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= Nonlinear optics
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= Enhanced Second-Harmonic Generation Using Broken Symmetry [11-V
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Nonlinear optics: frequency mixing @i,

Second-harmonic generation Sum-frequency generatlon Supercontinuum generation
(SHG)
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Historical Background ) .

First demonstration of second-harmonic generation by
P. A. Franken et. al. in 1961 started nonlinear optics
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Where is nonlinearity? ) .

nonlinear
crystal
694 nm 347 nm Photocell
ruby laser 2w, QZ
SCasTIing UV transmitting
filter filter

Strong Distorted _
electromagnetic field ™= g|cctronic cloud s> Induced dipole

Dielectric polarization density P()
— dipole moment per unit volume

P(t) = eo (X'VE(t) + XV E*(t) + XPE* (t) +..),
where the coefficients x( are the n-th-order susceptibilities of the medium
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Where is nonlinearity? )

nonlinear
crystal
694 nm 347 nm Photocell
ruby laser 2w, QZ
red trasmitting UV transmitting
filter filter

Dielectric polarization density P(f)
— dipole moment per unit volume

Linear optics

P(t) = + xPEX(t) + xOE () +...),

x(1)= nz-1
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Where is nonlinearity? ) .

nonlinear
crystal
694 nm 347 nm Photocell
ruby laser 2w, Qz
red trasmitting 1 UV transmitting
filter filter

Dielectric polarization density P(f)
— dipole moment per unit volume

Nonlinear optics

P(O) = o B(0) €T () + XUE() + D

where the coefficients x(? are the n-th-order susceptibilities of the medium
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Nonlinear processes = e
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P(t) =eo(x'VE®) + xPE2(t) + xPE3 () +...).

Second harmonic Third harmonic Fourth harmonic  Fifth harmonic
generation (2w,) generation (3w,) generation (4w,) generation
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Restrictions ) i
P(t) = eo (XWE() + xPE*(t) + xPE3(t) +...)

= Strong electromagneticfields
= Phase matching(dispersion)iscritical:
nonlinear crystal dimensions >>wavelengths

= Special conditions for each nonlinear process




“Super” frequency mixing? @
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=

Can we see all of these mixings at the same time?




Nonlinear optical frequency mixingin
metamaterials and metasurfaces

Engineered structures that have specific optical properties on demand by
choosing materials, shapes and dimensions of the metaatoms.

Dimensions < Wavelength
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Y. Kivshar et al, Laser Photonics Review, 9, 195 (2015)
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Nonlinear optical frequency mixingin ) R
metamaterials and metasurfaces

Engineered structures that have specific optical properties on demand by
choosing materials, shapes and dimensions of the metaatoms.
Dimensions < Wavelength

 Relaxed phase matching conditions
 Resonant enhancement of EM field

Nanonoes | [Lshaped | [ ushapea |
o E L =

-

L L

v
e R v
o
|
v

Flshnet
ww  wom | G-sha
g m 4 B
-.- 23
“‘l [‘ 3 m |Sioy ) # —
l al |M o] [ =]

Y. Kivshar et al, Laser Photonics Review, 9, 195 (2015)




Nonlinear plasmonics ) i,
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 Relaxed phase matching conditions
 Resonant enhancement of EM field induced by Plasmon excitation
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Nonlinear plasmonics
Martti Kauranen' and Anatoly V. Zayats? SHG efficiency s 10-9

Plasmonic structure: small modal volume
(usually only use surface nonlinearities) 13




Mie resonances in dielectric metasurfaces ()&,

Mie resonances in Dielectric spheres
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 Low losses

* Much larger mode volume

» High nonlinear coefficient materials
(GaAs: ~200pm/V)

Images: A. Miroshnichenko 14




Optical frequency mixing in dielectric gz
metasurfaces

Second Harmonic Generation (10-9)

AlGaAs — Carletti, L., et al. Optics express 23.20 (2015): 26544-
26550.

Kruk, S.et al. Nano Lett., 2017, 17 (6), pp 3914-3918

GaAs - Liu, S. et. al. Nano letters 16.9 (2016): 5426-5432.

Third Harmonic Generation (10-7) Metasurface?
Si — Shcherbakov et.al. ACS Photonics, 2015, 2 (5), pp 578-582

a-Si — Shorokhov et.al. Nano Lett., 2016, 16 (8), pp 4857—4861
Four-Wave Mixing and THG
Ge - Grinblat, G., et al, ACS Photonics 4, 2144-2149

Multiple frequency mixing in dielectric metasurfaces
15




GaAs based dielectric metasurface @i

E-beam
lithography
+
developmen

--*

I
ICP etching |

\4

SiO,— 300 nm
GaAs — 450 nm
(AlXGa1_X)203 — 400 nm

Diameter 430 nm
Period 840 nm

Liu, S. et. al. Nano letters 16.9 (2016):
5426-5432

* High nonlinear coefficient material



GaAs based dielectric metasurface @i
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SEM image

SiO,— 300 nm
GaAs — 450 nm
(AlXGa1_x)203 — 400 nm

Diameter 430 nm
Period 840 nm
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Single beam experiment )
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Ti:Sa amplifier, 800 nm, [ TWIn optical- 50 fs
35 fs, 1kHz, 7 mJ baigne 1 kHz
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Power 4.5 mW

0.4 NA objective
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2nd 3rd Ath harmonic generation spectra

Photon energy (eV)
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Two-beam experiment )
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Delay stage
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Frequency mixing spectra
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Frequency mixing spectra )
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11 peaks Photon energy (eV)
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7 different nonlinear processes: 2nd, 3rd, 4th harmonics, sum frequency
generation, 4 wave-mixing, six-wave mixing, PL induced by two-photon
absorption 22




Frequency mixing spectra )
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11 spectral peaks Photon energy (eV)
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Frequency mixing spectra: six wave mixing (i i
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Temporal dynamics of frequency mixing (@ &=
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Temporal dynamics of frequency mixing (@),

1000
rrrrr e SHG o,
=) : Exponential fit :
= °
£ . 1800 2
5 =
& 2
-2 SHG o, L) | g
= =
= . {600
5
ol
I % ) g I L I v 1 ¥ ) ¥ 400

=]
©
E Time delay (ps)
‘ 2 300 -200 -100 O 100 200 300
. g Time delay (fs)




Conclusions |

Other Dielectric

metasurfaces

SHG
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FHG THG SHG FWM (1) SFG SWM TPAPL FWM (2)

 The even and odd order nonlinearities of GaAs enable our observation of
second-, third- and fourth-harmonic generation, sum-frequency generation, two-
photon absorption induced photoluminescence, four-wave mixing, and six-wave

mixing.

Liu, S.*, Vabishchevich, P. P.*, Vaskin, A., Reno, J. L., Keeler, G. A., Sinclair, M. B., ... & Brener, |. (2017).

An optical metamixer. arXiv preprint arXiv:1711.00090.
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High-Q Fano resonances in

metasurfaces me
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10-fold enhancement of Third-Harmonic Generation
in Si metasurfaces with Fano resonances 28




Fano resonances in metasurfaces )
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Resonantly Enhanced Second-Harmonic Generation Using Broken Symmetry 111-V
Semiconductor All-Dielectric Metasurfaces
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GaAs Fano metasurface L
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Fano metasurface reflectance spectrum

Experimental measurements

Reflectance
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Fano metasurface reflectance spectrum

Experimental measurements
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SHG in Fano metasurface

920 nm — 1080 nm

IR spectrometer

Camera
LPF P Lam DBS Sample
Ti:Sa
80 MHz, 130 fs >

HWPVF BS BS 0.4 NA objective

VIS spectrometer
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SHG in Fano metasurface ) i,

IR spectrometer

Camera
LPF P Lamp| pBS Sample
Ti:Sa
80 MHz, 130 fs >

HWP VF BS BS 0.4 NA objective

920 nm — 1080 nm

VIS spectrometer
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SHG spectra modification ) .

= The modification of a SHG spectrum when the pump carrier
wavelength is detuned from the Fano resonant wavelength
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SHG spectra modification ) .

= The modification of a SHG spectrum when the pump carrier
wavelength is detuned from the Fano resonant wavelength
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SHG spectra modification ) 5,

= The modification of a SHG spectrum when the pump carrier
wavelength is detuned from the Fano resonant wavelength
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SHG spectra modification ) s,

= Narrowing of the second harmonic spectra at resonant

wavelength
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Nanodisk metasurface vs Fano metasurface (i) &
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13-fold enhancement of SHG in Fano metasurface
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Numerical calculations =

Efficiency ~ electromagnetic field enhancement
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Polarization dependence of SHG )
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Conclusions I

= Nontrivial spectral shaping of second-harmonic spectra in
symmetry broken IlI-V semiconductor metasurface

= Multifold efficiency enhancement induced by high
electromagnetic field localization and enhancementinside
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Resonant enhancement — other dimensions () i
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= Signal was optimized for SFG at Diameter = 420 nm.
= Mixing signal is much stronger at D=420 for most of the frequencies.
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Nonlinear semiconductor metasurfaces @)=
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Surface nonlinearity

Second Harmonic Generation (10-5) Bulk nonlinearity

AlGaAs — Carletti, L., et al. Optics express 23.20 (2015): 26544-
26550.

Kruk, S.et al. Nano Lett., 2017, 17 (6), pp 3914-3918

GaAs - Liu, S. et. al. Nano letters 16.9 (2016): 5426-5432.

1 pm e—

Third Harmonic Generation (10-7)

Si — Shcherbakov et.al. ACS Photonics, 2015, 2 (5), pp 578-582
a-Si — Shorokhov et.al. Nano Lett., 2016, 16 (8), pp 4857—4861




