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Motivation of Project Shock Tube and Test Models

Predicting how energy is transferred from the flowfield throughout the structure in our blast-structure and * Experiments conducted in Multiphase Shock Tube (MST) Test Section.

fluid-structure interaction (BSI and FSI) simulations remains quite challenging. * Produces shock Mach numbers M; = 1.0 — 2.1 at driver pressures from 1 to 600 psig Driven Section
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fluid dynamic and structural physical phenomena are required to reduce model form error
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 Cross-correlation in 3-D: correlates small
regions of reconstructed volumes

- PSP is critical: extremely difficult to fully * Incorporates nonlinear stiffness and damping of jointed connection.

instrument small models with traditional
transducers (Kulites, PCBs)

Traditional fast-PSP degrades
quickly, has low brightness, and

to optimize signal at high frame rates

« Cavitar supercontinum lasers used for
monochromatic pulsed illumination

Abaqus Simulation
of Beam

« Captures all velocity components, full
velocity gradient tensor
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Motivation of Project Design Study
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HEIST (Japan)

Wide variety of applications:

« Ablation / surface chemistry

* High-enthalpy aerodynamics

* Fluid-thermal-structural interactions (FTSI)

* Apply free-piston shock tunnel concept to create range of
extreme environments. Readily adaptable to hypersonic reentry.

* Free-piston driver concept: High-speed piston isentropically
compresses and heats driver gas before diaphragm rupture.

 Hypersonic wake chemistry / dynamics

Ablation tests in
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