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Challenges (O}

Different types of monitoring strategies
=  Where should sensors be placed and how should they be operated to...
= Detect abnormal leaks quickly?
= Provide constant monitoring?
= |dentify the leak locations?
= Quantify emissions?
Tradeoff between sensor cost and detection capability
= |s it better to use numerous cheap detectors or use a single expensive detector?
= What sensor attributes are most important for detection?
= Should sensors be fixed or mobile?

Emissions are highly variable

= Rare super emitter and pervasive small leaks
= Transport governed by complex atmospheric conditions

Need to incorporate uncertainty in:
= Leak location
=  Weather, wind direction, wind speed
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Other Applications =

= Water security
= Monitoring seismic activity
= Fire detection in buildings

= Gas detection at industrial
facilities

= Placing surveillance
cameras

= etc.

Marsh (2012). The 100 largest losses
ﬁCCR 1972-2011. London, United Kingdom.
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Goal

Develop methods and software to
determine optimal sensor placement
and sensor technology to improve the
effectiveness of monitoring strategies
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Optimization Formulation
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Minimizes the expected impact
across all scenarios

Binary variable reflecting
existence of a sensor

Continuous variable representing
the “first to detect”

Constraint limiting the number of
sensors allowed

Constraint forcing one sensor
location to be the “first to detect”

A sensor location can only claim
detection if a sensor exists in that
location




Software: Chama i)

Transport Sensor Impact

Simulation Technology Assessment Optimization Graphics

Sensor Placemen t Optimization using Chama — Chama 0.1.0 documentation - Mozilla Firefox

@ [|Q search wBe ¥ @ =

Docs » Sensor Placement Optimization using Chama View page source

= Series of extensible modules
= Additional dispersion models,
sensor types, and optimization
formulations could be included
= User can enter the workflow
at any stage/module

= |everages Sandia developed
Pyomo software,
http://www.pyomo.org/

= First release in October 2017

= Uses Numpy, Pandas, Scipy,
Matplotlib
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Sensor Placement Optimization using
Chama

Continuous or regularly scheduled monitoring has the potential to quickly
identify changes in the environment. However, even with low-cost sensors,
only a limited number of sensors can be deployed. The physical placement of
these sensors, along with the sensor technology and operating conditions,
can have a large impact on the performance of a monitoring strategy.

Chama is an open source Python package which includes mixed-integer,
stochastic programming formulations to determine sensor locations and
technology that maximize monitoring effectiveness. The methods in Chama
are general and can be applied to a wide range of applications. Chama is
currently being used to design sensor networks to monitor airborne
pollutants and to monitor water quality in water distribution networks.
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Transport Sensor Impact

Simulation Technology Assessment Optimization Graphics

»>»> print{signal}

Xy Z T 51 52 53
] 1 1 1 © 8.0 0.00 0,00
] 16 ©0.00 O0.00 O0.01
20 0.00 0.00 O0.00
B 0.20 0.20 0.20
18 ©0.32 0.14 0.14
2800 0.45 0.58 0.58

o

= Need a set of precomputed transport simulations
(scenarios) to generate a signal under different conditions

= Scenarios should capture uncertainty in weather
conditions, infrastructure, emission rate, etc.
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= Internally: Gaussian Puff
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Ex) Running internal Gaussian Plume transport simulation LT
>>> x_grid = np.linspace(-100, 100, 21)

Define the simulation grid | >>> y_grid = np.linspace(-100, 100, 21)
>>> Z_Qrid = np.linspace(0, 40, 21)

=>»> grid = chama.transport.Grid(x grid, y grid, z grid]

Define the source (leak) === source = chama.transport.Source(-20, 20, 1, 1.5)

. ) === atm = pd.DataFrame({'Wind Direction': [45, &O],
Define the atmospheric g {-Wind Speed': [1.2, 1],

conditions e 'Stability Class': ['A', 'A']1}, index=[8, 18]}

==> gauss_plume = chama.transport.GaussianPlume(grid, source, atm)

Initialize and run the i gaUSS_plume_run{}
GaUSS|an Plume model ] SlgrlEll = gEIUSS_p-LUmE.CUﬂC
=== print{signal.head(5})
X Y Z T 5
6 -1060.6 -106.0 0.6 0 0.0
1 -166.0 -1ge.6 2.6 0 0.0
2 -1e.0 -100.0 4.0 0 0.0
3 -100.0 -100.0 6.0 0 0.0
4 -100.0 -100.0 8.0 0 0.0
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= Stationary and mobile sensors
= Point detectors and cameras

= Detection threshold

= Sensor cost

=  Sample times

= Feasible locations or paths

= Failure rates
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Mobile Point Sensor

>>> pos2 = chama.sensors.Mobile(locations=[(0,0,0),(1,0,0),(1,3,0),(1,2,1)],speed=1.2)
>>> det2 = chama.sensors.Point(threshold=0.001, sample times=[0,1,2,3,4,5,6,7,8,9,10])
=>> moblle pt sensor = chama.sensors.5ensor{position=pos2, detector=det2)

Stationary Camera Sensor

=== pos3 = chama.sensors.Stationary({location=(2,2,1))
>>> det3 = chama.sensors.Cameral(threshold=400, sample times=[08,5,10], direction=(1,1,1})
=»> stationary camera sensor = chama.sensors.Sensor{position=pos3, detector=det3)
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= Merging simulation results with sensor technology

= Thousands of leak scenarios

= Thousands of potential sensor locations and settings
= Determine how much of the signal is detected by different sensors
= Metrics

= Time to detection, coverage, etc.

Impact assessment

Scenario | Sensor Impact

Simulation results Sensor detection
xX,Y,ZT,.C

g o (((<l>))) = ee s
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=== sensors = {}
=== sensors['A']
Define the available sensors >>> sensors['B']
=== sensors['C']
=== sensors['D']

stationary pt sensor
mobile pt sensor
stationary camera sensor
mobile camera sensor

Determine the detection times

(i.e. when a sensor detects each scenario) =>=> det times = chama.impact.detection times({signal, sensors)

=== print(det times)

Scenarlo Sensor Impact
0 51 A [30]
1 51 B [30]
2 51 c [1e, 20, 30, 40]
3 52 A [18, 20, 30]
4 52 B [20, 30]
5 52 ¢ [1@, 28, 30, 40]
b 53 A [20, 30]
7 53 B [20, 30]
8 53 C [20, 30, 40]
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= Optimization based on ‘P-median
facilities location’

= Given a sensor budget, determine best
combination of sensors to place in the
field

= |dentify conditions that lead to detected
and undetected scenarios

= The methods have proven successful
with water security applications
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x> print(min_det time)
Scenarlo Sensor Impact

A 51 A 2.0
1 52 A 3.0
2 53 B 4.0
=== print(sensor)

Sensor Cost
i A 100.0
1 B 200.0
2 C 00,0
3 0D 15686.8

=»> print(scenario)
Scenario Undetected Impact Probability

o 51 45.0 B.25
1 52 2508.0 0.60
2 53 100.68 B.15

FormUIate and SOI"e »>> pmedian = chama.optimize.Pmedian{use_scenario probability=True, use sensor cost=True)
P_median formulation === results = pmedian.solve(sensor, scenario, min det time, 200)

s> print(results['Sensors'])
['A']
=== print(results['Objective']) # 2%0.25+3%0.6+100%0.15
17.3
=== print(results['Assessment'])
Scenario Sensor Impact

i 51 A 2.0
1 52 A 3.0
2 53 MNone 1668.0
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Transport Sensor Impact
Simulation . Technology .

Assessment . Optimization

. Graphics

=== print{det times)

Scenario Sensor Impact
2 51 A [2, 3, 4]
1 52 A [3]
2 53 B [4, 5, 6, 7]
=»> print{sensor)

Sensor Cost
2 A 100.0
1 B 200.0
2 C  500.0
3 D 15008.0

=== print{scenario)

] 51 453.0
1 52 250.0
2 53 100.0

Formulate and solve

>>> print(results['Sensors'])

»>> print{results['Objective'])

0.5

=== print{results['Assessment'])
Scenario Sensor Impact

B {4, 'S3') B 0.6
1 (5, 'S3') B 0.6
2 (B, '53'") B 0.0
3 (7, 's3") B .0
4 (2, 'S1')  None 1.0
5 (3, 'S1')  None 1.0
6 (3, 'S2') None No
sﬁCCR 7 (4, 'S1')  None 1.0
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Scenario Undetected Impact Probability

@.25
0,60
6.15

=»> coverage = chama.optimize.Coverage(use sensor cost=True, coverage type='time')

coverage formUIation === results = coverage.solve(sensor, scenario, det times, 200}
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Visualize the signal

=>> chama.graphics.signal convexhull{signal, scenarios=['S1l',

'52', '53'], threshold=0.01)

3.25
3.00
2.75
2.50
2.25
2.00
1.75
1.50
1.25
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Visualize the signal

>>> chama.graphics.signal xsection{signal, 'S1', threshold=0.01)
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Visualize the sensors

chama.graphics.sensors(sensors, x_range=(0,xsize), vy _range=(0,ysize), z_range=(0,zsize))

t 50
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Visualize the results
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Sensor Placement Optimization using Chama — Chama 0.1.0 documentation - Mozilla Firefox A (X

+

= Flexible and extensible — I
framework for sensor
placement

Docs » Sensor Placement Optimization using Chama View page source

Sensor Placement Optimization using
Chama

Continuous or regularly scheduled monitoring has the potential to quickly
identify changes in the environment. However, even with low-cost sensors,

= Mix and match modules to
support wide variety of
applications

only a limited number of sensors can be deployed. The physical placement of
these sensors, along with the sensor technology and operating conditions,
can have a large impact on the performance of a monitoring strategy.

and license Chama is an open source Python package which includes mixed-integer,
stochastic programming formulations to determine sensor locations and
technology that maximize monitoring effectiveness. The methods in Chama
are general and can be applied to a wide range of applications. Chama is
currently being used to design sensor networks to monitor airborne
pollutants and to monitor water quality in water distribution networks.

= Explore trade-offs between
different sensor
technologies
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