15), (¢ = 21,h = 15) and (¢ =
21, h = 10) the average distance is the same for all nodes and d is therefore null (ideal fairness).
In the first case, h is larger than g — 1 leading to a saturation of the connectivity in the optical
dimension thus to a 2D-FB topology. In the second case, each group has a x h = 48 x 15 = 720
inter-group links, which is a round multiple of g — 1 = 20. Every group pair is thus awarded
720/20 = 36 links. The fact that these 36 links must be further allocated to the a = 48 routers
composing each group is not causing unfairness, a fact that validates the viability of the wiring
algorithm. The same situation occurs in the third case (g = 21, h = 10): there are 480 inter-group
links, which is also a round multiple of 20.
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Fig. 3: Distributions of average distances of graph as viewed from each node. § in each plot
denotes the coefficient of variation for the average distance.

When a x h (the number of inter-group links per group) is not a multiple of g — 1, some
group pairs receive extra links (the “remainder” links ). The routers present in these pairs
are consequently favored. Looking at the general behavior on Figures 2(c-d), we observe that



unfairness tend to grow with large h values, and with the number of groups g. In general, the
more remainder links and group pairs, the harder it is to maintain fairness. Also note the bottom
right cases on Fig. 3 (h =1, g = 33 or 45): with less than one inter-group link per group pair
on average, all-to-all inter-group connectivity is not maintained, causing the diameter to be 5.
Such cases are also subject to increased unfairness.

2.4 Exploring the Dragonfly using imbalance and density parameters

As mentioned above, we introduce two parameters to control the shape of a Dragonfly topol-
ogy. The imbalance coefficient b € [—1,1] represents how the sizes of the optical and electrical
dimensions mismatch, and the density coefficient d € [0, 1] captures to which extent the optical
dimension is interconnected. The density d parameter implicitly controls h through:

h=maz(0, |1+ d(g —2)]), where 0 <d <1 (1)

We observe that for g = 1, h is always null (no inter-group links). For d = 0, h is always equal
to one (minimal inter-group connectivity). In contrast, for d = 1, h = g — 1, each router is
connected to its counterpart in every other group, and the topology is thus a 2D-FB (maximal
inter-group connectivity). For the imbalance parameter, b = 0 should reflect a situation as close
to the canonical dragonfly as possible with ¢ = a — 1. We define b = —1 as the case where the
optical dimension is down-sized to g = 1, i.e. the topology is made of a single, large group with
a = S routers. On the other extreme, we define b = 1 to describe a topology with g = .S groups,
each composed of a single router (a = 1).

In order to control a (and by extension g) by b, we first need to identify the sizes of the ideal
electrical and optical dimensions of a canonical Dragonfly corresponding to Sgegireq. Noting that

ag > Sgesireqa and that g = a + 1, we can write Sgesirea > a(a + 1). Equality is achieved when
—14+V14450csired
2

Qcanonical = . From there we can define:
o (acanonical - b(Sdesired - a}canonicalﬂ when —1 < b<0 (2)
[1 + (1 - b)(acanonical - 1)] when 0 <b <1
g = I—Sdesi'red/a;l (3)
The above equations do permit to obtain i) @ = Sgesired and g = 1 when b = —1;ii) a = 1

and g = Sgesireq When b = 1; and iii) a construction close to one of the canonical dragonflies
for b = 0. In the later case, taking for instance Sgesireq = 2000, we have Geanonical = 45.22 thus
a = [acanonical—l =46 and 9= I—Sdesired/a—l = 44.

For negative b values, a linear control of a with b was ineffective. Hence, for —1 < b < —0.5,
eq. 2 returns Sgesired — 1 > @ > Sqesired/2. When introduced into eq. 3, these values all return
g = 2. To avoid this pitfall, we use b to control g instead of a for negative b values. First, we

similarly obtain geanonical = YA t1S V21+45. We then modify the set of equations in:
g = [1 + (b + 1)(gcanonical - ]-)—Iaa = [Sdesired/g—l when —1 < b<0 (4)

a = I_l + (1 - b)(acanonical - 1)179 = (Sdesired/a—l when 0 < b < 1 (5)
Fig. 4a shows obtained a, g and S values for Sgesireq = 1500, as a function of b. Defined this
way, Eqn 4 and 5 allows b to control a and g values while minimizing ag — Sgesired-

Having introduced the mapping of (b,d) to (a, g, h), we can represent the Dragonfly design
space as a rectangle from (—1,0) to (1,1). The corner-cases of these design spaces are drawn in
Fig. 4b: along the b = —1 line, the obtained topology is an electrical full-mesh. Since the optical
dimension is non-existent, topologies along this line are not affected by density. At coordinate
(1,0) we find an optical ring. Finally, an optical full-mesh appears at coordinate (1,1). We can
also reverse evaluate the imbalance and density coefficients of the designs shown in 1. In Fig. 1a,
the canonical Dragonfly logically maps to (0,0) while the 2D-FB in Fig. 1b maps to (0,1). The
other topologies of Fig. 1 are also reproduced in Fig. 4b with their corrresponding coordinates.
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Fig. 5: Characteristics of Dragonfly topologies accommodating at least Sgesireq = 1500 routers.

Fig. 5a and 5b depict how the ratio of optical links is affected by the two parameters b and
d. As expected, when imbalance is b = —1 or b = 1 the topology has only one dimension, which
is either fully electrical or optical. Fig. 5¢ shows how the topology diameter is influenced by the
density and imbalance. For b = —1, the topology is an electrical full-mesh of diameter 1. For
b =1 with densities d = 0.5 and d = 0.8, the resulting topologies are not 2D-FB, but the wiring
density is large enough to always conserve one of the two 2-hops paths between each node pairs
that a regular 2D-FB offers, resulting into a diameter of 2. When density d = 0 and b = 1, the
topology becomes a ring with a diameter of 750. Fig. 5d and 5e depict the impact of parameters
on the average distance. As the imbalance leans toward negative values, A decreases, which is
expected: more routers can be reached in 1 hop through the large intra-group electrical-mesh.
Interestingly, positively imbalanced topologies also show a lower A than strictly balanced ones,



provided enough density is given. This is mostly due to the high value that h can take when the
number of groups g increases (as h = max (0, |1 + d(g — 2)|)). Looking closer at case b = 0.8, we
observe that the topology made from 167 groups translates into h = 83 when d = 0.5. The many
inter-group links cause the vast majority of node pairs to be separated by two hops (electrical-
optical, optical-electrical, and optical-optical). When d = 1 (2D-FB cases), graph diameter is at
most 2, and A converges to 1 as imbalance grows and the topology approaches a full-mesh.
These analyses highlight the diversity of Dragonfly designs, notably in terms of the propor-
tion of optical links, average distance and diameter. However, this diversity also translates into
a highly varied total topological bandwidth, each of which possessing the ability to support
different number of terminals (Fig. 5f) and corresponds to different implementation costs. In
order to compare the diversely dense and balanced Dragonflies, we first show in the next section
how to adapt our exploration space includes different topologies that are all capable of accom-
modating a similar number of terminals Ngegireq. Then, in Section 4, we introduce a cost model
to evaluate the cost of each design and elaborate on topologies supporting Ngesireq terminals.

3 Constructing Dragonflies for a minimal number of end-points

In our explorations so far, we have let the parameter p which denotes the number of terminals per
router untouched. p is, however, a key factor in the Dragonfly construction, as it determines not
only the final scalability of the topology, but also the required router radix. Moreover, we observe
in Fig. 5f that the total number of links employed in the Dragonflies explored greatly varies
with d and b, and consequently so does the bandwidth made available. If a substantial amount
of bandwidth is available within the topology, e.g. when the Dragonfly is clearly electrically
balanced (b = —0.8 as in Fig. 5f), it is interesting to populate the S routers with more terminals
to ideally exploit the available bandwidth.

We can make the number of terminal attached to a router p proportional to the number
of links attached to this same router p ~ (a — 1 4+ h). This is the approach used in Kim et
al. original Dragonfly proposal [1]. A Dragonfly being of diameter 3, each transmitted bit is,
in the worse case, forwarded twice onto a local link, once onto a global link, and once onto
the destination’s terminal link. From this stems that p = § = h. This approach, however, is
too limited in our case, as our wiring algorithm may return topologies of variable diameter.
Furthermore, for topologies with strongly negative (large electrical groups) imbalance b, much
of traffic remains within the groups which contradicts the worse case assumption that every bit
transits across groups.

To obtain a number of terminals p most suited to each of our designs, we start by remarking
that the total traffic carried over a topology is proportional to the average path lengths (assuming
no locality — every node pairs have equal probability to exchange traffic). Thus, either the total
bandwidth made available by the topology should be proportional to A, or the number of traffic
injectors should be inversely proportional to A. Since we cannot easily add bandwidth over the
topology, we compensate A by changing p:

N S(a— 1 -‘rheff)

A , where hepr =k x h (6)

Here we introduce the optical link redundancy factor, k, which represents how many optical
cables connect two routers. Note that the introduction of the redundancy factor does not affect
the characteristics of a given topology aside from introducing more bandwidth between two
routers. In applying the methodology proposed by Rumley et. al[8], we can pick p such that
the total traffic injected under uniform traffic must not exceed the total bandwidth installed
NA < S(a— 1+ h) which can be rewritten as:

N (af].‘i’heff)
= < —_— e
P=7g= A (M



If we target an almost saturated topology under uniform traffic, pseiected = [(a — 1 + h)/A]
terminals should be connected to every swith. Note that the resulting network utilization (still
under uniform traffic) can be written as:

_ Pselected
H = ( (a—lzheff)) (8)

If equality is reached in Eq. 7, utilization is maximal (100%). Otherwise, psejecteq i the largest
integer smaller than %, in which case utilization is less than 1.

Eq. 7 is not entirely satisfying as it implies that the number of routers, S, best suited to
support N terminals is already known — either dictated by a,¢g and h, or, when using our
exploration mechanisms, given as a parameter b and d. The resulting total number of terminals
supported N = pS might thus clearly differ from the original Nycgireq goal. We can circumvent
this limitation by iteratively testing a sequence of p values. As soon as p is fixed, Sgesireq CaN
be obtained as Sgesired = [Ndesired/P], a Dragonfly topology of parameters b,d and S can
be produced, its average distance A can be obtained, which ultimately permits us to evaluate
the bandwidth utilization (Eq. 8). The value psejectea for which the utilization is the closest to
1 should be retained. To find psejected, We note that the utilization necessarily grows with p.
Hence, for very small p values, the number of routers S is large, which results greater number
of links. As p is increased, the Dragonfly topology shrinks and so does its bandwidth. There is
necessarily a pegeess for which utilization exceeds 1. Finding the p that maximizes the utilization
can thus simply be achieved by considering incremental p values until reaching pezcess- This is
computationally acceptable as p is typically smaller than 50 for most Dragonfly designs. One
may also cap p by the router radix which equals p+ h.fs 4+ a— 1. Most modern routers available
in the market today (year 2017) is limited to radices of ~ 100. Meanwhile, A can be easily
obtained as a side product of the wiring algorithm.
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Fig. 6: Characteristics of Dragonfly topologies accommodating at least Ngesireqa = 10, 000.

It is important to recognize the limitations of Eq. 7, as it only considers p such that the global
bandwidth can support a uniform traffic, but does not guarantee that this bandwidth is available
where the highest congestion occurs. For instance, Eq. 7 would not hold when the topology is
one with two large groups connected by a single optical link, since the single optical link would
need to support roughly half the traffic. Even with uniform traffic injection, the optical link is
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subjected to extreme congestion, bottlenecking the network bandwidth at a lower bound than
what the right side of Eq. 7 provides. To prevent such situations, the bottleneck link should be
identified and p chosen in such a way that ensures the utilization of the said link is below 1.

Fig. 6 reports the properties of many Dragonflies generated with the technique described
above, all of which capable of supporting at least Nyegireqa = 10,000 terminals. We first observe
how the maximal number of terminals per router p varies across designs (Fig. 6a). Through
the S = [Ngesirea/p] relationship, the number of routers S (Fig. 6b) is also affected and not
stable as previously seen in Fig. 4a. Notice that the changing of S and density parameter also
significantly affects the shape of the a and g curves of Fig. 6c¢.

We observe that the average distances A in Fig. 6d is very much comparable to the constant
Sdesired case depicted in Fig. 5d. This is because the average distance is mostly related to the
structure of the topology, hence to b and d, and marginally related to its size. The shapes of the
A curves propagates into the ones of p (Fig. 6a), p being inversely proportional to A, and finally
into the shapes of S. The number of links present in each topology (Fig. 6e) is also roughly
proportional to A, and overall less affected by the Dragonfly “shaping” parameters b and d than
previously when exploring topologies with constant Sgesired-

Fig. 6f finally shows the impact of imbalance and density on the required radix. We note
that when density is maximal, the radix requirements is minimized when topologies are bal-
anced, which is a known property of Flattened-Butterflies. When density decreases, positively
imbalanced topologies tend to favor lower radix routers. For minimal density d = 0, the required
radix constantly decreases until the topology becomes a ring. It is interesting then to note that
designs with high b and low d becomes more favorable due to their limited radix requirements.
Fig. 6b supports this as it shows that low router radix are required when there are more numer-
ous routers in the Dragonfly. To clarify the value of these different option, we introduce in the
next Section a cost model for routers and links.

4 Design selection via cost comparison

In this section we aim at estimating the cost a high-end HPC packet router switch of any
radix. Based on pricing information available on ColfraxDirect[9], we considered a low-tier 24-
port router currently priced at $7095, and a high-tier 48-port router at $10455, taken from the
same supplier and working at 100Gb/s. These two data points are used to derive the following
cost model. We assume the marginal cost of adding a port to an existing router to be a U-
shaped quadratic function with a minimum in 36. The rationales are the following: adding a
port would benefit from economics of scale, but is also subject to technical complexity; the
minimum of the U-shaped curve correspond to the port count where the two effects negate each
other. We place the minimum marginal cost in the middle of the low-tier and high-tier designs,
assuming that with more resources, the supplier may incorporate a “mid-tier” 36-port router
into its product line. Since this is not the case, two designs equally distant from the optimal cost
fulfill the market demands better. This causes the derivative of our cost model to be written as

%cost(r) = ¢1(r—36)?+cq, where ¢; and ¢y are constants. Solving for the polynomial constants

x10*

2500 10
2000 8
1500
1000

500 2

Derivative of cost with
respect to radix ($/radix)

0 0
0 50 100 150 0 50 100 150
Radix, r Radix, r

(a) (b)

Fig. 7: Cost model for predicting router price as a function of radix/port count
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using the discussed price points, we arrive at the following cost model:

cost(r) = 0.09017r> — 9.73r? + 477r (9)

where r is the radix/port count of the router, and cost(r) is in the units of $’s. The resulting
cost and it’s derivative with respect to port-count for port counts between 0 and 128 are shown
in Fig. 7a and 7b. We emphasize here that obtaining a model with a growing marginal cost per
port is necessary to ensure that the router radix is not infinitely scalable. If the cost of a router
is simply assumed a linear function of the number of ports, the cheapest topology becomes the
one consisting of a single router with Nyesireq ports. Provided that routers always have a radix
multiple of 8 or 12, we then use this cost model to pin-point the cost of a range of routers.
Logically, our model returns $7095 and $10,460 for 24-port and 48-port routers, respectively
($296 and $218 per port). A putative 64-port router is $14,320 ($228 per port). For 96 ports,
this price grows to $35,884 (8374 per port).

For links, we consider a 100Gb/s electrical link to be $80 [9]. As we are interested in analyzing
the impact the optical/electrical cost ratio has on the Dragonfly topology selection, we consider
optical links to have cost comprised between $80 (same as electrical) and $800 (ten times more
expensive). As of today (2017), optical links are about five times more expensive than their
electrical counterparts.

Results of the cost analysis are depicted in Fig. 8 for Ngesireq = 10,000, and considering
radixes of [36, 48,60, 72]. Fig 8a shows how the cost evolves with the design space when consid-
ering $400 for optical links. We note a correlation between Fig 8a and Fig. 8b. The cheapest
solutions are the ones that make the best use of the ports available. Fig. 8c shows that the
cheapest design found in our exploration is obtained for b = —0.5 and d = 0.6, which correspond
to g = 17 groups of a = 32 routers, p = 19 terminal per router and A = 10 inter-group link
per router. The proportion of electrical links is 76%. We note that this cheapest design requires
60-port routers and dominates all designs requiring 72 ports. As expected, it is found in the
negative imbalance region that favors electrical links.

Figures 9a, 9b and 9c illustrate the cost per terminal considering an optical link price of $80,
$400 and $800. We note that as the price of optics increases, negatively imbalanced designs tend
to become cheaper. Interestingly, in the presence of equally expensive electrical and optical links,
six designs achieve the cheapest cost found ($733.86), with densities of 0.7 or 0.8, and imbalance
spanning from —0.2 and 0.7. In the $800 case, the cheapest design is a strongly imbalanced case
(b= -0.8, d =0.5) with only 10 groups made of 45 routers, and 23 terminals per router.

We complete our analysis by exploring designs supporting Ngesirea = 25,000 terminals (Fig.
9d). Here we assume radixes of [48, 64, 80] are available. We note first that the cost per terminal
is slightly higher than for the Ngegireq = 10,000 case, as the larger network scale incurs a cost
premium. Even though we consider here $400 for each optical link, it can be surprising to see
the cheapest design to be positively balanced (b = 0.2). Our analyses show that for very large
scale topologies, the positively balanced designs emerges as among the cheapest options due to
their lowe radix requirements (as visible in Fig. 6f). In the Ngesirea = 25,000 case, the cheapest
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Fig. 8: Cost analysis of Dragonflies accomodating at least Ngegireq = 10,000 terminals
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design found (b = 0.2 combined with a moderate density of d = 0.3) has 43 groups, 34 routers
per group, h = 13 inter-group links, and p = 18 terminals per router. It still guarantees a high
ratio of electrical links (72%), and requires a radix of 64.

5 Conclusion

The Dragonfly topology, though recently being widely studied due to its low diameter and versa-
tile characteristics, have not been well-formalized.In this paper, we first introduce an algorithm
that connects the all the routers in the Dragonfly topology of any arbitrary a, g, and h com-
binations as introduced by Kim et. al[l] in the fairest possible way. Then, we introduced two
network-size-independent parameters that describes all the variations of the Dragonfly topology:
the imbalance parameter, b, and the density parameter, d. The imbalance parameter controls
how large a Dragonfly group is, and by extension, the proportion of electrical links that is used
in the entire topology. The density parameter controls the proportion of optical links utilized by
the topology. These two parameters will then be mapped into a, g, and h parameters which the
wiring algorithm will utilize to form the described Dragonfly topology. Using this methodology,
we presented the results of analyzing the topological characteristics of a Dragonfly network with
Sdesired = 1500 for various combinations of b and d within the design space.

Next, we introduce a cost model that predicts the price for routers of any arbitrary size
based on commercially available price points with known radices. Using this model, we explored
the various Dragonfly network sizes that supports a minimal number of terminals, Ngcsired,
subject to the constraint that the network must have sufficient global bandwidth to support a
uniform traffic injection by Ngesireq terminals. Using Nyegireq = 10,000, our results show that
the most cost-effective Dragonflies tends to be slightly negatively-imbalanced with larger groups
and larger electrical dimension, as shown in Fig 8c. However, the same cannot be said when the
model is used on Ngegired = 25,000, in which case slightly positively-balanced topologies with
smaller router groups and larger optical dimension are favored.
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Fig. 9: Cost analysis for when optical links are set to a) $80, b) $400, c¢) $800 with Nyesireqa =
10,000 and when optical links set to d) $400 when Nyegireqa = 25,000
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