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Crucial Need for Better Energy Storage Options

World energy consumption by source, 1990-2040
quadrillion Btu 2012
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= Fuels used in transportation produce > % of greenhouse gas emissions
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Li-S Outcompetes Li-ion

= Theoretical energy density: 2600 Wh/kg (2800 Wh/L)
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Limits of Standard Li-S Electrolyte
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Standard electrolyte cannot meet:
* Energy density targets

* Long cycle life demand

Need new electrolytes
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“Sparingly Solvating” Electrolytes

= Low solubility of Lithium Polysulfides (LiPS)
0 Sulfide shuttling is mitigated

= Creating viable Li-S batteries requires management of Li,S,
precipitation and dissolution reactions.

Solvate Electrolytes
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Cheng et al. ACS Energy Lett. 2016, 1, 503-509
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Tuning solubility must alter
the reaction pathway
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Demonstrating Altered Redox Pathway

Highly concentrated “solvate” (AcN,LiTFSI) yields a single plateau

Specific capacity (mAh/g,) Specific capacity (mAh/g,)

Alternative redox pathway drives sulfur reduction as a semi-solid state reaction
Benefit: Potentially regulate Li,S precipitation to select locations

—Maximizing utilized capacity & rate
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Building on a Premise

Qualitative Quantitative

Hypotheses:

1. Performance is in part driven by reaction pathway.
2. Reaction pathway is controlled by LiPS solubility.
3. LiPS solubility is dictated by an electrolyte’s donor strength (DN).

Predictions:

1. A quantitative relationship exists between DN and [LiPS].

2. A guantitative relationship exists between the thermodynamic cell potential and
[LiPS], and therefore DN.

3. Performance can be improved by tuning the redox mechanisms within a given cell
framework.
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Solvent/Salt Ratio Drives Solubility

LiPS in AcN (0.5 M LiTFSI)
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Goal: Create a generalized descriptor for [Li,S,] in solvate electrolytes
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What dictates solubility?

= Hints in the literature that Li,S, solubility is related to the solvent’s Gutmann
Donor Number*.

0 This has not been explicitly quantified
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Schmeisser et al. Chem. Eur. J. 2012, 18, 10969 — 10982

DN [kecal/mol] = 32.7397712308 + 2.1061380895 * o,

sy, [PPM]

*Rauh et al. Chem. J. Inorg. Nucl. Chem. 1977, 39, 1761-1766
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Classic Gutmann Donicity model. A calorimetric
measurement gives a AH value for the rxn.

Gutmann, V. Electrochimica Acta. 1976, 21, 661-670

DN is a measure of a solvating medium’s
affinity for a solute.
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Generalized Donicity
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Ideal Case: With DN no other electrolyte information is necessary
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23Na Chemical Shift (ppm)
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Correlating Chemical Shift to DN
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Generalized Electrolyte Donicity Scale
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Role of Electrolyte Structure
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Donicity Dictates Solubility
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Donicity Dictates Solubility
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Galvanostatic Intermittent Titration Technique

(GITT)
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Conclusions and Next Steps

Created the generalized descriptor donicity for [Li,S ] in solvate electrolytes

Donicity determines [Li,S ]

Sulfur reduction reaction pathway is dictated by donicity

Identified donicity region in which reaction pathway and kinetics can be
balanced

Next...

= Demonstrate use of donicity to control distribution of sulfur to maximize

capacit
pactty L|ZSG<—>L|254 - 4

Dilute Electrolyte
les 4{ \ Li,S .
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GITT Acetonitrile Series
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Other Indirect Measurements
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Figure 2. Linear correlation of DN with dy, for [CyCiim][X]. where X is
the variation of the anion.
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Donor Numbers of Anions in Solution: the
Use of Solvatochrornic Lewis Acid-Base
Indicators

Linert et al. J. Chem. Soc. Dalton Trans. 1993,
3181-3186.
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