SAND2017-10607C

Heeseok Koo, John C. Hewson
Fire Science and Technology Department

Stefan P. domino, Robert C. Knaus
Computational Thermodynamics and Fluid Mechanics Department

% ENERGY lﬂv" Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly
P Wacler Sacemlly Adebctetetion owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

;‘" U.8. DEPARTMENT OF l V&




Challenges in the Fire Modeling UL

.. as discussed in MaCFP Workshop (Measurement and
Computation of Fire Phenomena), 2017

Slow, buoyancy driven flow
Flame extinction / re-ignition
Complex solid fuel sources

Soot

Radiation-turbulence interactions

etc.




Fire Plume / Pool Fire =

= A representative fire scenario
= Natural fires, industrial accident, leaked fuel, etc.
= Huge environmental impact; a great danger
= Addresses some of the major modeling challenges
= Currently being heavily studied
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FLAME Experimental Facility UL

= FLAME (the Fire Laboratory for Accreditation of Models by Experimentation)

= High-fidelity, large-scale, controlled, indoor facility for pool fire / fire
plume

= Various gaseous and liquid fuels were tested
= Laser diagnostics (PIV, PLIF), heat flux gauges, CARS devices were added

= Current study focuses on CH, fire plume case

= P|V data is available
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Model Uncertainties ) e

= The configuration has been studied well

= |t was one of the target experiments in the MaCFP workshop
= Some results match well to the experiment

= However, prediction is largely affected by several modeling
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Objectives

= Understand model sensitivities of the methane fire plume

= List of model choices
= Geometry details
= |LES sub-filter and turbulent-combustion model

= Mesh resolution




Numerical Tools ) 2=

= SIERRA: Sandia’s engineering mechanics simulation code suite

= Fuego: low-Ma reacting turbulent flow solver

= LES subfilter models
= Smagorinsky i = p (CsA)*|S]
= One-equation p; = pC‘HAkSQS%
= Closure for chemical source

= EDC with fast chemistry
= Radiation heat flux added through radiation transport equation

= Steady Flamelet




Domain Sensitivity =

= To verify the effect of omitting geometry details

Domain shape | Total elements | Mesh size near plume | Air velocity | Fuel velocity

Full geometry 1.7M 2.5cm 0.33 0.097 .
Cylindrical 0.23M 4cm 0.14 0.097 (Equivalence
Cylindrical 1.6M 2cm 0.14 0.097 ratio: 0.25)
Cylindrical 7.0M lcm 0.14 0.097
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Domain Sensitivity )

= Plume of the full geometry case shows strong interaction with
surrounding walls

Time: 0.0(s)

s % a "

Time: 35.5 o Time: 35.5

Temperature Axial velocity Temperature




7| Netora

Domain Sensitivity

= Plume of the full geometry case shows strong interaction with
surrounding walls

= Recirculation develops below the pool
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Domain Sensitivity
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= Plume of the full geometry case shows strong interaction with

surrounding walls

= Recirculation develops below the pool

= Full geometry shows stronger external turbulent fluctuations

and entrainment
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Combustion Model

= Steady flamelet vs. EDC with fast chemistry

= Adequate models for mixing-limited flames

= EDC narrows jet; leads to greater buoyant forcing

= EDC predicts continuous reaction zone from the plume edge

Axial and radial velocity
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Mesh Resolution Study

= 1. Control cell size in all directions (4, 2, or 1cm)

= Mesh refinement does not improve statistics

Domain shape | Total elements | Mesh size near plume | Air velocity | Fuel velocity

Full geometry 1.7M 2.5cm 0.33 0.097
Cylindrical 0.23M 4cm 0.14 0.097
Cylindrical 1.6M 2cm 0.14 0.097
Cylindrical 7.0M Icm 0.14 0.097
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Mesh Resolution Study ) e,

= 2. Resolve wall
= Mesh clustered toward wall, with the smallest mesh size of 1Imm or 1cm
= Smagorinsky-Flamelet: 2cm vs 2cm-1mm, 4cm vs 4cm-1mm

= Catches continuous reaction zone once directionally resolved (4cm-1mm)
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Mesh Resolution Study ) e,

= 2. Resolve wall

= EDC result improves with refined mesh
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Puffing Frequency

= Resolved mesh better predicts puffing
frequency (theoretical value ~ 1.5 Hz)

_ Puffing frequency (Hz)

4cm flamelet 0.6 (not resolved), 0.8 (wall resolved)
2cm flamelet 0.9 (not resolved), 1.0 (wall resolved)

22.980e+02

1cm flamelet 1.1
4cm EDC 1.5 (not resolved), 0.8 (wall resolved)

Time: 0.0(s)

Velocity at z=0.5m location along the centerline, with FFT of the data
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Conclusion ) 2=,

= Various LES were performed to understand model sensitivity
of buoyant methane fire plume

= While coflow velocity profile may vary, geometry details are
not critical

= Excessive flow entrainment and turbulent strength were predicted
with when full geometry details were included

= EDC predicts continuous reaction zones from the plume edge
with lower resolution

= However, after certain height, flamelet predicts better statistics

= Higher mesh resolution does not guarantee better results
= Stronger flow entrainment is predicted as mesh resolution increases

= |n general, plume puffing frequency improves with better mesh

= Further assessment of uncertainties is required
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i

LES Subfilter Model
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