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Observations: Temperature effect
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Observations: Size dependence

Velocity, ¢cm/sec

-

o Diffusion
124°C  Limits
80°C |
NaoCi Crystaol |

with Self Brine Inclusions

VTg= 30°C/cm

] 1 el |

C1oq

100

200

W, gm

) o

350

450

Velocity, cm/sec

ok

10

L
1

_l

T i
o Diffusion

835°¢C Limits ~

B I

NaCl Crystal
with Seif Brine Inclusions

Olander et al. (1982)



Observations: Effect of stress

Velocity, pm/hr
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Fluid inclusion migration under a thermal gradient
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Questions:

e Steady state shape of a fluid
inclusion?

* Morphological instability

* Dependence of inclusion
movement on thermal gradient,
size, solubility, etc.

e Effect on overall fluid movement

Moving boundary problem, level-set method for
numerical solution




Model analysis
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Model fitting

RT?

VoDKIAH, a0 21V
=~ e

RT()T'

1.0E-06

Velocity [em/s)

1.0E-08

1.0E-09

=

&
F Y
Temperature gradient
= 30°C/cm
S 0D 150 00 250

Size of inclusion (pum})

Data from Olander et al. (1982)

iy
il



Model fitting (cont.)
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Binary-phase inclusions
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. * Morphological instability
Work in progress and channeling
e Effect of stress on
dihedral angle and
o percolation threshold;
implications to field scale
fluid flows
* Mechanism for the
presence of fluid
inclusions along grain
boundaries
e Effect of stress on
dihedral angles
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Ghanbarzadeh et al. (2015)
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Caporuscio et al. (per. Comm.)



Schedule

1. year

2. year

3. year

1. workshop

2. workshop

3. workshop

4. workshop

5. workshop

6. workshop

WP-1

Literature recherche

Process definition/description

Conceptuel modeling

WP -2

Upscalling study (microscale - macroscale)

Mathematical formulation

Programm developement

WP-3

Modelling against observation
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Dynamic behaviors of the system
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Dynamic behaviors of the system (cont.)

FORGE Report D4.17 (Harrington, 2013)
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Time series analysis: Delay Coordinate embedding (DCE) method

Outflow
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Differentiate from chaotic behaviors from random (white noise) variations.
Provide an insight about the dimensionality of the systems (number of controlling

variables).

Limitation: Require sampling at equal time steps.

Original data (not averaged).



Bubble migration under a pressure gradient

Continuous logistic equation
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Logistic map: An illustration 1
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Qualitative comparison with
experimental observations
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Parameters A and K are proportional to
the injection pressure and the ability of
material for local dilation.
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Infiltration instability: How many channels would

develop within a given system?
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In clay-rich system considerable evidence exists suggesting gas
flow is accompanied by the creation of preferential pathways and
dilation of the clay

* Channeling of gas percolation front

* Instability of the movement of individual gas bubbles
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Linear instability analysis
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Interim reporting

Stage 3: Field scale flow
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Stage 4: Gas flow in
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Wksp 7
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Final Reporting




Next steps

* Complete the mathematical formulation and analysis for single
bubble movement.

 Complete delay coordinate embedding (DCE) analysis.

* Complete the formulation for the channeling of a gas percolation
front.

* Consider how to incorporate the instability analysis into a 2D or 3D
continuum model.



