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The Russian Invasion and Electron Hall MHD

A host of plasma and pulsed power physicists from Russia descended upon LPS in the late 
‘80s and early ‘90s, L.I. Rudakov, G. Mesyats, D.D. Ryutov, V. P. Smirnov,…

A particularly fruitful theoretical interaction on Electron Hall MHD began in the Summer  of 
1990.  L. I. Rudakov introduced us to the convective skin effect and KMC (Kingsep, Mokhov
and Chukbar) shock wave field penetration.  A collisionless fast field penetration mechanism 
driven by field advection with the electron fluid 
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which could be much faster than the diffusive velocities (�/�) �/�.

We also considered the role of electron inertia….which is important near boundaries and in 

developing high ‘k’ spatial structures (vorticies) on order the collisionless skin depth � =
�

���

and again could result in field penetration at velocities significantly faster than diffusion

This initial work carried me into the realm of current neutralization of beams and rings in 
plasma.  Everything I needed to know, Rudakov summarized in ‘881.

1. L.I. Rudakov, “Macroscopic instabilities of a high-current beam in a gas in a guiding 
magnetic field”, Sov. J. Plasma Phys., 14, 1988
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Beam neutralization in plasma when 
plasma ions are nearly immobile (mi  )
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Hybrid fluid/PIC codes were used to study beam and plasma dynamics

Plasma return current 
driven by inductive 
electric field and 
determined by generalized 
Ohm’s law
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Beam injection into plasma filled 
magnetic lenses1

Field line advection, 
whistler wave 
generation and current 
diffusion…all fun stuff
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1. B.V. Oliver and R.N. Sudan, Phys. Plasmas 3, 1996
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…South to the Naval Research Labs: Ion Beams 
and Rod-Pinches

Arrival on “stirring day!”

Self-pinched beam equilibria in vacuum….which followed the laminar equilibria of Creedon1

from magnetic insulation theory.

…..And, Gerry Cooperstein’s favorite diode, the Rod-Pinch.  
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1. John Creedon. JAP 46, 2946 (1975)
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Diode current well modeled by critical current 
formulation1:
.  

Operation and  is described by self-insulated 
flow theory with the inclusion of ions2

The Rod-Pinch diode:  an example of self-
magnetically insulated flow with ions

1.  G. Cooperstein et al. Phys. Plasmas, 8, 4618 (2001)
2.  B.V. Oliver et al. Phys. Plasmas, 11, (2004); 
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Electron backscatter can be significant in cylindrical 
diodes, results in decreased but stable impedance!
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As the fraction of reflected beam current goes up, so does the total current. 
However , there is a maximum and the current is stable.

No static solution. 
Current oscillates

1. N.R. Pereira, JAP 54, 6307 (1986)
D. Mosher, G. Cooperstein et al, Proc. 11th Intl. Beams Conf. (1996)
V. Engelko, V. Kusnetsov et al. JAP 88, 3879 (2000)
B.V. Oliver, T.C. Genoni et al., JAP 90, 4951 (2001)
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Magnetized e-beams for x-ray radiography 
applications

MITL
Anode

Cathode

Anode/ 
target

Needle cathode

A-K gap

The Immersed Bz diode1: the electron beam is created in the accelerating 
gap of a high current diode and guided in vacuum to an anode/target via an 
applied Solenoidal magnetic field  

e-
cathode

anode
target

x-ray

Energy Eb= 2-10 MeV, Current Ib= 20-150 kA, Pulse length b= 50-100ns

Bremmstrahlung x-rays are created when the e-beam is 
stopped in a high atomic number converter.

1. M.G. Mazarakis et al. Appl. Phys. Lett 70, 832 (1997)
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Beam target interactions led to development of 3-D 
simulations (LSP) and nonlinear modeling of ion-
hose instability. 

1. M.G. Mazarakis et al. Appl. Phys. Lett 70, 832 (1997)

Immersed-B1: Diode used for creating high 
intensity bremsstrahlung radiation.

3-D PIC simulations of immersed-B diode electron and ion dynamics
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D.R. Welch et al. Laser and Particle Beams 16, 285, (1998)
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Paraxial diode: a classic beam propagation problem in overdense
plasma nb/ne << 1. Gas-cell acts as a ¼ betatron focusing lens1. 
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Beam density contours from Lsp simulations
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1. B.V. Oliver, D. Short, G. Cooper and J. McLean, IEEE Trans. on Plasma Science 33, 704 (2005).
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Focal sweeping due to time dependent net 
current is the primary contributor to larger 
than desired time integrated spots.  
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Plasma cells have advantages provided if one 
controls kinetic effects and anomalous resistivity. 

Ion phase space for 2 kG, 
1015 cm-3 plasma density

Theory/simulation1 of cross – field plasma currents show susceptibility to unstable 
Bernstein modes (Resistance as high as 60x classical)

Resistivity nearly classical for: 
< 0.5 kA at 1015 cm-3 plasma density
< 10 kA net current at 1016 cm-3 density 

 

2 22 2

2 2 22
1 1

2 ( ) 2 ( )
1 ,

( )( )

e i
pe pin e n i

n ne i id e

n e I n e I

nkv n

   

  

  

 

 
   

 

R  vde/vthie

P
e
a
k
 C

o
ll
is

io
n

 F
re

q
.


/
ie

1. Welch, Genoni, Oliver et al., Phys. Plasmas 13, 103106 (2006)
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Coming full circle: ….plasma cells are nice but electron 
advection from the boundaries still causes issues. 

“ Bryan, the future of plasma physics is that you’ll do the same problem on a bigger 
computer”!, Rod Mason, 1994

Net current grows near target region. This is due to electron inertial effects at wall1

and advection with the plasma return current electrons2

1B. V. Oliver, L. I. Rudakov, R. J. Mason, and P. L. Auer, Phys. Fluids B 4, 294 (1992).
2A.S. Kingsep, L.I. Rudakov and Chuckbar, Sov. Phys. Dokl 27, 140 (1982) 
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Simulations of 20 torr H2, 1.3% ionized (1016 cm-3)
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Now....a partial lobotomy and oversite of pulsed 
power facilities

Nothing good can come from a theorist having oversight of pulsed power facilities in 
the 1-20 TW range.  

….but how it makes you appreciate pen, paper and the computer…and drive you to re-
consider old ideas.

Diode 

PFL
Marx tank

Induction
cells

RITS-6

X-ray source 

PFL
Marx tank

Induction
cells

RITS-6

region

Saturn Accelerator, 
1.6 MeV, 10 MA, 40ns beam driver

RITS-6 Accelerator, 
10 MeV, 180 kA, 70ns e-beam driver

How to control vacuum on
expts. at SuperSwarf,  AWE
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New diodes and power-flow on 
Saturn

Massively parallel rod-pinch array1

Clam Shell MITL2

Combine the power from Saturn’s 36 
modules into a single radial disk feed 
without magnetic-null losses, invert the 
voltage polarity, and drive large-area ion 
diode. 

1. B.V. Oliver et. al., Proc. Euro-Asian Pulsed Power Conf. (2016).
2. P. Vandevender et. al., Phys. Rev. Accel. Beams, 18, 030403 (2015).
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New applications: Ion beams to replicate neutron 
damage in electronics

Ion beam irradiation of transistors can 
emulate the effects of neutron damage

Deep Level Transient Spectroscopy1 can 
interrogate the damage to transistors. Si BJT

- We can study materials like III-V 
GaAs under “neutron” irradiation

- Neutron damage exhibits deep 
broad DLTS features, suggestive of 
field-dependent emission 
(clustering effects more pronounced 
in III-V materials)

1. D. V. Lang, JAP, 45, 3023 (1974)
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Thanks for listening. 

T (k)


