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Traps in Semiconductor Devices

Fabrication processes Radiation environment

NI

Always traps/defects in
semiconductor devices

/ \ Other trap-related

processes
Shockley-Read-Hall (SRH)
Recombination

® Band-to-trap tunneling (i.e.,

Ec trap-assisted tunneling, TAT)
E, % phonon Phonon-assisted |
Multiphonon emission
EV
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Modeling of Band-to-Trap Tunneling

Band-to-trap tunneling is widely modeled as field-dependent SRH recombination:
_ np — n? TV=TVO(T'F:0),v=n,p
T,(n +ny) +T_n(p+p1) 1+ gy(T,F)

\ Field enhancement factor due
to band-to-trap tunneling

R

Schenk model 12!

g, (T, F) Hurkx model ! » Schenk and Hurkx exist in TCAD codes
e Contains only field dependence

Racko model 4

Assuming Boltzmann statistics and deep-level traps, the Schenk model is reduced to

Density of states (DOS) —
E, B o Contains the field
Jo AEplEN i ny (=) exp (557 )

dependence ¢
[ix dEpE="(E)Ipne (=) exp (5727 )

.'??-n(TfF) — o Obtained assuming

constant field
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B-to-T Tunneling in Heterojunction Device

Constant field assumption for
the DOS in the Schenk model

Consider In, ,4Ga, 5;As/GaAs NP*N HBT:

Good for homojunction devices

Not good for heterojunction devices

DOS at the trap location is greatly enhanced
Bl due to the band offset AE,, leading to
much higher hole-to-trap tunneling.

Sam Myers et al. [*l obtained much higher
DOS than the constant-field DOS by
numerically solving the Schrodinger
equation given the actual E, band profile.

Trivial — solve 1D Schrod. eqn. numerically once
Inefficient — when solved repeatedly

Difficult — coupled to MPI-parallel PDE-based
TCAD code

Goal — find analytic DOS model for simplified
potential & easy implementation in TCAD
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Density of States Method

Reverse and shifted

A Goal - find analytic DOS model for simplified potential (red
E potential) & easy implementation into TCAD code
/ = Need to compute 3D DOS (used in the Schenk model)
y = Non-zero potential in the x direction only
> = Three methods to compute the DOS

Method 1 — Numerical approach
m
psp(x, E) = WEWL'(?CNZH(E —E;) 6(-) — step function
i

Wave functions normalized to 1 Discrete energy spectrum

“* Require solving the Schrodinger equation numerically to obtain y; and E,

Method 2 — Green’s function (GF) approach

-2 m (%
p3p(x, E) = 7Im[c;g?D (x,E)] G5 (x,E) = 57 f GR,(x,E —E,)dE,8(E — E))
0

¢ Analytic GFs is even harder to obtain than the WFs
5



Proposed Density of States Method

Method 3 — Proposed scattering approach

aVAVAIY, Vi

?

v

Solve the Schrodinger equation with open
boundary condition (BC)

Continuous energy spectrum

Dirac-delta normalized WF
+00

Ve, (OYp (X)dx = 8§(Ex — Ex)

+o00

E) = ""f
P3p (X, )_ﬂhz )

[, (0| dELO(E — Ey)
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Proposed Density of States Method

How does the approach work ?

Step 1: Solve the Schrodinger equation with open BC to obtain analytic wave functions

Consider 0<E<V, and x >

Vi W(x) = N{eikx + C_lvi_ikx x <0 O (relevant for b-to-t
be x>0 tunneling)
2mE 2m((V; — E)
> k = 5 VvV = 5
0 X h n Coefficients (a, b, c, d)
, , depend on E and are
D(x) = N{elkx +ae ™™ x<0 determined by
’ bA;[y(x)] x>0 continuity of y and
0 ImqF 1/3 Vo —E dy/dxatx =0 & w
> y(x) - flz X CIF
0 X
Vi
- etk* 4+ g g~ tkx x <0
"l P(x) = Nqb Aily()] + ¢ Bi[y(x)] 0<x<w
: R de™ V¥ x> w
0w X
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Proposed Density of States Method

Step 2: Determine the normalization factor

+o00

Y, () Pp (x)dx = 6(Ex — Ex) mmm) Determine the normalization factor N
— 00
» Challenge task to normalize the WFs to the delta function, even for step barrier
» Discover the same normalization factor for all the three potentials considered

> Believe the same factor is applicable to all other 1D potentials with open BC.

Mathematically prove it for step barrier

NI2 = m with k = Zmk and linear potential with offset
2mh?k h?

Once N is known, p5 can be computed !

Pros: Cons:
e Analytic wave functions * Limited to 1D potentials that lead
* Universal normalization factor to piecewise analytic WFs

e Easy implementation into TCAD
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Density of States Comparison

(Thanks to numerical code

Potential energy (eV)

| | | | 26 Numerical: 5nm _
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g 04 produce the same DOS
Q
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Density of States Comparison

Potential energy (eV)

Potential energy (eV)
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» The constant-field DOS is valid only for more than
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Small <| ¢ = The DOS computed using the proposed method
ma s-ope or agree well with numerical results
numerical solve
0 = The band offset has a strong effect on the D
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Field Enhancement Factor g,

10
c 412
o 107  5nm from HJ
"g 1010_
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" For locations >= 20 nm from the HJ, proposed & Schenk models produces similar g,
= g by the proposed model increases with decreasing distance from the HJ

" Field dep. of g, by the proposed model reduces with decreasing distance from the H

Nati . |
jonal
11 Laboratories



Charon Device Simulator

The proposed band-to-trap tunneling model is implemented in Charon.

Sandia-developed TCAD code with support for radiation effects modeling

Unique Capabilities provided by Charon

© © € ¢

©

12

Open source (just approved)

Two & three dimensional + MPI parallel capability

Various governing PDEs (Poisson, drift-diffusion for e/h/ions, lattice heating)
Different discretization schemes (e.g., finite volume, finite element)

Advanced physics models (Fermi-Dirac, transport across heterojunction, band-to-
trap tunneling, etc.)

Numerous devices (diodes, BJTs, HBTs, MOSFETs, GaN devices, memristors, etc.)
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Application of B-to-T Model to NPN HBT

Emitter

Current (A)
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— Ib: Schenk B-to-T
= |b: Proposed B-to—-T

0.8

0.9 1 1.1 1.2 1.3
Vbe (V)

Collector

= Mid-band gap traps in the
emitter
" To=1ns,1,0=0.1us

= Only hole-to-trap tunneling

The proposed b-to-t tunneling
model produces much larger
base current than the original
Schenk model, due to the
hole-to-trap tunneling
enhanced by the emitter-base
band offset. 4
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Conclusion

L Develop an analytic DOS model that includes the effects of both electric field and HJ band
offset based on the open boundary scattering approach

~ANAN— g
VGK

0a x

O The proposed band-to-trap tunneling model can be easily implemented into TCAD codes
thanks to its analytic form

m (t%® 2
pap(x,E) =~ f s, (0| dEL0(E — Ey)
mh= ),

o

d Demonstrate the dramatically increased band-to-trap tunneling strength (via the field
enhancement factor) at locations close to the HJ using the proposed model
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(d Demonstrate the dramatically increased base current in a InGaP/GaAs NPN HBT due4

the hole-to-trap tunneling enhanced by the emitter-base junction band offset Sandia
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Charon Device Simulator

Sandia TCAD

=== JlParaview

Data analysis and
visualization
Gpﬁe suite: \ http://www.paraview.org/

= Discretization (FE, FV) )
®" Nonlinear & linear solvers |
= MPI parallel

= Automatic differentiation

KMany more... J

http://trilinos.org/ Sandia
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Cubit for geometr
and mesh creation
(arbitrary 2D/3D
sceometry)

https://cubit.sandia.gov/
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