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Outline ) i

= Status of the US program

= QOptions for geologic disposal in the US and other nations




Spent Nuclear Fuel and High-Level Radioactive ) e,
Waste Disposal: The Goal

“There has been, for
decades, a worldwide
consensus in the
nuclear technical
community for disposal
through geological
Isolation of high-level
waste (HLW), including
spent nuclear fuel
(SNF).”

“Geological disposal
remains the only long-
term solution available.”

National Research Council, 2001

Deep geologic disposal has been
planned since the 1950s

Fuel pellet of Copper canister Crystalline Underground portion of
uranium dioxide with cast iron insert  bedrock final repository
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Geologic Disposal in the US: The Reality

Commercial Spent Nuclear Fuel (SNF) is in Temporary Storage at 75
Reactor Sites in 33 States

* Pool storage provides cooling and shielding of
radiation

— Primary risks for spent fuel pools are
associated with loss of the cooling and
shielding water

* US pools have reached capacity limits and
utilities have implemented dry storage

* Some facilities have shutdown and all that
remains is “stranded” fuel at an independent
spent fuel storage installation (ISFSI) @

Reactor Sites
. PWR
mm BWR

Shutdown Sites
= PWR
W BWR




Geologic Disposal in the US: The Reality rh) i,

DOE-managed SNF and High-Level Radioactive Waste (HLW) is in
Temporary Storage at 5 Sites in 5 States

Hanford

West Valley
~9,700 Canisters (Projected)

e e v St DOE-Managed HLW
~20,000 total canisters
(projected)

Idaho
~3,590-5,090 Canisters (Projected)

Savannah River
~2,900 Canisters (2010)
~6,300 Canisters (Total Projected)

Hanford
~2,130 MTHM

Defense: ~2,102 MTHM
Non-Defense: ~27 MTHM

-
L

DOE-Managed SNF e i
~2.458 Metric Tons :> s =

TOTAL
~3,175 Canisters (2010)
~19,865-21,365 Canisters (Total Projected)

Idaho
~280 MTMM
Defense: ~36 MTHM
Non-Defense: ~246 MTHM

MTHM — Metric Tons Heavy Metal

Other Domestic Sites
~2 MTHM
Defense: <1 MTHM
Non-Defense: ~2 MTHM

Canisters — HLW Canisters for Disposal

Savannah River

~30 MTHM

Defense: ~10 MTHM
Source: Marcinowski, F., “Overview of DOE’s Spent Nuclear Fuel and ToTAL Non-Defense: ¥19 MTHM
High-Level Waste,” tation to the Blue Ribbon Commissi il

igh-1 eYe aste,” presentation to the Blue Ribbon Commission on Defense: ~2,149 MTHM
America’s Nuclear Future, March 25, 2010, Washington DC. Non-Defense: ~309 MTHM
~3,500 DOE Canisters




Dry Storage Systems for Spent Nuclear Fuel (@&,

= Dual purpose canister (DPC)

= A canister that is certified for both storage
and transportation of spent nuclear fuel

= Dry cask/canister storage systems

= The most common type of dry storage [
cask system is the vertical cask/canister | i ’ ||||'||
system shown above, in which the inner |Iii||||| |||

stainless steel canister is removed from . |||| |||H:

the storage overpack before being placed “;—-
in a shielded transportation cask for |
transport

= Can be constructed both above and below
grade

= Horizontal bunker-type systems and
vaults are also in use
= Some older fuel is also stored as “bare
fuel” in casks with bolted lids; few sites
continue to load these systems

=  Multiple vendors provide NRC-certified
dry storage systems to utilities
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US Projections of Spent Nuclear Fuel (SNF)
and High-Level Radioactive Waste (HLW)

Projected Volumes of
SNF and HLW in 2048

HLW

Projected Inventory of Spent Nuclear Fuel

7165

SNF

Projection 100000 -
assumes full =
license renewals = 80000 -
and no new
reactor 60000
construction or

. 40000
disposal

20000 Commercial

SNF
Volumes shown in m3,
assuming constant rate of
nuclear power generation and
packaging of future
commercial SNF in existing
—Total Inventory ——SNF in Dry Storage ——5NF in Pools designs of dual-purpose
canisters

D 4 T T . . - T . T - - . . .
1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060
Year

Approx. 80,150 MTHM (metric tons heavy metal) of SNF in storage in the US today
= 25,400 MTHM in dry storage at reactor sites, in approximately 2,080 cask/canister systems
= Balance in pools, mainly at reactors

Approx. 2200 MTHM of SNF generated nationwide each year

= Approximately 160 new dry storage canisters are loaded each year in the US
I —————



Current Storage and Transportation R&D ) 5,

Spent fuel integrity
= Current tests and analyses indicate that spent fuel is more robust
than was previously thought

* The DOE/EPRI High Burnup Confirmatory Data Project will obtain
data after 10 years of dry storage to confirm current test and
analysis results from parallel hot cell testing of “sister rods”

Photo: energy.gov ~ istumentTu

Storage system integrity

= Stress corrosion cracking of canisters may be a concern in some parts
of the country, and more work is needed in analysis and detection

= Monitoring and Aging Management practices at storage sites will be
important to confirm storage system performance during extended  enow: nc.gov
service

Spent fuel transportability following extended storage

= The realistic stresses fuel experiences due to vibration and shock ;ﬁ%&
during normal transportation are far below yield and fatigue limits
for cladding

Energy.gov/pictures




Observations on Current Practice T

= Current practice is safe and secure

= Extending current practice raises data needs; e.g., canister integrity, fuel
integrity, aging management practices

= Current practice is optimized for reactor site operations
= QOccupational dose
= QOperational efficiency of the reactor
= Cost effective on-site safety

= Current practice is not optimized for transportation or disposal
= Thermal load, package size, and package design

Sandia
National
Laboratories

Placing spent fuel in dry storage in dual purpose canisters (DPCs) commits
the US to some combination of three options

1) Repackaging spent fuel in the future
2) Constructing one or more repositories that can accommodate DPCs

3) Storing spent fuel at surface facilities indefinitely, repackaging as
needed

Each option is technically feasible, but none is what was originally planned




Spent Nuclear Fuel and High-Level Radioactive ) e,
Waste Disposal: The Goal

“There has been, for
decades, a worldwide
consensus in the
nuclear technical
community for disposal
through geological
Isolation of high-level
waste (HLW), including
spent nuclear fuel
(SNF).”

“Geological disposal
remains the only long-
term solution available.”

National Research Council, 2001

Deep geologic disposal has been
planned since the 1950s

Fuel pellet of Copper canister Crystalline Underground portion of
uranium dioxide with cast iron insert  bedrock final repository




After Decades of Repository Science and ) i,
Engineering, What do We Have?

= Repository programs in multiple nations

= Belgium, Canada, China, Czech Republic, Finland, France, Germany, Japan, Korea,
Russia, Spain, Sweden, Switzerland, United Kingdom, United States ...

= Detailed safety assessments have been published for multiple disposal
concepts, e.g.,
= Switzerland: Opalinus Clay, 2002
= France: Dossier 2005 Argile, 2005

= USA: Yucca Mountain License Application, 2008
= Sweden: Forsmark site in granite, 2011
* Finland: Safety Case for Olkiluoto, 2012

= One deep mined repository has been in operation for transuranic waste
(the Waste Isolation Pilot Plant) since 1999
First order conclusions
There are multiple approaches to achieving safe geologic isolation

Estimated long-term doses are very low for each of the disposal
concepts that have been analyzed in detail

Safe isolation can be achieved for both spent nuclear fuel and HLW




Status of Deep Geologic Disposal Programs (i) i
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Nation Host Rock Status

Finland Granitic Gneiss Construction license granted
2015

Sweden Granite License application submitted
2011

France Argillite Disposal operations planned for
2025

Canada Granite, sedimentary rock Candidate sites being identified

China Granite Repository proposed in 2050

Russia Granite, gneiss Licensing planned for 2029

Germany Salt, other Uncertain

USA Salt (transuranic waste at the WIPP: operating

Waste Isolation Pilot Plant)
Volcanic Tuff (Yucca Mountain)

Yucca Mountain: suspended

Others: Belgium (clay), Korea (granite), Japan (sedimentary rock, granite), UK (uncertain), Spain
(uncertain), Switzerland (clay), Czech Republic (granitic rock), others including all nations with nuclear

power.

Source: Information from Faybishenko et al., 2016



How does Deep Geologic Disposal Achieve ()&,
Safe Isolation?

Overall performance relies on

Natural barriers multiple components; different
prevent Ofr delay 'ﬁl disposal concepts emphasize
water from . .
reaching waste — different barriers
form barriers prevent ‘ﬁl
or delay water
from reaching Slow
waste form degradation of m
waste form limits
exposure to Near Field:
water water chemistry m
. limits aqueous
W concentrations Natural and
QC[I'V engineered
edece barriers prevent

or delay transport
of radionuclides
to the human
environment

Isolation mechanisms may
differ for different nuclides in
different disposal concepts
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Commercial Spent Nuclear Fuel Decay

Am-241

O—OL PO T R4 o — 135CS

Activity (Ci)

t

[

S
00264DC_LA_1283b.ai

Time (yr)

DOE/RW-0573 Rev 0, Figure 2.3.7-11, inventory decay shown for an single representative Yucca Mountain spent fuel waste package,
as used in the Yucca Mountain License Application, time shown in years after 2117.
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Contributors to Total Dose: rh) i,
Meuse / Haute Marne Site (France)

le-032

Diffusion-dominated
disposal concept: Argillite

limate BFS : 0 o

LD feeeeerewsiommmsbondindunbididud i i b e b

Total a“d '?1:2?:: [-129 is the dominant contributor

at peak dose

Examples shown for direct
disposal of spent fuel (left) and
vitrified waste (below)
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ANDRA 2005, Dossier 2005: Argile. Tome: Evaluation of the Feasibility of a
Geological Repository in an Argillaceous Formation, Figure 5.5-18, SEN million
year model, CU1 spent nuclear fuel and Figure 5.5-22, SEN million year model,
C1+C2 vitrified waste
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Contributors to Total Dose:
Forsmark site (Sweden)
- , , Disposal concept with
I advective transport in the far-
o __gzgg? Egglg; —————————— Dose comesponding to risk limit o fleld: FraCtured Granlte
=4
—— N (00017) Long-term peak dose

1 = Total (018) 3 dominated by Ra-226

Once corrosion failure
occurs, dose is primarily

Mean annual effective dose (uSv)

controlled by fuel

dissolution and diffusion
02 through buffer rather than

far-field retardation

Time (years)

Figure 13-18. Far-field mean annual effective dose for the same case as in Figure 13-17. The legends are
sorted according to descending peak mean annual effective dose over one million years (given in brackets
m psv).

SKB 2011, Long-term safety for the final repository for

spent nuclear fuel at Forsmark, Technical Report TR-11-01
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Contributors to Total Dose: Yucca Mountain

DOE/RW-0573 Rev 0 Figure 2.4-20b Tolal
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Long-term Dose Estimates: Canada
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Diffusion-dominated
disposal concept:
spent fuel disposal in
carbonate host rock

Long-lived copper
waste packages and
long diffusive transport
path

Major contributor to
peak dose is 1-129

NWMO 2013, Adaptive Phased Management:
Postclosure Safety Assessment of a Used Fuel
Repository in Sedimentary Rock, NWMO TR-
2013-07, Figure 7-87.




Conclusions ) i

= Deep geologic disposal remains the preferred approach for
permanent isolation of SNF and HLW

= |nterim storage of commercial SNF occurs at all operating
reactor sites

= The existing inventory of SNF exceeds the legal capacity of the
proposed Yucca Mountain repository

= |nterim storage will continue for decades longer than originally
envisioned
" |nterim storage of DOE-managed SNF and HLW continues at
multiple sites

= Multiple geologic disposal options are technically feasible,
including the proposed site at Yucca Mountain, Nevada
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