
Photos placed in horizontal position 
with even amount of white space

between photos and header

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned 
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Diagnosing Performance Variations in 
HPC Applications Using Machine Learning

Ozan Tuncer†, Emre Ates†, Yijia Zhang†, Ata Turk†,

Jim Brandt‡, Vitus J. Leung‡, Manuel Egele†, and Ayse K. Coskun†

† Boston University, Boston, MA
‡ Sandia National Laboratories, Albuquerque, NM

SAND2017-10825PE



Performance Variations in HPC Systems

HPC systems
• Over 1 million cores

• Parallel applications

Performance variations
• Same job on the same system -> up to 100% performance variation 

[Leung et al., Cluster’02; Bhatele et al., SC’13]

 Poor scheduling

 Reduced efficiency

• Much of the variations are caused by system anomalies

 Shared resource contention

 Orphan processes from previous jobs

 Hidden hardware problems

2



Anomaly Examples

Common anomalies that cause performance variations:
 Shared resource contention [Bhatele et al., SC’13]

 Firmware bugs [Cisco Bug csctf52095]

 CPU throttling for thermal control [Brandt et al., CUG’15]

 Orphan processes from previous jobs [Brandt et al., DSN-W’10]

 Hidden hardware problems [Snir et al., Int. J. HPC Apps’14]

3



Detecting and Diagnosing Anomalies

Anomalies manifest themselves in 
performance metrics

 CPU: system time, user time, ...

 Memory: usage, page count, cache metrics, ...

 Network: sent packages, blocked packages, ...

Challenge: Vast data volume
 Hundreds of performance metrics are collected from thousands of processors

 Billions of data points are collected per day

 Manual analysis is not feasible

 Too noisy/too much data for simple methods

4



Contributions

 A framework to automatically detect and classify anomalies using machine learning

 Not specific to a single problem

 Generalizable, broadly applicable

 Easy-to-compute statistical feature extraction method

 Storage overhead reduced to less than 10%

 Computation overhead below 1% of a single core

 Evaluation on two different real-life systems, F-Score over 0.97

 Cray supercomputer and cloud system

5



Anomaly Detection Methods

 Using system logs
[Fronza et al. J. of Sys. and Soft.’13, Gainaru et al. SC’12, Heien et al. SC’11]

 Not all anomalies cause log outputs

 Orthogonal to using performance metrics

6



Anomaly Detection Methods

 Using system logs
[Fronza et al. J. of Sys. and Soft.’13, Gainaru et al. SC’12, Heien et al. SC’11]

 Manual, using performance metrics
[Brandt et al. CUG’15, Agelastos et al. CLUSTER’15]

 Using on manual inspection

 Not scalable

 Hard and expensive to maintain

7



Anomaly Detection Methods

 Using system logs
[Fronza et al. J. of Sys. and Soft.’13, Gainaru et al. SC’12, Heien et al. SC’11]

 Manual, using performance metrics
[Brandt et al. CUG’15, Agelastos et al. CLUSTER’15]

 Automatic, using performance metrics, subsystem or specific 
problem only
[Bhatele et al. IPDPS’15, Kasick et al. HotDep’10, Baseman et al. SIGKDD’16, Brandt et al. 
DSN-W’10]

 Network congestion 

 File-system errors 

 Thermal issues 

 Out-of-memory errors

8



Anomaly Detection Methods

 Using system logs
[Fronza et al. J. of Sys. and Soft.’13, Gainaru et al. SC’12, Heien et al. SC’11]

 Manual, using performance metrics
[Brandt et al. CUG’15, Agelastos et al. CLUSTER’15]

 Automatic, using performance metrics, subsystem or specific 
problem only
[Bhatele et al. IPDPS’15, Kasick et al. HotDep’10, Baseman et al. SIGKDD’16, Brandt et al. 
DSN-W’10]

 Automatic, using performance metrics, node-level
[Bodik et al. EuroSys’10, Lan et al. TPDS’10]

 Our focus

 Our technique outperforms existing techniques

9



BU & Sandia Performance AnalyticS System – BUS PASS

 Automated analytics framework 

 Learn anomaly characteristics using labeled historical data

 Sources of data:

 Past anomalous runs labelled by system administrators

 Controlled experiments

 Our focus:

 Controlled experiments with synthetic anomalies
10



Framework: Gathering the Dataset

1. Insert synthetic anomalies

 Anomalies designed to imitate real anomalies

 Create labeled data

 Each anomaly stresses a specific subsystem

11



Framework: Monitoring

1. Insert synthetic anomalies

2. Collect node-level performance metrics while running applications.

 CPU, memory, network, power, …

 Collected from procfs and hardware counters

 Collection framework already exists in our systems – no additional compute 
node overhead

12



Framework: Feature Extraction

1. Insert synthetic anomalies

2. Collect node-level performance metrics while running applications

3. Extract concise features that retain time series characteristics for 
low-overhead analysis

 Remove initialization and finalization phases

 For metrics that represent event counters, transform into events/sec

13



Framework: Classification

1. Insert synthetic anomalies

2. Collect node-level performance metrics while running applications

3. Extract concise features that retain time series characteristics for 
low-overhead analysis

4. Classification using machine learning

 Random forest is the best performing method so far

14



Framework: Runtime

Use created models for diagnosis

1. Monitor application runs

2. Extract features after execution finishes

3. Match application nodes to existing signatures – anomaly 
type or ‘healthy’

15



Feature Extraction

16

Min, max, 
average

Basic features

Percentiles 5th, 25th, 50th, 75th, 95th

Skewness Lack of symmetry � =
1

���
� (�� − �)�

�

���

Kurtosis Heaviness of the tails � =
1

���
� (�� − �)�

�

���

Serial Correlation Noisiness � =
�

(� − 1)�
� (�� − �)(���� − �)

���

���

�

Linearity
How well a time-series 
can be forecasted with 
linear models

[Teräsvirta et al., J. of Time Series‘93]

Self Similarity Long range dependence

�: length of time-series 

�: mean 

�: standard deviation 

��: value at time �



Algorithms Evaluated within the Framework

17
Behaviors of the algorithms with toy data



Computation and Storage Overhead

 Monitoring system overhead is below 1% of a single core

 Feature generation of one node takes 10 seconds for an 18-minute run 

 0.9% of a single core (not optimized)

 Classification overhead of Random Forest (after feature generation):

 5 seconds to train with 9,000 runs

 <0.1 seconds to classify 2,000 runs

 Storage overhead:

 Raw data for a 4-node 10 minute run: 5 MB, 2M datapoints

 Features for the same run: 400 KB, 40K datapoints

18



Experimental Methodology

BT, CG, FT, LU, SP from NAS Parallel Benchmark Suite [Bailey et al. SC’91]

 Running on 4 nodes for 10-15 minutes

 3 different input sizes 

 Randomized input data (to mimic input-dependent variations)

 50% of the runs with one anomalous node (other 50% healthy)

Baseline Methods:

 FP-Bodik [Bodik et al., EuroSys’10]

 Analysis on statistical distribution of metrics selected via L1 regularization

 ST-Lan [Lan et al., TPDS’10]

 Distance-based algorithm on the independent components of the time series data 

19



Synthetic Anomalies

• Goal: Mimic real-life anomalies in supercomputers
• Each anomaly has two intensities and targets a specific subsystem (CPU, memory, etc.)

• Anomaly runs on one of the nodes of the application run

20

Anomaly Name Subsystem Operation Real-Life Event Modeled

Dial CPU Floating point operations CPU intensive orphan process

Dcopy Cache Read and write Cache interference

Ddot Cache Read Cache interference

Memeater Memory Allocate, write and realloc() Memory intensive orphan process

Leak Memory Allocate Memory leak



Experimental Methodology - Environments

Volta: a Cray XC30m Supercomputer 

 Located @ Sandia Labs

 52-node cluster

 LDMS (Lightweight Distributed Metric Service) 
[Agelastos et al. SC’14]

 721 performance metrics per node every second 

 3000 application runs

MA Open Cloud (MOC): Cloud system 

 Located @ MA Green HPC Center

 Virtualized cluster on 42 physical nodes

 In-house monitoring system [Turk et al. CoolDC’16]

 53 performance metrics per node every 5 seconds 

 1500 application runs collected 21



Evaluation

 5-fold cross validation
 Split the dataset into 5 subsets maintaining 

the anomaly ratio

 Report the average prediction accuracy, 
precision and recall for each class

 F-Score
 Harmonic mean of precision and recall

22

[Walber, Wikimedia, 2014]



Anomaly Classification in Volta

23

Machine learning with RF achieves nearly ideal classification

 Some algorithms tend to misclassify ddot & dcopy, which are both cache anomalies

baselines
Support Vector 

machine Classifier
Decision 

Tree
Random 
Forest

anomalies



Shortcomings of the Baselines

 ST-Lan:

 Important metrics selected using independent component analysis

 Independent ≠ useful for anomaly detection

 FP-Bodik:

 Gives equal importance to the top 200 metrics

 Uses constant thresholds (25 and 95th percentiles)

24

Top 5 metrics chosen by Random Forest Top 5 metrics chosen by ST-Lan

Source Metric Meaning Feature Source Metric Meaning

/proc/stat user CPU user time Average nic WC_FLITS Sent flits

/proc/stat idle CPU idle time 5th percentile /proc/meminfo VmallocUsed Used vmalloc area

/proc/stat softirq Soft interrupt time 95th percentile nic WC_PKTS Sent packets

/proc/vmstat nr_dirty_backg
rnd_threshold

Max. amount of 
dirty pages in mem.

Std. deviation /proc/meminfo Committed_AS Estimated mem. to 
complete workload

/proc/stat idle CPU idle time 25th percentile /proc/vmstat page_table_pages Pages alloc. to 
page tables



Anomaly Classification in MOC

 Anomaly diagnosis has worse performance compared to diagnosis in Volta

 Smaller dataset (fewer metrics, fewer experiments)

 Lower sampling frequency

 HPC on cloud  high noise due to VM interference

25



MOC – Volta Difference: Noise due to Interference

26

Application: BT (block tri-diagonal solver) from NAS Parallel Benchmarks

Interference affects 
measurements



Detection of Anomalies in Unknown Input Sizes

 It is unreasonable to expect the training set to cover every possible input

 Reduced F-score when trained with less data

Train with 1 or 2 input sizes, test with the remaining ones

27

Volta testbed MOC cluster



Detection of Anomalies in Unknown Applications

 Anomalies in unknown applications are detected in most cases

 F-score is very low on MOC when not trained with ft

 Healthy ft runs have similar characteristics to some anomalies

28

MOC clusterVolta testbed

(Trained with 4 applications, tested with the 5th application)



FT on MOC - Details

 Robustness against unknown applications
 Train with 4 apps, test with the 5th app

 Decision tree trained without FT picks feature 1 as most important

 The characteristics of ft is different than others

 Algorithms should be trained using a variety of application characteristics

 On volta, the wider variety of metrics enables choosing a better one
29

Application

healthy

unhealth
y

Feature 2

F
e
a
tu

re
 1



Summary

 An automated framework to detect and classify anomalies 
 Based on resource usage data

 Using concise features, low-overhead

 Generally applicable

 Our framework outperforms existing methods
 Evaluated in two different environments, over 0.97 F-Score

 Ongoing work:
 Broader set of performance anomalies

 Runtime anomaly detection 

 Integration with LDMS for applications to production systems

30


