SAND2017- 10615P

A Framework for Optimal Sensor
Placement Built on Pyomo

Bethany Nicholson
Katherine Klise

Carl Laird

Sandia National Laboratories

Albuquerque, NM

PyomoFest Trondheim October 3 -5, 2017

et VAL =~ o3t
ENERGY #vi 4.
National Nuclaar Securtty Adminfetration Center for Computing Research
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a
wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-

NA-0003525.

Sandia

Motivating Application: Detecting Gas Emissions evomies

#CCR

Center for Computing Research

Challenges (O}

Different types of monitoring strategies
= Where should sensors be placed and how should they be operated to...
= Detect abnormal leaks quickly?
= Provide constant monitoring?
= |dentify the leak locations?
= Quantify emissions?
Tradeoff between sensor cost and detection capability
= |s it better to use numerous cheap detectors or use a single expensive detector?
= What sensor attributes are most important for detection?
= Should sensors be fixed or mobile?

Emissions are highly variable

= Rare super emitter and pervasive small leaks
= Transport governed by complex atmospheric conditions

Need to incorporate uncertainty in:
= Leak location
= Weather, wind direction, wind speed

FCCR

Center for Computing Research

Other Applications =

= Water security
= Monitoring seismic activity
= Fire detection in buildings

= Gas detection at industrial
facilities

= Placing surveillance
cameras

= etc.

Marsh (2012). The 100 largest losses
ﬁCCR 1972-2011. London, United Kingdom.

Center for Computing Research

Goal

Develop methods and software to
determine optimal sensor placement
and sensor technology to improve the
effectiveness of monitoring strategies

#CCR

Center for Computing Research

Optimization Formulation

7| Netora

min Y, @y Y, DuiTas

8.1,

sy € {0,1} YieL

0<zy; <1 VacAie€l,

Y. s51<p

I€L,

Z:: Tag = 1 YacA

ELg,

T < 8y Yac A,i€ L,
ZCCR

Center for Computing Research

Minimizes the expected impact
across all scenarios

Binary variable reflecting
existence of a sensor

Continuous variable representing
the “first to detect”

Constraint limiting the number of
sensors allowed

Constraint forcing one sensor
location to be the “first to detect”

A sensor location can only claim
detection if a sensor exists in that
location

Software: Chama i)

Transport Sensor Impact

Simulation Technology Assessment Optimization Graphics

Sensor Placemen t Optimization using Chama — Chama 0.1.0 documentation - Mozilla Firefox

@ [|Q search wBe ¥ @ =

Docs » Sensor Placement Optimization using Chama View page source

= Series of extensible modules
= Additional dispersion models,
sensor types, and optimization
formulations could be included
= User can enter the workflow
at any stage/module

= |everages Sandia developed
Pyomo software,
http://www.pyomo.org/

= First release in October 2017

= Uses Numpy, Pandas, Scipy,
Matplotlib

FCCR

Center for Computing Research

Sensor Placement Optimization using
Chama

Continuous or regularly scheduled monitoring has the potential to quickly
identify changes in the environment. However, even with low-cost sensors,
only a limited number of sensors can be deployed. The physical placement of
these sensors, along with the sensor technology and operating conditions,
can have a large impact on the performance of a monitoring strategy.

Chama is an open source Python package which includes mixed-integer,
stochastic programming formulations to determine sensor locations and
technology that maximize monitoring effectiveness. The methods in Chama
are general and can be applied to a wide range of applications. Chama is
currently being used to design sensor networks to monitor airborne
pollutants and to monitor water quality in water distribution networks.

Contents

® Overview

® Installation

® Transport simulation
® Sensor technology
® Impact assessment

® Optimization

* Graphics

® Copyright and license
® Release notes

® Software development
* APl documentation

* References

Sandia
Sensor Placement Framework i) et

Transport Sensor Impact

Simulation Technology Assessment Optimization Graphics

»>»> print{signal}

Xy Z T 51 52 53
] 1 1 1 © 8.0 0.00 0,00
] 16 ©0.00 O0.00 O0.01
20 0.00 0.00 O0.00
B 0.20 0.20 0.20
18 ©0.32 0.14 0.14
2800 0.45 0.58 0.58

o

= Need a set of precomputed transport simulations
(scenarios) to generate a signal under different conditions

= Scenarios should capture uncertainty in weather
conditions, infrastructure, emission rate, etc.

LN e L Pl e
Fod Bl B e i b

NOAAHYSPLI T MODEL

. .
[| n r I I n I n n r . Concentration (ppm) averagec between Omard 33 m
. Integrated from 0003 20 Oct to 016 20 Oct 10{UTC)
TEST Release started at G000 20 Oct 10 (UTG)
5 T BT

at
s

— 10 ppm
g i
N \ 0.1 ppm
0.01 ppm
/(/ \\\ mmmmmmmmmmmmmmmm
Minirum: 7.4E-04 ppm

ST

from 3m

= Externally:

Source % 32.300 N 97.400 W

NN

AWRF METEOROLOGICAL DATA

= Internally: Gaussian Puff

#CCR

Center for Computing Research

Sandia
Sensor Placement Framework i) et

Transport Sensor Impact P :
Simulation . Technology . Assessment . Optimization . Graphics

Ex) Running internal Gaussian Plume transport simulation LT
>>> x_grid = np.linspace(-100, 100, 21)

Define the simulation grid | >>> y_grid = np.linspace(-100, 100, 21)
>>> Z_Qrid = np.linspace(0, 40, 21)

=>»> grid = chama.transport.Grid(x grid, y grid, z grid]

Define the source (leak) === source = chama.transport.Source(-20, 20, 1, 1.5)

.) === atm = pd.DataFrame({'Wind Direction': [45, &O],
Define the atmospheric g {-Wind Speed': [1.2, 1],

conditions e 'Stability Class': ['A', 'A']1}, index=[8, 18]}

==> gauss_plume = chama.transport.GaussianPlume(grid, source, atm)

Initialize and run the i gaUSS_plume_run{}
GaUSS|an Plume model] SlgrlEll = gEIUSS_p-LUmE.CUﬂC
=== print{signal.head(5})
X Y Z T 5
6 -1060.6 -106.0 0.6 0 0.0
1 -166.0 -1ge.6 2.6 0 0.0
2 -1e.0 -100.0 4.0 0 0.0
3 -100.0 -100.0 6.0 0 0.0
4 -100.0 -100.0 8.0 0 0.0

#CCR

Center for Computing Research

Sandia
Sensor Placement Framework () il

Transport Sensor Impact ST :
Simulation . Technology . Assessment . Optimization . Graphics

= Stationary and mobile sensors
= Point detectors and cameras

= Detection threshold

= Sensor cost

= Sample times

= Feasible locations or paths

= Failure rates

#CCR

Center for Computing Research

)

Sensor Placement Framework

Transport Sensor Impact P :
[Simulation] . [Technology] . [Assessment] . [Optlmlzatlon] . [Graphics]

/ Chama Sensor \

Object

Detector Object Point

(
e

N

#CCR

Center for Computing Research

7| Netora

Sensor Placement Framework

Transport Sensor Impact P :
Simulation . Technology . Assessment . Optimization . Graphics

Mobile Point Sensor

>>> pos2 = chama.sensors.Mobile(locations=[(0,0,0),(1,0,0),(1,3,0),(1,2,1)],speed=1.2)
>>> det2 = chama.sensors.Point(threshold=0.001, sample times=[0,1,2,3,4,5,6,7,8,9,10])
=>> moblle pt sensor = chama.sensors.5ensor{position=pos2, detector=det2)

Stationary Camera Sensor

=== pos3 = chama.sensors.Stationary({location=(2,2,1))
>>> det3 = chama.sensors.Cameral(threshold=400, sample times=[08,5,10], direction=(1,1,1})
=»> stationary camera sensor = chama.sensors.Sensor{position=pos3, detector=det3)

#CCR

Center for Computing Research

Sandia
Sensor Placement Framework i) et

Transport Sensor Impact P :
[Simulation] [Technology] [Assessment] [Optlmlzanon] [Graphics]

= Merging simulation results with sensor technology

= Thousands of leak scenarios

= Thousands of potential sensor locations and settings
= Determine how much of the signal is detected by different sensors
= Metrics

= Time to detection, coverage, etc.

Impact assessment

Scenario | Sensor Impact

Simulation results Sensor detection
xX,Y,ZT,.C

g o (((<l>))) = ee s

FCCR

Center for Computing Research

Sandia
Sensor Placement Framework i) et

Transport Sensor Impact P :
Simulation . Technology . Assessment . Optimization . Graphics

=== sensors = {}
=== sensors['A']
Define the available sensors >>> sensors['B']
=== sensors['C']
=== sensors['D']

stationary pt sensor
mobile pt sensor
stationary camera sensor
mobile camera sensor

Determine the detection times

(i.e. when a sensor detects each scenario) =>=> det times = chama.impact.detection times({signal, sensors)

=== print(det times)

Scenarlo Sensor Impact
0 51 A [30]
1 51 B [30]
2 51 c [1e, 20, 30, 40]
3 52 A [18, 20, 30]
4 52 B [20, 30]
5 52 ¢ [1@, 28, 30, 40]
b 53 A [20, 30]
7 53 B [20, 30]
8 53 C [20, 30, 40]

#CCR

Center for Computing Research

Sandia
Sensor Placement Framework i) et

Transport Sensor Impact N .
[Simulation] [Technology] [Assessment] [Optlmlzanon] [Graphics]

= Optimization based on ‘P-median
facilities location’

= Given a sensor budget, determine best
combination of sensors to place in the
field

= |dentify conditions that lead to detected
and undetected scenarios

= The methods have proven successful
with water security applications

FCCR

Center for Computing Research

Sandia
Sensor Placement Framework i) o

Transport Sensor Impact N .
Simulation . Technology . Assessment . Optimization . Graphics

x> print(min_det time)
Scenarlo Sensor Impact

A 51 A 2.0
1 52 A 3.0
2 53 B 4.0
=== print(sensor)

Sensor Cost
i A 100.0
1 B 200.0
2 C 00,0
3 0D 15686.8

=»> print(scenario)
Scenario Undetected Impact Probability

o 51 45.0 B.25
1 52 2508.0 0.60
2 53 100.68 B.15

FormUIate and SOI"e »>> pmedian = chama.optimize.Pmedian{use_scenario probability=True, use sensor cost=True)
P_median formulation === results = pmedian.solve(sensor, scenario, min det time, 200)

s> print(results['Sensors'])
['A']
=== print(results['Objective']) # 2%0.25+3%0.6+100%0.15
17.3
=== print(results['Assessment'])
Scenario Sensor Impact

i 51 A 2.0
1 52 A 3.0
2 53 MNone 1668.0

#CCR

Center for Computing Research

Sensor Placement Framework

7| Netora

Transport Sensor Impact
Simulation . Technology .

Assessment . Optimization

. Graphics

=== print{det times)

Scenario Sensor Impact
2 51 A [2, 3, 4]
1 52 A [3]
2 53 B [4, 5, 6, 7]
=»> print{sensor)

Sensor Cost
2 A 100.0
1 B 200.0
2 C 500.0
3 D 15008.0

=== print{scenario)

] 51 453.0
1 52 250.0
2 53 100.0

Formulate and solve

>>> print(results['Sensors'])

»>> print{results['Objective'])

0.5

=== print{results['Assessment'])
Scenario Sensor Impact

B {4, 'S3') B 0.6
1 (5, 'S3') B 0.6
2 (B, '53'") B 0.0
3 (7, 's3") B .0
4 (2, 'S1') None 1.0
5 (3, 'S1') None 1.0
6 (3, 'S2') None No
sﬁCCR 7 (4, 'S1') None 1.0

Center for Computing Research

Scenario Undetected Impact Probability

@.25
0,60
6.15

=»> coverage = chama.optimize.Coverage(use sensor cost=True, coverage type='time')

coverage formUIation === results = coverage.solve(sensor, scenario, det times, 200}

Sensor Placement Framework

Sandia
| National
Laboratories
Transport Sensor Impact P :
Simulation . Technology . Assessment . Optimization . Graphics

Visualize the signal

=>> chama.graphics.signal convexhull{signal, scenarios=['S1l',

'52', '53'], threshold=0.01)

3.25
3.00
2.75
2.50
2.25
2.00
1.75
1.50
1.25

#CCR

Center for Computing Research

Sandia
Sensor Placement Framework () il

Transport Sensor Impact ST :
Simulation . Technology . Assessment . Optimization . Graphics

Visualize the signal

>>> chama.graphics.signal xsection{signal, 'S1', threshold=0.01)

m C mn L
1w 5ol
10t . st
1= 6 b
- R
e 5ot
F
-t e
F
10 TR
1] T T T m== [+] IR
[-] ¥] [B (]]] ' B B]
X =

#CCR

Center for Computing Research

L]

-

=

LE}

Sandia
Sensor Placement Framework i) et

Transport Sensor Impact P :
Simulation . Technology . Assessment . Optimization . Graphics

Visualize the sensors

chama.graphics.sensors(sensors, x_range=(0,xsize), vy _range=(0,ysize), z_range=(0,zsize))

t 50

Sandia
Sensor Placement Framework i) et

Transport Sensor Impact P :
Simulation . Technology . Assessment . Optimization . Graphics

Visualize the results

»
50 400000
40

300000 4
30 "
=
20 g
Q
=2

g 200000 q

. % L]
. L ©
®
100000 A PY
0
100 L]
200 °
300 []
400 0 . . ; . . ; —9
500 4] 2 4 [} 8 10 12 14
of Sensors
HCCR
®

Center for Computing Research

. Sandia
Summary/Conclusions) s

Sensor Placement Optimization using Chama — Chama 0.1.0 documentation - Mozilla Firefox A (X

+

= Flexible and extensible — I
framework for sensor
placement

Docs » Sensor Placement Optimization using Chama View page source

Sensor Placement Optimization using
Chama

Continuous or regularly scheduled monitoring has the potential to quickly
identify changes in the environment. However, even with low-cost sensors,

= Mix and match modules to
support wide variety of
applications

only a limited number of sensors can be deployed. The physical placement of
these sensors, along with the sensor technology and operating conditions,
can have a large impact on the performance of a monitoring strategy.

and license Chama is an open source Python package which includes mixed-integer,
stochastic programming formulations to determine sensor locations and
technology that maximize monitoring effectiveness. The methods in Chama
are general and can be applied to a wide range of applications. Chama is
currently being used to design sensor networks to monitor airborne
pollutants and to monitor water quality in water distribution networks.

= Explore trade-offs between
different sensor
technologies

Contents

Overview

Installation

Transport simulation
Sensor technology
Impact assessment
Optimization
Graphics

Copyright and license
Release notes
Software development
APl documentation

* e & o o o e & * e e @

References

FCCR

Center for Computing Research

Acknowledgements) jge,

= Dylan Moriarty, Sandia National Laboratories
= Adam Brandt, Stanford University
Arvind Ravikumar, Stanford University

This research was supported by the Laboratory Directed Research and
Development (LDRD) Program at Sandia National Laboratories

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering
Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA-0003525.

#CCR

Center for Computing Research

