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Hydrogen Storage

= High gravimetric energy density
= 1 kg H, equivalent to 3 kg (1 gallon) gasoline

= Very low volumetric energy density
= >3000 gallons H, (STP) equivalent to 1 gallon gasoline
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Hydrogen Storage Goals
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"40gH,/L

=85° C max delivery temp.
(AH=20-30 kJ/mol H,)

=Reversible (1500 cycles)
= 1.5 kg H, / min fill rate
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Metal Hydrides-Issues and Questions

PdH 0.9
NaAlH, 7.4
MgH, 7.5
LiNH, + 2 LiH 10.3
Mg(BH,), 14.8

= High capacity targets

= Complex reaction pathways

= Formation of intermediate(s)

= Understanding mechanism and role of catalysts

== Ti-doped NaAlH, as model system
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Ti-Doped NaAlH,

3 NaAlH, = NajAlH; + 2 Al + 3 H,

Na,AlH, =3NaH+Al+3,H,
HZ
H, 2 H,
heat T T T
— NaH+Al
+(Ti)

What form of Ti is present and what is its role in
(de)hydrogenation at the surface?

J. Alloys Compd. 1997, 253-254, 1-9.
Chem. Rev. 2012, 112, 2164-2178.




Ti-Doped NaAlH,-Prior Predictions

Metallic Ti on surface acts as
H, pump or spillover site

Ti alloys with Al and encourages
Na vacancies while bringing
H atoms together

Chem. Rev. 2012, 112, 2164-2178.




Bulk Characterization

Recryst. NaAlH, ball-milled with 10 mol% TiCl, for 2 hours
Resulting powder cycled (dehydrided and rehydrided) 5 times
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XRD shows TiAl alloy phase
ALS-08049
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In operando Desorption Experiments

= Powder pressed into Pb-alloy foil (mp =296 °C)

= Sample cleanly transferred to UHV chamber on holder with
heater

= |nitial measurements performed before heating begun

10 mol% TiCl;-doped NaAlH, mounted
on sample holder with heater
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Low-Energy lon Scattering (LEIS)

= Only technique to
detect surface H
directly with ion recoil
spectroscopy

= Highly sensitive to first
atomic layer of surface

incident ion | recoiled H
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S Sandia’s LEIS system




LEIS Results
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Monitoring Hydride Desorption In Operando

Heating on 11.0.2
APPES manipulator

AtBL 11.0.2
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AP-XPS Shows Highly Dynamic System

Mass Spectrometry Species from Survey Spectra
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Numerous species from four different
elements were present and shifted in
relative abundance with heating over time

H, release observed by MS

N.B.: Indicated temperatures approximate
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Titanium Dopant

Ti 2p, ex situ desorbed

. In 3d
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Appears after extended heating Present at surface after desorption




Al Dehydrogenation Observed
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Propagation of Dehydrided Phase

XPS
sampling {
region

Time at desorption temperatures




Dynamic Oxygen Species
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O 1s loses most metal-oxide character, forms
more adsorbed hydroxide when desorbing H,




Oxidation on Recrystallized NaAlH,

Normalized Intensity (a.u.)
Intensity (a.u.)
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XAS (TFY) of recrystallized matches
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Y.-S. Liu




Proposed Mechanism

Surface  Subsurface/bulk
l = H atom on AlH,’
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Ab initio Molecular Dynamics (AIMD)

DFT-relaxed (001) NaAlH, at 500 K A. Rowberg, T. Ogitsu
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Nudged Elastic Band Simulations
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Non-surface Role of Ti?

I T T T T I T T T T I T

— NaAH,
~ NaAlH, +Ti

EDOS (arbtrary unit)

Energy (eV)

Ti dopant forms gap states

Delocalized enough to serve
as electron reservoirs

T. Ogitsu




Important Questions for Hydrides

= Reaction mechanism(s)
" |ntermediate species
= Kinetics and rates

= |Influence of “catalytic” additives (e.g., Ti) or unavoidable
impurities (e.g., O and OH)

= Cycle life
= Contamination/poisoning

= Buildup of (meta)stable intermediates

"= How best to study realistic materials
= |n operando experiments-numerous requirements
= Well-informed theoretical models :>
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In operando Studies

= Large flux for rapid observations
= High degree of cleanliness

= Clean transfer to (AP)XPS, XAS, LEIS N\
" In situ techniques at elevated P, T\ “ '
= Ability to probe variety of r '

(chemical and spatial)

elements and their environments @Q \ s




Conclusions

= Highly dynamic -
dehydrogenation of
NaAlH, was observed

= QOxidic species likely
play substantial role in 2
desorption mechanism

= Titanium not near
surface during H, loss .

= (Cleanliness difficult to
achieve

Wide suite of ALS
tools/beamlines were
employed for in and ex
situ measurements

High flux and variable
temperature essential
for studies

Many new questions
and realms of study in
hydride mechanisms
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