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Outline

What is a White Dwart (WD)?

How are WDs used in astrophysics?

What are the current limitations ot our understanding of WDs?

How are we using the Z-machine to help?

Summary




What is a WD?

Main Sequence Red Giant
H fusion H fusion
Inert He

Q inert H QH fusion
o inert He °He fusion

O inert C/O or C fusion

° inert O/Mg/Ne

Horizontal Asymptotic
Branch Giant
H fusion H fusion
He fusion He fusion
C/O fusion

Not drawn to scale.




What is a WD?

core core core

ogen-dominated (DA) elium-dominated (DB)

~80% of all WDs
~20% of all WDs

very well-studied

Typical WD parameters:
Surtace temperature (Teg): 10,000 K (~1 eV)
Surface gravity (log g): 108 cm/s? (ne ~10" cm™)
() inert H el Radius: rearth

o nert Ne QO/Mg/Ne Mass ~42/3 Msun Not drawn to scale




Astronomical
use

Required data

WDs in astrophysics

An overview

DA

» age of Galaxy and
universe

» composition of
extrasolar planets

» stellar initial/final mass

relation

DB

test stellar evolution
models

constrain model
atmospheres

evaluate He atomic
models

DQ

» insight into massive

stars in early Galaxy

test stellar evolution
models

confirm theoretical
Stark width calculations

accurate DA masses

accurate DB masses

accurate DQ masses

Accurate WD masses are needed.




Normalized Flux
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WDs in astrophysics

Mass determination methods

Gravitational redshift (GR)

Spectroscopic

| LP 475-242

0437+138

| averaging over random cA GM 06 L
—— Stara motions (va, Vp) vg — — = — T, = 15180 K log g = 8.27
0 . A Rc log H/He = —4.58
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- 1 mOtion(VS) I...I|||I|><||I||.|I|||I|||I||
__ a A>\GR, WD ~ 1 A 3800 4000 4200 4400 4600 4800 5000

Bergeron et al. (2011)

Wavelength [A]

- relies on centroid of spectral lines - relies on width of spectral lines

- can only be applied to collections of stars - can be applied to individual stars
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WDs in astrophysics
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Gravitational redshift and spectroscopic masses in

Comparison of observed and theoretical WD luminosity

comparison. The difterence is much larger than
the stated uncertainties and would result in a Galactic

functions. These can be used to determine the age of

stellar populations, the Galaxy, and the universe. age adjustment of 0.5 x 107 years.




WDs in astrophysics

The DBs

X  Koester & Kepler (2015)

® Bergeron et al. (2011)
— (Mpgp) = 0.624 M

(Meample) = 0.706 + 0.006 M,
<nsample> = 1072

log g [cm /s?]

T 2 3 4 5
Teﬂ:‘[K] x 10%

Spectroscopically determined DB surface gravities as a
function of surface temperature.
Problems are evident.

GR mass:

(Mpg) = 0.74 = 0.08 M
using the 5876 A He | line

Problems:

- spectroscopy is unreliable due to
upturn in log g at low temperatures

- GR is unreliable due to unknown
oressure shifts of 5876 A He | line




WDs in astrophysics

The DBs

Hypothesis Predicted mass signatures

atmospheric convection/diffusion (Mpgr> = (Mpa)

additional WD progenitor fusion (Mpg> # (Mpa)

(Mpg> = {Mpa)
o({Mppg>) = 0((Mpa))

combination of progenitor fusion and (Mpg) # (Mpa)
binary evolution o({Mppg>) = 0((Mpa))

binary evolution




WDs in astrophysics

The DQs
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Spectroscopic fits to hot DQ WD SDSS J1153+0056.
Masses derived from such fits are crucial in understanding Type la supernovae and massive stars in the Galaxy.
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Sandi
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1 - 3: capacitors with decreasing rise times
4: transmission lines
5: vacuum chamber with dynamic hohlraum




Sandia National Laboratories’ Z-machine
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The WDPE gas cell

CONTINUUM
Gas Fill Ports

N

Fused-silica Window

Buffers $ SVS
(high res)

Buffer Cavity

Optical Fiber

Central Cavity

Optics Shield SVS AN o, B
(high res)| BRI Pr-—

m b _ (N !J / | (low res)
- ' Il e Z-pinch X-rays  Back-lighting Surface
ABSORPTION ¥ " EMISSION VS W 5.mm Aperture

Mylar Window Back-lighting Surface (low res) Falcon et al. (2015)

1 F 4-1 |
I i
Falcon et al. (2013) e
| The ‘meat’ of the WDPE gas cell. Filtered Z-pinch x-rays
The WDPE gas cell. X-rays enter our gas cell through enter the cell and heat up the gold wall. This wall
the Mylar window and heat up the gold wall. The optics then emits a Planckian of ~10eV, heating the
are protected by the buffers. gas in the gas cell.

SVS: streaked visible spectrometer




Experimental data - low resolution

Film data
Emission Absorption
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Experiment time [ns]

Experimental data - high resolution
CCD data
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The hydrogen data - line shapes

DPE hydrogen data has guidea

theoretical developments for hydrogen

ine shapes used in model atmospheres

e differences at low densities

-3

(n, > 3e17 cm ) between theories are

negligible; high-density regime is

problematic

* new hydrogen line shapes result in an

increased WD mass (~5%) at all

temperatures

Spectral Transmission (A7)
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Sample spectrum of recent hydrogen experiment.

Differences in theory are apparent.

Falcon et al. (2017)
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Electron density [cm
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The hydrogen data - simulations

Mvlar heated
'y o gold
window
wall

absorption LOS

15.12 cm

emission LOS

16.82 cm

Identifier Name Extent [cm] | Simulated Temperature [eV]
1 Outer buffer 0.00 - 4.00 0.025
2 Buffer transition 4.00 - 5.00 0.025 - 0.050
3 Hot buffer 5.00 - 5.12 0.050 - 0.85
4 Unheated Plasma 5.12 - 6.26 0.85 - 1.70
5 Heated Plasma Rising | 6.26 - 11.54 1.10 - 1.70
6 Heated Plasma Falling | 11.54 - 14.12 1.70 - 1.40
7 Backlighter 14.12 - 15.12 1.40 - 2.20
absorption LOS
Identifier Name Extent [cm] | Simulated Temperature [eV]
1 Outer buffer 0.00 - 4.00 0.025
2 Buffer transition 4.00 - 5.00 0.025 - 0.050
3 Hot buffer 5.00 - 5.12 0.050 - 0.45
4 Unheated Plasma, 5.12 - 6.26 0.45-1.1
5 Heated Plasma Rising | 6.26 - 11.54 1.1-1.7
6 Heated Plasma Falling | 11.54 - 16.82 1.7- 1.1

emission LOS

Results of VisRad and Helios simulations along
the emission and absorption lines-of-sight (LOS).




The hydrogen data - simulations
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The hydrogen data - simulations

Gas cell body
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Area-normalized HP
and HyY emission and
absorption profiles
resulting from Spect3D
simulations. These
profiles achieve the
desired change in
FWHM, but do not

resemble the data.




The helium data - Stark shift calculations

* spectroscopic masses are uncertain -
why not use the GR method to
constrain the DB masses? — Stark

shifts.

e He 1 5876 A line is the most prominent
in the optical spectra of DBs

* theory and experiment agree very

poorly on the Stark shift for that line

)|

Stark shift of 5876 A He I line [A]
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The helium data - Stark shift calculations

* spectroscopic masses are uncertain -
why not use the GR method to
constrain the DB masses? — Stark

shifts.

e He 1 5876 A line is the most prominent
in the optical spectra of DBs

* theory and experiment agree very

poorly on the Stark shift for that line
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The helium data - Stark shift calculations

* spectroscopic masses are uncertain -
why not use the GR method to
constrain the DB masses? — Stark

shifts.

e He 1 5876 A line is the most prominent
in the optical spectra of DBs

* theory and experiment agree very

poorly on the Stark shift for that line
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The helium data - previous experiments
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The helium data - experimental concerns

Concern Our experiment (WDPE)

influence of self-absorption emission and absorption data
single data points range of neand T
uncertain noand T diagnostics use of well-studied Hp line profiles

influence of Doppler shifts no Doppler shifts

. . use of Z allows creation of large,
plasma non-uniformities

uniform plasma

25




The helium data - WDPE results

* emission and absorption data give

the same shift e e _
= | '
O ittt ittt ittt
e transmission shift has yet to be B S .
i 8 ‘,’
determined s
;g: | l
é _6_ .........
e magnitude of shift is still G | - Gigososctal (014) e,
S 8- —N¥— WDPE results .
. .. . . S T s b o1 (1005) o Tmeel,
preliminary, but it is consistent with 5| @ Biischeret al. (1995) =
| —®— Cauthier et al. (1981)
other experiments and flat as I ¥ T T K R
Electron density [cm ] <10

function of electron density
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The carbon data - experimental setup

- o~ Optical
* DQ stars have surface . . Spectroscopy
: / Gas Cell N\ A
temperatures ranging from l
18,000 to 23,000 K, a bit | i E
higher than the garden variety \  Blst ik e

DA or DB. /
\/ / V

~ o -
 Significant hardware changes <149
nside Location
were implemented to reach VIS

Outside Location

required conditions.

Altered location of WDPE gas cell with respect to Z pinch.
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Transmission

The carbon data - experimental results
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PrismSPECT fits to the CH4 data. Two plasma

, Altered platform design for CH4 experiments.
components are evident.
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Summary

e The WDPE at Sandia National Laboratories’ Z-machine has uncovered

theoretical weaknesses in atomic models for hydrogen and helium.

* Recent re-analysis of the emission and absorption data for multiple

members of the H-Balmer series reveals that there may be problems in

our understanding of these atomic processes.

* Proof-of-concept CH, experiments have shown that we can also address
weaknesses in our understanding ot multiple-electron. Further future

hardware developments will be needed to solidity our current results.
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