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Electron microscopies come in various 
geometries 

•Transmission geometry 

•Excitation with light

(PEEM)

•Reflection geometry

(LEEM)



Photoemission threshold tells us about the 
work function or the ionization energy
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Photoemission spectroscopy enables determining 
the vacuum level & highest occupied state

• We extract Evac & valence band edge at 
Brillouin zone center from photoelectron 
(or photoemission) spectra 
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•We do these photoemission 
measurements with spatial resolution



Four studies using LEEM-PEEM 
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Ionization energies govern the band 
alignment of TMD heterostructures

Question: How do the states align when stacked 
into 2D crystal heterostructures?

Approach: relative positions of the states

Özçelik, et al., Phys. Rev. B 94, 035125 (2016) 

Type II



We determine Evac & valence band edge on 
MoS2 multi layers

• Concurrent imaging 
and spectroscopy 
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M. Berg, et al., Layer-dependence of the Electronic band alignment of few-layer MoS2 on 
SiO2 measured using photoemission electron microscopy, Phys. Rev. B, 95, 235406, 2017. 



Experimentally determined ionization energies 
match well with DFT calculations
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– Very good agreement with DFT with GW approximation

– Heterostructures containing MoS2, WS2, to MoSe2 are likely to 
display type II alignment

– Decrease from MoS2, WS2, to MoSe2, 
anticipated from the electronegativities 
of the constituent atoms

K. Keyshar, et al., Experimental determination of the ionization energies of MoS2, WS2, and 
MoSe2 on SiO2 using photoemission electron microscopy, ACS Nano, 11, 8223, 2017.



Photovoltaic efficiency of polycrystalline CdTe 
improves with CdCl2 treatment

Poplawsky et al., Adv. Energy Mater. 4 1400454 (2014)

• Polycrystalline cadmium-
telluride (CdTe) photovoltaics 
reaching 21.5% efficiency
– Serious alternative to silicon-based 

photovoltaics

Electronic structure variation under debate 

Moutinho, et al., J. Vac. Sci. Technol A, 16, 1251 (1998). 

Major, Semicond. Sci. Technol. 31 (2016) 093001



• Flat surface ensures 
minimum impact of 
morphology to the PEEM 
experiments

• Sputtering remove oxide 
layer and unwanted water

• Inert atmosphere transfer 
prevents exposure to oxygen

M. Berg, et al., Experimental determination of the carrier 
potential in polished polycrystalline CdTe thin films, submitted

Clean surface of polycrystalline CdTe is prepared by 
polishing, sputtering, and inert atmosphere transfer

Sample transfer tool



Polycrystalline CdTe changes its electronic 
structure by CdCl2 treatment and air exposure

• CdCl2 treatment has clear influence 
on the grain size and the electronic 
properties of grain boundaries

– Electronic properties not only vary between grain 
and grain boundaries, but also between grains 

• CdCl2 treatment and air exposure 
have separate role in activating the 
grain boundaries 

Li, et al., Phys. Rev. Lett. 112, 156103 (2014)

M. Berg, et al., Experimental determination of the carrier 
potential in polished polycrystalline CdTe thin films, submitted
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Moiré superlattice changes the optical 
absorption of twisted bilayer graphene

CVD graphene on Cu foil 

Figure courtesy: Jeremy Robinson 
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J. T. Robinson, et al., Electronic Hybridization of Large-
Area Stacked Graphene Films, ACS Nano, 7, 637, 2013.

Direct probe to address the atomic arrangement?



We show the correlation between the atomic 
arrangement and the color of TBG

J. T. Robinson, et al., Electronic Hybridization of Large-
Area Stacked Graphene Films, ACS Nano, 7, 637, 2013.

Map of LEED pattern orientations 
across the sample surface 

Typical µ-LEED pattern of TBG

Optical micrograph of the same area



Preliminary magnetic imaging based on 
circular dichroism using deep ultraviolet PEEM

• magnetic domain of cobalt 
film on polycrystalline nickel
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