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Introduction
e Stationary energy storage systems (ESS) are increasingly deployed to maintain e Existing thermal runaway models successful for initial single-cell thermal runaway.
a robust and resilient grid. * Dahn model for graphite anode + LiCoO, cathode (Hatchard et al. 2001).
* As system size increases, financial and safety issues become important topics. * Needed model features to evaluate safety for large Li-lon systems include:
* Holistic approach: electrochemistry, materials, and whole-cell abuse will fill * Applicability to batteries with different form factors, chemistries, SOC.
knowledge gaps. * Prediction dependent on material properties.
 Models allow projection of knowledge to different scenarios and larger scales.  High-temperature chemistry to predict propagation.
Anode Decomposition Model Development Upgraded Anode Model Performance
(Richard & Dahn 1999, Hatchard et al. 2001) Excellent Fit of Calorimetry + Surface Area Data
* SEI formation from electrolyte + intercalated Li limited by electron tunneling. 3 4 9 |
 Tunneling limitation applied via “z” parameter (proportional to SE| thickness). 25 : S.an 1a Gen 1 8 Sandia Gen 2
* No explicit effect of surface area on z. O = Liin LC, (x) § | :\'0.41554 2/ § : Lij ¢3C¢
. = | Ager =4 mMY/g = - Ager =10 m?/g
Heat + Q = Li lon < . ] < | “'BET
: : . o 15 10°C/min o 10°C/min
Reaction with Electrolyte ~:_= Electron Tunneling 3 l . S 4
== Graphite Layers 2 _ ARV 3 3
— 9 .| ¢ D e OO = 2! e S
L : : . : Heat Release ; " , | S e L ’ TN~ ~
"']I'i]:l.w- ; T . S | ~
2 e T« I » NN » =1 | dx; | - | = 0T
l"ﬁ"i"ﬁiﬁlﬁlmﬁmi : QIW/gl=— Hoon B e
v J o 20 6 JUIE Alea-!s‘:aIE‘l e - e e
Li.C, Liin  Temperature 1.5 15 -
Depletion  Li,C, Dependence - Bar-llan University 2011 5d " Bar-llan University 2011 5g
L Ny x | ’g "2 - Lig.oCs g "% | LigsCe
_4h A Ea g 00 Asr=4.5m/g 2 0o | Agr=4.5m/g
e = X ex ‘ : - :
Area-Scaled Model (First Attempt to Upgrade Dahn Model) é 03 | 3 o3|
P _ 2 _ )
* Updated H,, , thermodynamically consistent with complete reaction of all LiC, 8 00| B DG % oo | a4 UR
: : ! o 097
2LiC, + EC = 2C, + C,H, + Li,CO, N S
03 Ly 03
 Growth of z scales with reactive surface area (SEl area x defect concentration). 0 100 200 300 400 0 100 200 300 400
Temperature (C) Temperature (C)

* Defects in SEl more likely when underlying graphite surface is rough (edges).

Round Particles - Flat Particles
Low Surface Area - High Surface Area
More Rough Edges - More Smooth Basal Planes

Final Model Exhibits Proper Trends with State of Charge (SOC)

* Agrestimated (not originally reported).
* Electrolyte may limit reaction at highest SOC.
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Summary of Benefits for New Anhode Decomposition Model

* More fundamental in terms of thermodynamics and materials science.

e Heat release rates scale properly with material properties, cell build, and SOC.
 High-temperature heat release included; more suitable for propagation studies.
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