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Traps in Semiconductor Devices

Always traps/defects in 
semiconductor devices

Fabrication processes Radiation environment

phononET

EC

EV

Shockley-Read-Hall (SRH) 
Recombination

Other trap-related 
processes

Band-to-trap tunneling (i.e., 
trap-assisted tunneling, TAT)

ET
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EV

Phonon-assisted
Multiphonon emission
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Modeling of Band-to-Trap Tunneling

Band-to-trap tunneling is widely modeled as field-dependent SRH recombination:

��(�, �)

Schenk model [1-2] 

Hurkx model [3]

Racko model [4]

[1] A. Schenk, Journal of Applied Physics 71, 3339 (1992). 
[2] A. Schenk, Solid-State Electronics 35 (11), 1585 (1992).
[3]  G. A. M. Hurkx, IEEE Transaction on Electron Devices 39(2),  331 (1992).  
[4] J. Racko et al., RadioEngineering 21(1), 213 (2012). 

Assuming Boltzmann statistics and deep-level traps, the Schenk model is reduced to 

Density of states (DOS)

• Schenk and Hurkx exist in TCAD codes
• Contains only field dependence

o Contains the field 
dependence

o Obtained assuming 
constant field

� =
�� − ��

�

τ� � + �� + τ�(� + ��)

Field enhancement factor due 
to band-to-trap tunneling

τ� =
τ��(�, � = 0)

1 + ��(�, �)
, ν = �, �
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B-to-T Tunneling in Heterojunction Device

Constant field assumption for 
the DOS in the Schenk model

Good for homojunction devices

Not good for heterojunction devices

Consider In0.49Ga0.51As/GaAs NP+N HBT:

ET

EC

EV

Emitter

Base

∆EV

DOS at the trap location is greatly enhanced
[5] due to the band offset ∆EV, leading to 
much higher hole-to-trap tunneling.

[5] S. M. Myers et al., J. Appl. Phy. 120, 134502 (2016). 

Sam Myers et al. [5] obtained much higher 
DOS than the constant-field DOS by 
numerically solving the Schrodinger 
equation given the actual EV band profile. 

Heterojunction (HJ)

EV

Trivial – solve 1D Schrod. eqn. numerically once 
Inefficient – when solved repeatedly
Difficult – coupled to MPI-parallel PDE-based 
TCAD code 

Goal – find analytic DOS model for simplified 
potential & easy implementation in TCAD code
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Density of States Method

Goal – find analytic DOS model for simplified potential (red 
potential) & easy implementation into TCAD code

Reverse and shifted

x

 Need to compute 3D DOS (used in the Schenk model)
 Non-zero potential in the x direction only
 Three methods to compute the DOS

E

Method 1 – Numerical approach

ρ��(�, �) =
�

�ℏ� � �� � ��(� − ��)

�

Discrete energy spectrumWave functions normalized to 1

θ(∙) – step function

 Require solving the Schrodinger equation numerically to obtain ψi and Ei

���
� �, � =

�

2�ℏ� � ���
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�
Im[���
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Method 2 – Green’s function (GF) approach

 Analytic GFs is even harder to obtain than the WFs
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Proposed Density of States Method

Method 3 – Proposed scattering approach 

Solve the Schrodinger equation with open 
boundary condition (BC)

ρ��(�, �) =
�

�ℏ� � ���
�

�
����(� − ��)

��

�

� ���

∗ � ���
� � ��

��

��

= �(�� − ��
� )

• Continuous energy spectrum

• Dirac-delta normalized WF

x0

V0

V1

a
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Proposed Density of States Method

How does the approach work ? 

x0

V1 �(�) = � ����� + � ����� � < 0
� ���� � > 0

� =
2��

ℏ� ν =
2�(�� − �)

ℏ�

x0

V0

V1

w

�(�) = � �
���� + � ����� � < 0

� �� � � + � ��[� � ] 0 < � < �

� ���� � > �

Consider 0 < E < V1 and x > 
0 (relevant for b-to-t 
tunneling)

Coefficients (a, b, c, d) 
depend on E and are 
determined by 
continuity of ψ and 
dψ/dx at x = 0 & w

Step 1: Solve the Schrodinger equation with open BC to obtain analytic wave functions

x0

V0

�(�) = � �
���� + � ����� � < 0

� �� [� � ] � > 0

�(�) =
2���

ℏ�

�/�

� +
�� − �
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Proposed Density of States Method

Step 2: Determine the normalization factor

� ���

∗ � ���
� � ��

��

��

= �(�� − ��
� ) Determine the normalization factor �

 Challenge task to normalize the WFs to the delta function, even for step barrier

 Discover the same normalization factor for all the three potentials considered

 Believe the same factor is applicable to all other 1D potentials with open BC.

|�|� =
�

2�ℏ��
� =

2��

ℏ�with

Mathematically prove it for step barrier 
and linear potential with offset

Once N is known, ρ3D can be computed !

Pros:
• Analytic wave functions
• Universal normalization factor 
• Easy implementation into TCAD

Cons:
• Limited to 1D potentials that lead 

to piecewise analytic WFs 
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Small slope for 
numerical solve E

Density of States Comparison

 The Green’s function and proposed methods 
produce the same DOS

 Small difference between the numerical and 
proposed methods is due to the non-ideal step 
used in the numerical code

(Thanks to numerical code 
provided by Sam Myers)

E

V0 = 1
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Density of States Comparison

Small slope for 
numerical solve

 The constant-field DOS is valid only for more than 
20 nm away from the heterojunction (HJ)

 The DOS computed using the proposed method 
agree well with numerical results

 The band offset has a strong effect on the DOS for 
distances within 20 nm from the HJ

V0 = 0.5
F = 0.1 MV/cm 5 nm from 

the HJ

10 nm

20 nm
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Field Enhancement Factor gn

 For locations >= 20 nm from the HJ, proposed & Schenk models produces similar gn

 gn by the proposed model increases with decreasing distance from the HJ 

 Field dep. of gn by the proposed model reduces with decreasing distance from the HJ

5 nm from HJ

10 nm

15 nm

20 nm



12

Charon Device Simulator

The proposed band-to-trap tunneling model is implemented in Charon. 

Sandia-developed TCAD code with support for radiation effects modeling 

Unique Capabilities provided by Charon

Open source (just approved)

Two & three dimensional + MPI parallel capability

Various governing PDEs (Poisson, drift-diffusion for e/h/ions, lattice heating)

Different discretization schemes (e.g., finite volume, finite element)

Advanced physics models (Fermi-Dirac, transport across heterojunction, band-to-
trap tunneling, etc.)

Numerous devices (diodes, BJTs, HBTs, MOSFETs, GaN devices, memristors, etc.)
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Application of B-to-T Model to NPN HBT
In0.49Ga0.51P GaAs
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 Mid-band gap traps in the 
emitter

 τn0 = 1 ns, τp0 = 0.1 us

 Only hole-to-trap tunneling 

The proposed b-to-t tunneling 
model produces much larger 
base current than the original 
Schenk model, due to the 
hole-to-trap tunneling 
enhanced by the emitter-base 
band offset. 



14

Conclusion

 Develop an analytic DOS model that includes the effects of both electric field and HJ band 
offset based on the open boundary scattering approach

ρ��(�, �) =
�

�ℏ� � ���
�

�
����(� − ��)

��

�

 Demonstrate the dramatically increased band-to-trap tunneling strength (via the field 
enhancement factor) at locations close to the HJ using the proposed model 

 Demonstrate the dramatically increased base current in a InGaP/GaAs NPN HBT due to 
the hole-to-trap tunneling enhanced by the emitter-base junction band offset

 The proposed band-to-trap tunneling model can be easily implemented into TCAD codes 
thanks to its analytic form 
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Charon Device Simulator

Sandia TCAD 
code

Cubit for geometry 
and mesh creation
(arbitrary 2D/3D 
geometry)

Data analysis and 
visualization

Open-source suite: 
 Discretization (FE, FV)
 Nonlinear & linear solvers
 MPI parallel 
 Automatic differentiation
 Many more…

https://cubit.sandia.gov/

http://www.paraview.org/

http://trilinos.org/


