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Exploring Blast-Structure Aerodynamics and Response in a Shock Tube

Kyle Lynchl, Elizabeth Jones2 y Adam Brink3, Justin Wagner1

Motivation of Project

L Predicting how energy is transferred from the flowfield throughout the structure in our blast-structure and
fluid-structure interaction (BSI and FSI) simulations remains quite challenging. 

Modeling Applications

Cavity resonances
in weapons bays

Loading during
hypersonic reentry

Numerous challenging
modeling issues...

1. Response of structures to
fluid dynamic loading

2. Response of structures to
blast loading

3. Energy dissipation in jointed
structures

Current Limitations
Flow-structure
resonances amplify
structural responses
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Different joint models
yield wildly different
energy dissipation
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Hypothesis: Well-controlled experiments with diagnostics that spatially and temporally capture the underlying
fluid dynamic and structural physical phenomena are required to reduce model form error

1. Flowfield with Tomographic PIV
• Extend planar particle image velocimetry
to a volume

• Uses multiple views to perform
tomographic reconstruction of particles

• Cross-correlation in 3-D: correlates small
regions of reconstructed volumes

• Captures all velocity components, full
velocity gradient tensor

Generally limited to small volumes and
low speeds due to limited laser energy...

J,,17
Pulse-Burst Tomographic PIV [2]

Spectral Energies 
Pulse-Burst Laser

Rarely applied in industrial
facilities due to vibrations

4 x Photron 
SA-Z Cameras 
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Computationally heavy, can't
generate production datasets ✓
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Scalable Parallelism
on Sandia Clusters

Rep = 8,20011

Run 1693 I

Run 1694

Run 1703

Rep = 22,81

Run 1704

Run 170

Run 1714
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Particle volumes successfully
reconstructed in presence of
significant facility vibrations!

X-Z Volume Projection

Ful vorticity vector: vortex
detection criteria visualize
impulsive flow development

t 0 A2-criterion, color-coded by
streamwise vorticity

Big data sets: identify important
trends in flow development,
across Re and geometry changes

Redistribution of vorticity
during impulsive start
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Novel Diagnostic Development

2. Loading with Fast PSP
• Use fast-response pressure sensitive
paint to characterize unsteady,
asymmetric loading on the structure

• PSP is critical: extremely difficult to fully
instrument small models with traditional
transducers (Kulites, PCBs)

Traditional fast-PSP degrades
quickly, has low brightness, and
high temperature sensitivity

RTV-based Fast PSP

• New paint formulation from Prof. Egami
(Japan) being tested for use in shock
tubes and wind tunnels

Ratiometric PSP highly sensitive to
model vibrations due to reference
image misalignment

\

DIC Speckle Image Registration
for Ratiometric PSP

• Corrects for misalignments to
reference image. Simultaneously
allows for a DIC measurement.
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PSP Response

1: SNL, Org. 1515
2: SNL, Org. 1512

3: SNL, Org. 1556

Shock Tube and Test Models
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• Experiments conducted in Multiphase Shock Tube (MST)

• Produces shock Mach numbers Ms = 1.0 - 2.1 at driver pressures from 1 to 600 psig

• Fast valve allows continuous range of conditions, rapid turnaround time (.-.5 min)

Initial 4.5 kHz
symmetric
shedding

Driver Section

Fast Valve

• Model design proposed by structural
modeler Adam Brink (1553)

• Two parts: Rigid inner support, C-
shape outer shell

• Bolted connection on flanges creates
contact patch for interaction.

• Simulations indicate experimental
structure exhibits nonlinear response
when subjected to shock loading

Enables

3. Response with Stereo DIC

• Structural response measured using Stereo
DIC on front face of beam

• 2 x Phantom v2511s used with Schiempflugs
to optimize signal at high frame rates

• Cavitar supercontinum lasers used for
monochromatic pulsed illumination

Principal Components Analysis
(PCA) extracts dominant
displacement modes

Flow

Mode 1:
Rocking

Run 1891
100 psi / 12 in-lbs

Mode 1

Flow

Mode 2:
Impact

Run 1891
100 psi / 12 in-lbs

Mode 2

• Time-dependent mode coefficients
illustrate varying mode dynamics

• Effective dimensionality reduction:
reduce large, complex full-field
dataset to simple time traces

• Analyze structural ringdown using
only modal coefficients!
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Run 1891
100 psi / 12 in-lbs
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Modal Decay
Constants

T 1 = 9 75 rnsec

= 34 53 rnsec

Nonlinear

Linear

se.

11. ••••.g VA5

5

Test Section

Driven Section

• Shock wave creates near-instantaneous longitudinal forcing.

• Vortex shedding forces structure in transverse and longitudinal directions.

• Stochastic, turbulent loading in wake by small-scale structures.

High-speed Schlieren 20

15

10

5

-5

- I 0

-15

-20  
-20

Time-Resolved PIV[1]

-10 0 10 20 30 40
x (mm)

Physically rich loading with greater strength than
simple impact hammer or shaker table testing

Model Development

• Modeling effort together with Dane
Quinn (Univ. Akron)

• Improved models incorporated into
Abaqus FE: joints use four-
parameter lwan ROM.

• Incorporates nonlinear stiffness and damping of jointed connection.
r1:1 1:11,111:fteriehirbill.attni.,1-51.21/Prirshee ean1 111.0,01: 01,111:MkiljamniertS/J-Ruriffiratmek,,mill.a.

Vle,rE ODB:rlm nktOineurehante,1

tap_ stse, ran.

Abaqus Simulation
of Beam

verges:4 gen MR.1.4

0 293 4 5 0 289
llnle

226
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Model parameters 4) are user-specified: PSP + Stereo DIC
data provide dataset for proper tuning.
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Free-flight test in
HEIST (Japan)

Reservoir (N2) o
400 psi

Driver (He)
13 psi
295 K

Driven (Air)
0.1-12.0 psi

Reservoir (N2)
400 psi

o
Driver (He)
2000 psi
2000 K

Driven (Air)
0.1-12.0 psi

Reservoir (N2)
400 sip Pi

st
on

 

Driver (He)
2000 psi
2000 K

l-%;-„
,

1-
Contact
Surface

Incident
-.Shock

Ms > 7-.."h 4H Test time =I 800 ps —I

Pi
st

on
 

Driver
.;,,

(He) '-)
Reservoir (N2)

400 psi
2000
2000

p si
K ..!

, , ,,..,

Reflected
Shock'

LDRD A High-Temperature Shock Tube for Creating Extreme Environments
Kyle Lynch1 and Justin Wagner1

Motivation of Project

Create a lab-scale facility to generate extreme environments representative of explosives. This enables
fundamental study of physical processes occurring in convective, reacting, multiphase flows.

Convective effects on
combustion? (> 1 km/s velocity)

Volume fraction
effects in dense
particle clouds?

Effects of
turbulent mixing
on combustion?

Construction Underway!

0

Extend work on inert particles (glass/steel) to reactive mixtures (Mg/AI).
Characterize reacting products using particle and gas-phase diagnostics.

Emission /
Absorption

Spectroscopy

Holography Pyrometry 200

• 
3000 

2'

2800 2

2600 4)

2400

Generate high-enthalpy reentry environments of reentry through the entire
flight profile

• Machined at Springs Fabrication, Colorado

• Estimated completion date: April 25th, 2018
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Wide variety of applications:

• Ablation / surface chemistry

• High-enthalpy aerodynamics

• Fluid-thermal-structural interactions (FTSI)

• Hypersonic wake chemistry / dynamics

Honed
Compression
Tube

Shock Tube
Couplers

Inertial
Mass

Ablation tests in

Shock Tube
Bore

1: SNL, Org. 1515

Design Study

At high temperatures, specific heats are no longer
constant. Chemical equilibrium calculations show that for
required T, stronger shock needed compared to ideal
value.

Reviewed many techniques for high Ms design: Helium
driver, driver-driven area ratio, electrical resistance
heating, driven section at vacuum.

Challenging to achieve high Ms with traditional designs:
Need to heat the driver gas to thousands of degrees.

Simultaneous extreme pressurization and
heating is the fundamental principle of high-

enthalpy hypersonic impulse facilities such as
free-piston shock tunnels
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The Free-Piston Shock Tube

• Apply free-piston shock tunnel concept to create range of
extreme environments. Readily adaptable to hypersonic reentry.

• Free-piston driver concept: High-speed piston isentropically
compresses and heats driver gas before diaphragm rupture.

• Tuning procedure slows piston before reaching end-wall.

• Concept invented in 1962 by R. J. Stalker (Univ. Queensland,
AUS). Only 1 other free-piston facility in US (T5, Caltech).

Release
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ANSYS explicit FE and transient
thermal analyses evaluate safety of
fast piston, superheated gases
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Travelled to AUS in 2017 to
learn principles of free-piston
design and operation
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1-D Lagrangian Flow Solver used
for tube simulation and fine-tuning
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