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Abstract—Early detection of emerging disease outbreaks is
crucial to effective containment and response, yet initial outbreak
signatures can be difficult to detect with automated methods.
Outbreaks may be masked by noisy data, and signs of an
outbreak may be hidden across multiple data feeds. Current
biosurveillance methods often perform unimodal statistical anal-
yses that are unable to intelligently leverage multiple correlated
data of different types while still retaining quantitative sensitivity.
In this paper, we propose and implement an anomaly detection
system for health data based upon the human immune system.
The adaptive immune system operates over a high-dimensional
antigen space in a distributed manner, allowing it to efficiently
scale without relying on a centralized controller. Our negative se-
lection algorithm based on the immune system provides effective
and scalable distributed anomaly detection for biosurveillance. It
detects anomalies in the large, complex data from modern health
monitoring data feeds with low false positive rates. Our bootstrap
aggregation method improves performance on high-dimensional
data sets, and we implement a parallelized version of the algo-
rithm to demonstrate the potential to implement it on a scalable
distributed architecture. Our negative selection algorithm is able
to detect 90% of all outbreaks with a false positive rate of 11.8%
in a publicly available multimodal synthetic health record data
set. The scalability and performance of the negative selection
algorithm demonstrate that immune computation can provide
effective approaches for national and global scale biosurveillence.
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I. INTRODUCTION

Early detection of an emergent disease outbreak is crucial
for a timely and cost-effective response. Signs of emergent
outbreaks can be hidden inside high-dimensional data that is
both noisy and incomplete. Biosurveillance detection of these
events requires novel data analysis and classification tech-
niques. The design and implementation of such detectors is an
ongoing task in the field of electronic biosurveillance [1]-[3].
Current detection mechanisms often derive from established
methods of time series analyses from other domains [4]—[6]
and may not be best suited to deal with the complexity of
modern biosurveillance data.

Current methods applied to health record surveillance rely
on standard statistical approaches such as control chart algo-
rithms [7], [8] and Bayesian Belief Networks [9]. While these
methods perform well on specific types of data feeds, they of-
ten don’t handle multivariate data (control charts), continuous
data (Bayesian Belief Networks), and frequently do not scale
well to the larger data sets available for biosurveillance.

To address these limitations, we turn to a known natural
distributed anomaly detector. The adaptive immune system is
able to maintain a distributed repertoire of lymphocytes that
can recognize and respond to foreign pathogens while avoiding
any response to healthy tissue. Applying naturally inspired
algorithms in new domains is an established practice. Previous
work using immune-inspired classification approaches have
been successfully used to detect anomalous UNIX instructions
[10], fraudulent ATM transactions [11], unauthorized intru-
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Fig. 1. Negative Selection Algorithm. 1) A n-dimensional time series of
baseline (normal) data is transformed into its parametric representation in
an n-dimensional hyperspace. A large number of n-dimensional polyhedra
(detectors) are generated covering the space. 2) Polyhedra with size below
a minimum threshold are removed to prevent overfitting. 3) Any polyhedron
overlapping a baseline time point is removed. 4) The remaining polyhedra
are those that do not overlap any observed baseline points. Future data inside
this ‘negative space’ will be classified as anomalous.

sions [12], anomalous port scans [13], [14], and invalid online
media streaming purchases [15].

The biological mechanism that generates and filters the T
cell population is known as Negative Selection (NS) [16].
T cells that survive the NS process should not be able to
bind to any host molecules; therefore, anything to which
they bind can be considered foreign (Fig. 1). The human
immune system is able to classify and respond to foreign
pathogens quickly and effectively, while avoiding the detection
of the host’s own cells [17]. Since immune detection and
response is a fully distributed, adaptive, robust, and time-
sensitive process, computational implementations of immune
system processes can serve as effective anomaly detectors for
a variety of processes. The NS approach was implemented
as computational generalized anomaly detector by Forrest and
Pereleson [18]. Since then, the NS algorithm has been applied
to detect novelty in time series [19], network intrusions in
a Unix environment [20], and industrial tool breakage events
[21].

Prior work has discussed limitations in the NS computa-
tional algorithm. Ayara et al. [22] demonstrated an exponential
runtime increase in the negative selection process as the size
of the training data set linearly increased. Stibor et al. [23]
claimed that positive (anomalous) training examples are re-
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Fig. 2. Selected WSARE timeseries. Two randomly selected time series
from the WSARE data sets. The blue line represents aggregated daily incident
reports while the dashed red line marks the occurrence of an anthrax outbreak.
Note that the outbreak in Series 17 represents the global maximum, while the
smaller outbreak in Series 83 is not obviously anomalous.

quired for the NS algorithm to achieve adequate performance.
Stibor et al. [24] showed that NS algorithms operating in
high-dimensional space suffer from the ubiquitous ‘curse of
dimensionality’ requiring ever more general detectors to cover
an increasingly sparse hyperspace.

Recent advances have alleviated some of these concerns.
Textor [25] used combinatorial techniques to improve the
efficiency of the traditional NS algorithm such that it no longer
suffers from exponential run time. Further, even without these
improvements, the claim of exponential run time only holds in
the case of uncorrelated data, an invalid assumption in the case
of health data. As proof, Textor [26] demonstrated improved
and globally competitive NS performance on a range of tradi-
tional anomaly detection tasks using his improved techniques.
Prasad and Ghosh [27] propose a method to identify key
variables to better reduce the dimensionality of the problem
space. Yang et al. [28], [29] present an improvement to the
NS algorithm that helps detectors target a more efficient low-
dimensional subspace. Zhu et al. take advantage of the Map-
Reduce algorithm to reduce the the exponential complexity of
the NS algorithm to logarithmic [30].

Here, we extend the NS algorithm to detect anomalies
in health records consisting of multimodal data types. Our
implementation simultaneously handles both continuous and
categorical data. Further, the distributed nature of the NS
algorithm allows us to parallelize our implementation for
significantly improved performance across multiple CPUs.
Finally, we implement a form of bootstrap aggregation to help



improve scalability. Our results show that the NS algorithm
is able to detect anomalies in health reports with few false
positives.

II. DATA

Due to privacy concerns it is difficult to compare dif-
ferent anomaly detection algorithms with a common real-
world dataset. Therefore, we trained and evaluated our NS
implementation on the publicly available WSARE synthetic
data set. The WSARE data set is hosted by the Auton Lab
at https://www.autonlab.org/datasets. The data consists of 100
unique time series representing two years of data each with a
simulated anthrax outbreak [31].

The data contains lists of health care events as described
in Table I. An event is defined as either a clinical visit, a
purchase of medication, or an irregular absence from school or
work. Each data set contains approximately 25,000 individual
records, a subset of which are caused by a simulated anthrax
infection event. Records contain a coarse spatial component
consisting of a single location on a 3 x 3 grid along with
general symptom information. Because each record is an
independent event, daily counts were obtained by aggregating
individual records (Fig. 2). For the purposes of our experi-
ments, we transformed the individual datasets by aggregating
individual records into daily frequency counts for none, rash,
respiratory, and nausea events. This transformation resulted in
the removal of categories that were not consistent across the
aggregation step. Therefore we removed columns 1 (XY), 2
(age), 3 (gender), 8 (action), and 10 (drug), and combined 11
and 12 into a single day of the year column. This resulted
in a nine-dimensional data set of the following columns: flu
prevalence, day of the week, weather, season, day of the
year, aggregate none, aggregate nausea, aggregate rash, and
aggregate respiratory.

The WSARE data are public, allowing researchers to com-
pare outbreak detectors on the same data. The data contain
multivariate sources including patient demographics, seasonal
data, and a variety of reported symptoms. Each time series
contains single labeled outbreak events of various sizes with
which to test detection algorithms. While the data do not
contain missing records, the dataset attempts to reflect the
random and noisy nature of real biosurveillance time series.

III. IMPLEMENTATION
A. Negative Selection Algorithm

We implement a mechanistic version of the biological NS
algorithm for use as a biosurveillance detector (Fig. 1). First,
detectors are generated at random to cover the full space of
possible data points.

Once generated, each detector is tested against the selected
training set of baseline data known not to contain anomalies. A
detector reacts with a single data point if that point lies within
the detector’s boundaries in every dimension. If a detector
reacts to any baseline point, the detector is removed from the
population (Fig. 1, Lower Left). This process mimics negative
selection in natural immune systems and ensures that the

ID  Label Description
1 XY Spatial region of record (3 X 3 grid)
2 age Patient age: child, working, or senior
3 gender Patient gender
4  flu Flu prevalence: none, low, high, or decline
5  day_of_week Saturday, Sunday, or a weekday
6  weather Hot or cold
7  season Winter, Spring, Summer, or Fall
8  action Record type: purchase, evisit, or absent
9  reported_symptom  None, respiratory, nausea, or rash
10 drug Drugs: none, nyquil, apririn, or anti-vomit
11  date From Jan-01-2002 to Dec-31-2003
12 daynum Date converted to a single integer index

TABLE I
FIELDS INCLUDED IN A SINGLE WSARE RECORD. 100 UNIQUE DATA
SETS EXIST. A SINGLE DATA SET SPANS TWO YEARS AND CONTAINS
MULTIPLE RECORDS PER DAY. EACH DATA SET CONTAINS ONE SIMULATED
ANTHRAX OUTBREAK.

remaining detector population does not react with any data
previously seen.

Once training is complete, test data overlapping any of
the surviving detectors is marked as anomalous. To achieve
a numeric metric, each data point of the test set is scored
according to how many detectors react to it. Because the
remaining detectors survived both overfit pruning and negative
selection, we assert they can be considered both appropriately
specific and general.

B. Detecting Anomalies Across Multiple Types of Data

The artificial NS classifier identifies anomalies within mul-
tidimensional time series data. NS-based anomaly detectors
provide an independent range for each data dimension defined
in the data and will recognize a data point if the point lies
within the range defined for each dimension. Each input
dimension contains one of three possible data types (Table II):

o Quantitative: Quantitative data are numerical values
where the quantity is of interest. An example would be
the number of patient visits to a local clinic each day.
Quantitative detectors maintain a single threshold value
and react with a quantitative value if the value is above
the that threshold.

o Identifier: Identifier data refer to sequential non-
quantitative numerical values. An example of an identifier
datum would be the day of the month. Because the
quantity itself is not of interest detectors maintain a two-
sided range of values. A detector will react with a specific
point if the value is inside the chosen range.

o Category: Categorical data are anything non-numeric.
Categorical data are defined by the set of all possible
items in the category. An example of categorical data
would be a list of possible disease symptoms, such as
rash, nausea, diarrhea, and congestion. A detector stores
a fixed subset of the possible categories and reacts with a
categorical item if that item is contained in the detector’s
subset.

To create a detector set, detectors are generated randomly

such that they contain unique boundaries in each dimension.
To generate random detectors, first a training data set with no



Type Format Boundary  Example

Quantitative  numeric  threshold clinic visits

Identifier numeric  range day of month

Category text subset symptom list
TABLE 1T

NS DATA TYPES THE NEGATIVE SELECTION ALGORITHM CAN
SIMULTANEOUSLY OPERATE ON MULTIPLE TYPES OF DATA.

known disease outbreaks is examined. Detector values are cho-
sen uniformly from the upper and lower ranges of numerical
data, and sampled without replacement from categorical data.
Identifier specificity is constrained to be within a min and max
numerical range of the generated center value and categorical
specificity is set as the size of the Detector’s subset of possible
items. The minimum size constraint on ranges ensures that
generated detectors are appropriately general (Fig. 1, Top
Right).

C. Distributed Implementation

The NS Algorithm consists of two distributed stages. The
first involves independently training a large number of de-
tectors through the negative selection process. The second
involves testing new data by independently evaluating the
data versus the previously generated detector set. Training
and evaluation implementations can be distributed across the
individual detectors to improve throughput. We implemented
a parallel version of the NS algorithm in Python 3.5.2, using
the multiprocessing library to take advantage of multiple
computer cores.

During the training phase a specified number of new pro-
cesses are created such that each processing core indepen-
dently generates a large number of detector candidates and
evaluates each one against the training data set which is
maintained in shared memory. Once the appropriate number
of valid detectors have been generated, a signal is sent to each
process to halt.

Parallel processing during the evaluation phase is imple-
mented similarly. Because the total number of data points to
be evaluated is known a priori, we split the test data into
subsets of equal size and evaluate each subset with a unique
processor. In this instance, we place the detector repertoire in
shared memory as it is used statically by each process. Once
each process completes the evaluation of its subset, the disjoint
subsets are concatenated back in order for final use.

Hyperparameter Setting
Detector Count 10,000
Minimum Range (Numeric) 10%
Maximum Range (Numeric)  75%

Minimum Size (Set) 1

Maximum Size (Set) S| —1

Bagging Dimensions 4 of 9

Distance Norm L (Rectangular)
Processor Count 1,2,4,8, 16

TABLE III
NS HYPERPARAMETERS. CONFIGURATION SETTINGS USED IN OUR
IMPLEMENTATION OF THE NS ALGORITHM

D. Bootstrap Aggregation

Bootstrap aggregation, or bagging, is the process of using
multiple weak classifiers on bootstrapped subsamples of data
to reduce classification variance of a volatile data set [32]. The
native NS algorithm can be thought of a an ensemble method:
it combines multiple weak classifiers (detectors) to achieve a
strong classification over the problem space.

Applying the bagging approach helps alleviate the curse
of dimensionality that plagues spatial NS implementations in
high-dimensional spaces. For example, if a randomly gen-
erated detector spans half of the possible range of each
dimension in the problem space, a single detector will cover
one quarter of the area of a two-dimensional space, but
only one-tenth of one percent of the hypervolume of a ten
dimensional space. Thus, as the NS algorithm is extended
into higher dimensional problem sets, detectors must either
drastically increase in size, or the total number of detectors
must be increased exponentially.

Rather than having each detector operate over every possible
dimension, individual detectors randomly select a small subset
of dimensions (with replacement) and only evaluate data in
terms of those dimensions. Continuing the previous example,
a two-dimensional detector operating on a ten-dimensional
problem space would still cover one quarter of the total
hypervolume (assuming the detector covered half of the range
of each of its two sampled dimensions). It is assumed detectors
react with the full range across any dimension they do not
explicitly cover. Allowing each individual detector to select
its own random subset of dimensions helps avoid potential
blind spots arising from the dimensionality flattening process.
Bagging allows detectors to cover a high-dimensional space
without requiring exponential computational complexity or
extreme detector generalization.

E. Hyperparameter Choices and Configuration

Our implementation of the NS algorithm requires a number
of hyperparameters, inputs that determine the size, granularity,
and complexity of an analysis run. Hyperparameters include
the number of valid detectors to generate, the minimum and
maximum sizes of the detectors in each dimension, the number
of sampled dimensions for the bagging process, and which
spatial distance norm to use. For the purposes of this paper, we
used values that performed well in experimentation (Table III).
Specifically, we limited spatial detector size to be between
10% and 75% of a dimension’s full range and set size to
be between size one and one less than the total number of
categories. Detectors sampled from four of the possible nine
dimensions included in our transformed WSARE data set
(with replacement). Finally, detectors were represented as £>°
hyper-rectangles (as opposed to £2 Euclidean hyper-ellipses
or £! Manhattan diamond configurations).

IV. RESULTS
A. Performance

We evaluated our NS implementation across the full
WSARE data set. For each for the 100 example datasets we
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Fig. 3. Application of negative selection for anomaly detection on a sample dataset. Upper Left: Nausea counts of the WSARE dataset as an example
dimension. Upper Right: The generated detectors were applied to the second year of the dataset. A true anomalous outbreak occurs at day 277 and is shaded
pink. The size of each data point represents the number of detectors that overlap the point. Lower Left: The alarm rate for each day of the test set, analogous
to the size of the data points in the upper right plot. Right: The ROC curve for the generated alarm rate as compared to the true outbreak.

trained the NS algorithm on the first full year of data and
evaluated the performance on the second full year (Fig. 3).
Once detectors are generated on the training set, each point in
the test set is scored against the detector repertoire based on
how many detectors overlap the point. Each example contains
one simulated outbreak in the second year, thus we judge
the performance of our algorithm by its ability to detect the
outbreak within one week of the initial occurrence. Ideally, the
algorithm would detect the outbreak with no false positives.
A threshold can be placed over the alarm rates to convert
the numeric scores into a binary signal. The sensitivity and
specificity of the possible threshold values was evaluated by
a ROC curve for illustrative purposes.

Because each data set contains one guaranteed outbreak we
evaluate the performance of our implementation in terms of
the number of false alarms required in order to detect the
true positive at least once within the first seven days. The
sensitivity of the algorithm can be controlled by setting the
level of the signaling threshold. Due to the variability of the

individual WSARE data sets, some outbreaks can be easily
detected by our implementation, while a small number are not
detected at all (Fig. 4A). At an aggregate level, we evaluate our
performance by calculating the required beta (false positive)
error rate necessary to obtain a desired alpha (false negative)
error rate (Fig. 4B). Our results show that to achieve a 10%
alpha error rate (missing 10 outbreaks out of 100) requires a
11.8% beta error rate.

B. Parallel Processing

We evaluated the parallelization of our implementation on
a Xeon E7 v3 processor with 12 hyperthreaded CPU cores
(resulting in 24 logical cores). We define throughput as the
number of valid detectors generated per second. Throughput
was evaluated by generating 10,000 valid detectors over a
single WSARE data set as well as the entire data set. The size
of the data set appears to have no significant impact on the
throughput. Our results show a distinct performance improve-
ment as the NS algorithm is applied to an increasing number
of processing cores (Fig. 5). Note that Fig. 5 is logarithmically
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the resulting required beta error (false negatives). For example, an alpha error of 10% results in a required false positive rate of 11.8% (dashed lines). Right:
The entire 100 WSARE datasets displayed in terms of the alarm rate for each day.

scaled in both dimensions, so the linear trend with near 0.83
slope suggests approximate O(n°/®) performance scaling.
We hypothesize that the sublinear scaling is due in large
part to the inability of the Python implementation to make
concurrent use of shared read-only memory. Because we use
the multiprocessing library’s internal shared memory
manager, we are subject to process exclusivity constraints
when accessing shared memory. Further, due to Python’s
Global Interpreter Lock, we are not able to take advantage of
a more light-weight threaded implementation. Implementation
using a language that supports concurrent memory access us-
ing threading could potentially improve performance scaling.
Our results also show a decreasing trend as the processor count
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Fig. 5. Parallelization. 10,000 valid detectors were generated covering the
space defined by the full WSARE dataset and a single WSARE time series.
Each sample was replicated five times. Error bars show plus and minus two
standard errors from the mean. Evaluation was performed on a 12-core Xeon
E7 v3 processor (24 logical hyperthreaded cores).

increases to 16, which we suspect is due to the inability of
the 12 hyperthreaded cores to perform full computations in
parallel.

V. CONCLUSIONS

Anomaly detection within multimodal health records re-
quires methods that can operate over a wide class of input
types. Due to the expansive size and anticipated growth rate
of modern biosurveillance data feeds, any potential approach
must lend itself well to distributed computation. The human
immune system is a naturally occurring distributed anomaly
detector and a natural inspiration for computational application
to the health record domain.

We present a novel implementation of the negative selection
algorithm and demonstrate its utility by testing it against a
realistic data set consisting of a wide variety of data types.
Our implementation is able to operate over these disparate data
types simultaneously in a 9-dimensional space. Performance
on higher dimensional data is aided by the use of bootstrap
aggregation, allowing individual detectors to operate over
lower dimensional regions thus avoiding the so-called curse
of dimensionality. Finally, we demonstrate the benefits of
the distributed nature of the negative selection process by
allowing our algorithm to make simultaneous use of multiple
computer cores, which results in a near linear increase in
computational performance. The end result is a robust anomaly
detection algorithm able to operate efficiently and accurately
over complex data sets inaccessible to traditional statistical
methods.

The negative selection based anomaly detection methods
demonstrated in this paper hold great potential to improve
accuracy and timeliness of national-scale electronic biosurveil-
lance. Currently, electronic biosurveillance for the US oper-
ates through CDCs National Syndromic Surveillance Program
(NSSP) [33]. Hospital emergency department admission data



is funneled to CDC in near-real-time to provide early no-
tice of disease outbreak, but outbreak determination is often
reliant on single-variable, non-adaptive statistical algorithms.
Recently published review of immediate needs for large scale
biosurveillance [34] lists “Methods and systems to support the
fusion of various types of data” and “Enhanced and adaptive
detection algorithms” as being the most important research pri-
orities for the coming decade. The negative selection methods
described in this paper address both of these identified gaps.
Additionally, the documented performance gains possible from
the novel application of bagging and parallel processing to NS
anomaly detection directly addresses prior concerns that multi-
dimensional NS approaches cannot scale sufficiently to tackle
large scale problems.

[1]

[2]

[3]

[4]

[6]
[7]

[8]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

G. Shmueli and S. E. Fienberg, “Current and potential statistical methods
for monitoring multiple data streams for biosurveillance,” in Statistical
Methods in Counterterrorism. Springer, 2006, pp. 109-140.

S. Unkel, P. Farrington, P. Garthwaite, C. Robertson, and N. Andrews,
“Statistical methods for the prospective detection of infectious disease
outbreaks: a review,” Journal of Royal Statistical Society: Series A, vol.
175, no. 1, pp. 49-82., 2012.

K. N. Gajewski, A. E. Peterson, R. A. Chitale, J. A. Pavlin, K. L. Russell,
and J. P. Chretien, “A review of evaluations of electronic event-based
biosurveillance systems,” PLoS ONE, vol. 9, no. 10, pp. 7-10, 2014.
A. Goldenberg, G. Shmueli, R. A. Caruana, and S. E. Fienberg,
“Early Statistical Detection of Anthrax Outbreaks by Tracking Over-
the-Counter Medication Sales on JSTOR,” pp. 5237-5240, 2002.

K. E. Cheng, D. J. Crary, J. Ray, and C. Safta, “Structural models used in
real-time biosurveillance outbreak detection and outbreak curve isolation
from noisy background morbidity levels,” Journal of the American
Medical Informatics Association, pp. 435-440, 2012.

G. Shmueli, “Wavelet-Based Monitoring for Biosurveillance,” Axioms,
vol. 2, no. 3, pp. 345-370, 2013.

A. P. Morton, M. Whitby, M.-L. McLaws, A. Dobson, S. McElwain,
D. Looke, J. Stackelroth, and A. Sartor, “The application of statistical
process control charts to the detection and monitoring of hospital-
acquired infections,” Journal of Quality In Clinical Practice, vol. 21,
no. 4, pp. 112-117, dec 2001.

W. H. Woodall, M. A. Mohammed, J. M. Lucas, and R. Watkins, “The
Use of Control Charts in Health-Care and Public-Health Surveillance,”
Journal of Quality Technology, vol. 38, no. 2, p. 89, 2006.

H. S. Burkom, L. Ramac-Thomas, S. Babin, R. Holtry, Z. Mnatsakanyan,
and C. Yund, “An integrated approach for fusion of environmental
and human health data for disease surveillance.” Statistics in medicine,
vol. 30, no. 5, pp. 470-9, feb 2011.

S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff, “A sense of self
for Unix processes,” in Proceedings 1996 IEEE Symposium on Security
and Privacy. 1EEE Comput. Soc. Press, 1996, pp. 120-128.

M. Ayara, J. Timmis, R. de Lemos, and S. Forrest, “Immunising
Automated Teller Machines,” in Artificial Immune Systems, 2005, vol.
3627, pp. 404-417.

J. Greensmith, J. Twycross, and U. Aickelin, “Dendritic Cells for
Anomaly Detection,” in 2006 IEEE International Conference on Evolu-
tionary Computation. 1EEE, 2006, pp. 664—-671.

J. Greensmith and U. Aickelin, “The deterministic dendritic cell algo-
rithm,” Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.
5132 LNCS, pp. 291-302, 2008.

J. Greensmith, U. Aickelin, and G. Tedesco, “Information fusion for
anomaly detection with the dendritic cell algorithm,” Information Fu-
sion, vol. 11, no. 1, pp. 21-34, jan 2010.

R. Huang, H. Tawfik, and A. Nagar, “On the use of innate and
adaptive parts of artificial immune systems for online fraud detection,” in
2010 IEEE Fifth International Conference on Bio-Inspired Computing:
Theories and Applications (BIC-TA). 1EEE, sep 2010, pp. 1669-1676.
G. J. V. Nossal, “Negative selection of lymphocytes,” pp. 229-239, jan
1994.

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

C. A. Janeway, “How the immune system works to protect the host
from infection: a personal view.” Proceedings of the National Academy
of Sciences of the United States of America, vol. 98, no. 13, pp. 7461—
7468, 2001.

S. Forrest, A. Perelson, L. Allen, and R. Cherukuri, ‘“Self-nonself
discrimination in a computer,” Proceedings of 1994 IEEE Computer
Society Symposium on Research in Security and Privacy, pp. 202-212,
1994.

D. Dasgupta and S. Forrest, “Novelty Detection in Time Series Data
using Ideas from Immunology,” in Proceedings of The International
Conference on Intelligent Systems, 1995.

S. A. Hofmeyr and S. Forrest, Architecture for an Artificial Immune
System, 2000, vol. 8, no. 4.

D. Dasgupta and S. Forrest, “Artificial immune systems in industrial
applications,” in Proceedings of the Second International Conference
on Intelligent Processing and Manufacturing of Materials. IPMM’99
(Cat. No.99EX296). 1EEE, 1999, pp. 257-267 vol.l.

M. Ayara, J. Timmis, R. de Lemos, L. N. de Castro, and R. Duncan,
“Negative selection: How to generate detectors,” Proceedings of the 1st
International Conference on Artificial Immune Systems (ICARIS), vol. 1,
pp. 89-98, 2002.

T. Stibor, P. Mohr, J. Timmis, and C. Eckert, “Is negative selection
appropriate for anomaly detection?” Proceedings of the 2005 conference
on Genetic and evolutionary computation, pp. 321-328, 2005.

T. Stibor, J. Timmis, and C. Eckert, “On the use of hyperspheres in
artificial immune systems as antibody recognition regions,” in /CARIS,
2006, pp. 215-228.

J. Textor, “Efficient negative selection algorithms by sampling and
approximate counting,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 7491 LNCS, no. PART 1.  Springer Berlin
Heidelberg, 2012, pp. 32-41.

——, “A comparative study of negative selection based anomaly detec-
tion in sequence data,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 7597 LNCS. Springer Berlin Heidelberg, 2012,
pp. 28-41.

J. V. Prasad and K. Ghosh, “Negative selection algorithm for monitoring
processes with large number of variables,” in Control Applications
(CCA), 2014 IEEE Conference on. 1EEE, 2014, pp. 778-783.

T. Yang, W. Chen, and T. Li, “A real negative selection algorithm with
evolutionary preference for anomaly detection,” Open Physics, vol. 15,
no. 1, pp. 121-134, 2017.

——, “An antigen space density based real-value negative selection
algorithm,” Applied Soft Computing, 2017.

F. Zhu, W. Chen, H. Yang, T. Li, T. Yang, and F. Zhang, “A quick
negative selection algorithm for one-class classification in big data era,”
Mathematical Problems in Engineering, vol. 2017, 2017.

W.-k. Wong, A. Moore, G. Cooper, and M. M. Wagner, “Bayesian
Network Anomaly Pattern Detection for Disease Outbreaks,” in
Proceedings of the Twentieth International Conference on Machine
Learning, T. Fawcett and N. Mishra, Eds. Menlo Park, California:
AAAI Press, 2003, pp. 808-815. [Online]. Available: http://www.
autonlab.org/autonweb/14642 . html

L. Breiman, “Bagging Predictors,” Machine Learning, vol. 24, no. 421,
pp. 123-140, 1996.

“US Centers for Disease Control: National Syndromic Surveillance
Program (NSSP),” 2017. [Online]. Available: https://www.cdc.gov/nssp/
index.html

R. S. Hopkins, C. C. Tong, H. S. Burkom, J. E. Akkina, J. Berezowski,
M. Shigematsu, P. D. Finley, 1. Painter, V. J. Del Rio Vilas, and
L. C. Streichert, “A Practitioner-Driven Research Agenda for Syndromic
Surveillance,” Public Health Reports, vol. 132, no. 1_suppl, pp. 116S—
1268, jul 2017.



