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e Efficient operation of Sl engines requires combustion phasing near 10°CA.

® In practice, knocking significantly inhibits Sl engine efficiency by forcing
delayed combustion phasing.

e Knocking also prevents increases in engine compression ratio.
¢ Anti-knock quality of fuel is important.
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Fuels Matrix

o

one regular E10 gasoline.
e S=RON — MON.

e Octane sensitivity and composition vary greatly.

® Customer selects fuel based on AKI or RON.

® However, RON and MON are both important.
® Here, study three RON =98 fuels, and

Alkylate E30 High
Aromatic

S 1 10 11
RON 98 98 98
MON 97 88 87
Ethanol [vol.%] 0 30 0
Aromatics [vol.%] 0 8 31

T90 [°C] 106 155 158
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N\ Relevance of RON & MON for Transients?

® RON and MON are determined for steady-state conditions.
e Actual vehicle operation is usually not steady-state.
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e \What is the relevance of RON and MON for load transients?
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Load-Transient Operation Reveals Benefit of High-S Fuels

CRE
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» Steady-state: RON98 fuels overlap for P,, = 100 kPa.

» Acquire load-transient data as well.
— Thermally analogous to a temporary increase of load from idle = cooler than steady state.

» High-S fuels provide strong knock suppression for transient operation.
« May be highly beneficial for vehicle acceleration.

COMBUSTION RESEARCH FACILITY 5 @ Sandia National Laboratories



.i A’ Research Engine Characteristics

<, e DISI,CR=12:1, 0.55 L.
e Well-mixed charge operation.

— 3-or 4- injection strategy for low
PM emissions.

e Single intake valve.

— Intake swirl.

— No valve overlap.
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| A, Establish Steady-State

CRE.

" o Motored to steady-fired operation.
e E30 fuel, P,, = 79 kPa, ST = -5.6°CA.
® Time constants = 10’s of s.

® True steady-state KL operation is not
achieved for many minutes.

e Adjust Spark Timing (ST) to achieve
Knock Intensity (KI) = 70 kPa.

e Record 500 consecutive cycles.
e Report average CA50 as KL-CAS50.
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A\ Steady-State Operation Reveals Benefit of High-RON Fuels

CY?EL « RONB98 fuels provide knock suppression benefits, compared to RON92 fuel.

f’_' - RD5-87 develops low-temperature heat release (LTHR) at highest P,
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2 RD5-87 and Alkylate Exhibit NTC Behavior
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« RD5-87 develops LTHR at highest P;...

* Increased T,, suppresses LTHR, and KL-CA50 advances.
« RD5-87 and Alkylate both show clear NTC behavior in this regime.
— See SAE Paper 2017-01-0662 for detailed examination of RON98 fuels.

* Even so, the reduction of temperatures for load-transient operation
provides strong knock-suppression benefit for all fuels =
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5 Load-Transient Operation Reveals Benefit of High-S Fuels
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« The reduction of temperatures for load-transient operation provides strongest
knock-suppression benefit for fuels with moderate to high S.

« Smallest benefit for low-S Alkylate.
— Alkylate fuel is deep into NTC regime for steady-state operation.
— Displays LTHR even for cooler transient operation.
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' A! Test Regimes: Steady State and Transient

CRF.
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| A’ Data Collection: 20/80 Firing Cycle

2000 108 _ 50
1800 —Alkylate, 146 kPa Intake Alkylate - 14§ kPa In Press. | 3 E
; : i E
- ﬂﬂnAAN\ E
106 W —— 120 %
1400WWWMMWN“WM,M W\JWWWV"' :
() ! i i - 105 S
g 2% I = 104 : i E o go N
=, 1000 ‘ g —Firedeck Temperature (°C) .q;.
c 32 . . i
a. 800 g : Torque | 75 g_
2 ' =3 2
£ 600 : 102 G0
200 100 fHi 0 8
0 | NIRRT N Y — — 15 &
-200 o8 -
0 20 40 60 80 100 120 140 160 180 200 0 50 100 150 200 250 300 350 400

Cycle Number
Y Time [s]

® 20 fired cycles followed by 80 motored cycles
— Only 3 motored cycles are recorded — 1 ahead of sequence and 2 afterwards.
— 50 repetitions of 20/80 sequence are recorded = 1000 fired cycles.
¢ Fluctuations seen in both firedeck temperature and dynamometer torque
— Effects of 20/80 sequence and cooling-water control.
— Firedeck temperatures 25°C lower than steady-state KL operation.
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E30 Heat Release

—E30 Transient 146 kPa, Cycle #1
- - E30 Transient 146 kPa, Cycle #5

Crank Angle after TDC [° CA]

® E30 exhibits consistent AHRR across batch of 20 cycles
® Highly repeatable end-gas autoignition observed, which leads to light knock
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e Alkylate AHRR exhibits strong transient behavior for each 20-cycle batch.
® LTHR never occurs on first cycle, but occurs on all subsequent cycles.
® End-gas autoignition exhibit greater variation = occasional strong knock.
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' A! 20-Cycle Transient

/o IMEP approaches quasi-steady state
surprisingly quickly.

e Alkylate was prone to misfire on the
first cycle.

— Slow flame development.

— Alkylate never knocks on first cycle.

e Generally, Knock Intensity increases
steadily for all fuels.

e Spark timing adjusted for Kl = 70 for
last 17 cycles.

140

120 |-

100

Average Kl [-]
o)
Q

2}
o

B
o

20

2000

1800

=
(o)}
o
o

Average IMEPn [kPa]
= =
N B
o o
o o

1000

800

______ Sy o) S SO S SR SR S SN -
—E30

Average Kl =70

—Alkylate Filtered|
—E30 Filtered
|—HA Filtered
—RD5-87

0 7 4 6

8 10 12 14 16 18 20
Batch Cycle Number

COMBUSTION RESEARCH FACILITY 16

@ Sandia National Laboratories



' A! 20-Cycle Transient

~ /e Spark timing adjusted for Kl = 70 for
last 17 cycles.

e Average of last 17 cycles reported as
KL-CAS5O0.

— Eliminates effect of residual transient.
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N Stability of 20-Cycle Transient

= /o Across full 20-cycle batch, IMEP variability is higher than steady-state.
/
® However, COV of last 17 cycles is comparable to steady-state.

— When residual transient is excluded.
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~  Load-Transient Operation Reveals Benefit of High-S Fuels

_ CRE.
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« Steady-state: All RON98 fuels provide knock suppression benefits, compared to RON92.
« Load Transient: RON98 low-S Alkylate fuel is outperformed by RON92 RD5-87 fuel.
» Put these results in context of Octane-Index framework.
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Octane Index Framework
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Ol Reference: Kalghatgi, SAE 2001-01-3584.
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Calculation of K
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Calculation of K

Octane Index = RON—-K ¢ S

® Linear regression between KL-CA50
and Octane Index (Ol) values to
determine K at each operating
condition

KL-CA50 (CAD aTDC)
]
Q

e Sweep across range of K values

e e Calculate Ol for each fuel for each K
. o value

caw | e Determine which K value yields best
_ fit between Ol and KL-CA50 data
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N K-Factor « [T mm
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% K-Factors for Actual Vehicle Operation

r
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Fuel Performance

w
(¥, ]

w
o

N
(%))

[y
(V]

Knock Limited CAS0 (CAD aTDC)
[ )
() (=)

wv

0

-
1 )
’ ®
I
r: = [ 4 - "

e

1‘/‘& j
#Alkylate
+E30
-+-High Aromatic
#-RD5-87

400 600 800 1000 1200 1400 1600
IMEP (kPa)

1800

w w  w
A N

w
w

Indicated Thermal Efficiency [%]
w w w
NoWw B

w
=

w
o

-Alkylate
-#-High Aromatic
| %E30

-®-RD5-87

50 60 70 80 90 100 110 120 130 140 150 160

Intake Pressure [kPa]

® Higher load of high-S fuels is consistent with other studies showing faster

acceleration.

® Higher efficiency is an important benefit, and justifies further fuels research.
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Conclusions

« Load-transient operation results in significantly improved KL-CA50’s relative
to steady-state performance for all tested fuels.
— Due to the lower thermal state of the engine structure under transient operation.

« Transient operation allow the exploration of a wide range of Octane Index K
values, from 0.5 to -2.35.

« Boosted conditions lead to “beyond RON” conditions in which high-RON,
high-S fuels exhibit improved performance over a high-RON, low-S fuel.

« LTHR is critical to the autoignition of the Alkylate fuel under transient
conditions.
— The primary effect of LTHR is a reduction in the flame-development time.
— The first fired cycle for this fuel, which displayed no LTHR, never knocked.

Kevin Stork, Gurpreet Singh

GER, U-S- DEPARTMENT OF A Co-Optimization of
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A[ CA50 at 146 kPa Intake Pressure: AHRR Stability
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e Alkylate shows strong end-gas autoignition, and large variability
— Comparison is skewed by variations in KL-CA50 at constant intake pressure
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2 KL-CA50=21 CAD aTDC: AHRR Variation
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e \With KL-CA5O0 fixed, Alkylate still shows larger variation in end-gas
autoignition than E30
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