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Outline

 Detecting differences between datasets
 Depending on experiment design, can detect context 

dependence, drift, crosstalk

 Expects chunked data

 Detecting crosstalk 
 Testing for conditional independence

 Detecting and characterizing drift
 Time dependent changes in the measurement probabilities

 Requires measurement record (not just total counts)

 Updates to pyGSTi
 HTML reports, non-Markovian error bars, standard practice GST



Detecting drift and crosstalk
 Do my qubit operations change when I change an “external 

variable?

 E.g., today vs. tomorrow (drift), simultaneously operating on another 
qubit or not (operation crosstalk), etc.

 Can detect change by looking at differences in observed counts for 
same gate sequences.

 This framework:

 Is sensitive to drift on timescales greater than individual sequence 
runtime.

 Can use GST sequences but does not require GST analysis.

 Is entirely agnostic to structure of underlying dynamics.

 Relatively coarse-grained.



Checking the equality of coin flips

hA heads
NA flips

hB heads
NB flips

Data A Data B
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Checking the equality of coin flips

hA heads
NA flips

hB heads
NB flips

Data A Data B

hA + hB heads
NA + NB    flips
hA + hB heads
NA + NB    flips

Combined data A + B



Checking the equality of coin flips

pA = hA / NA pB = hB / NB

Data A Data B

pA+B = ( hA + hB) / (NA + NB)pA+B = ( hA + hB) / (NA + NB)

Combined data A + B

H0:  All data is drawn from the binomial distribution with pA+B

H1:  Data A drawn from binomial distribution with pA and
Data B drawn from binomial distribution with pB

Hypothesis testing



Checking the equality of coin flips

pA = hA / NA pB = hB / NB

Data A Data B

pA+B = ( hA + hB) / (NA + NB)pA+B = ( hA + hB) / (NA + NB)

Combined data A + B

If the distributions are the same, the score will be chi2 distributed.

Likelihood Ratio Test



Drift detection in Rigetti device

Simulated Markovian GST data Experimental GST data (Rigetti)

Simulated data where the bias does not 
change across sweeps 

(8010 gate strings)

Experimental data where bias 
apparently does change across sweeps 

(8010 gate strings).
“1 in ∞” chance the gate sets are the 

same.



Drift detection in Rigetti device

Simulated data where the bias does not 
change across sweeps 

(8010 gate strings)

Experimental data where bias does
change across sweeps 

(8010 gate strings).
“1 in ∞” chance the gate sets are the 

same.

Experimental GST data (Rigetti)Simulated Markovian GST data



Operation crosstalk on IBM QX2
 Experiment A (Before) 

 LGST sequences on qubit A

 Idle gates on qubit B

 Experiment B (During) 

 LGST sequences on qubit A

 Driving qubit B with H gates

 Experiment C (After)

 LGST sequences on qubit A

 Idle gates on qubit B
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Operation crosstalk on IBM QX2

Drift Crosstalk

 Experiment A (Before) 

 LGST sequences on qubit A

 Idle gates on qubit B

 Experiment B (During) 

 LGST sequences on qubit A

 Driving qubit B with H gates

 Experiment C (After)

 LGST sequences on qubit A

 Idle gates on qubit B



o Drive CNOTs on 
ladder rungs

o Measure Q15

Large violations of 
null hypothesis with 
minimal drift. 

Violations due to 
crosstalk.

Operation crosstalk on IBM QX2



These tools are part of pyGSTi

 You will need the beta branch of the software
…/pyGSTi$ git checkout beta

 Contained in:
pygsti.objects.DataComparator([ds_0,…,ds_n])

 Demonstrated in:
Tutorial 17:  Pure Data Analysis

 Direct questions to 

 Erik Nielsen: enielse@sandia.gov

 Kenny Rudinger: kmrudin@sandia.gov



Crosstalk detection via
conditional independence testing

Problematic:

Measurement results
on individual qubits

Experimental settings 
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Ideal:

• A statistically motivated way to detect crosstalk. The conditional independence tests 
can be done at some significance level.

• The method can capture many different kinds of ”crosstalk” (and more generally, 
parallel context dependence) at once.

• Can use existing GST data, and is computationally efficient. 

Pr( R1 | S11, S12, S13, S21, S22, S23, …) = Pr( R1 | S11, S12, S13 )



Crosstalk detection on Rigetti device
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 Crosstalk detection done for all adjacent 
qubit pairs. 

 LGST gate sequences performed on two 
qubits, with only the Identity germ to probe 
for idle crosstalk.

 See significant crosstalk on all but Q0/Q7



Crosstalk detection on IBM QX2

 Experiment:
 LGST on qubit A

 Driving qubit B with H gates

 Crosstalk detection done for all qubit pairs. 
 Only Q1 / Q2 crosstalk detected

 IBM QX website[1] reports little coherent crosstalk between 
qubits 1 and 2 (ZZ interaction)

 We hypothesize: We’re seeing measurement crosstalk since 
the resonators for these two qubits are close in frequency.  

[1] https://github.com/QISKit/ibmqx-backend-information/blob/master/backends/ibmqx2/README.md



Characterizing 
time dependence



 Data is a length N bit string representing equally-spaced 
measurements:

x = { 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, … }

 Hypothesis testing:

 H0: Data drawn from N independent flips of a coin with a 
time-independent (but unknown) bias p.

 H1: The bias p(t) is a non-constant function of time.

 N bits of information. So can only hope to detect p(t) 
described by k<<N parameters.

 We consider the most physically relevant case: Fourier-
sparse p(t).

Spectral analysis of time-dependent 
data



Spectral analysis of time-dependent 
data – monochromatic drift



Transform to Fourier domain

Spectral analysis of time-dependent 
data – monochromatic drift



Spectral analysis of time-dependent 
data – monochromatic drift

High power at
the signal frequency. Is it 
statistically significant?



Spectral analysis of time-dependent 
data – monochromatic drift

High power at
the signal frequency. Is it 
statistically significant?
YES!



Spectral analysis of time-dependent 
data – monochromatic drift

The rest is consistent 
with noise



Spectral analysis of time-dependent 
data – monochromatic drift

Zero out the noise.
(note: we actually do this to the modes, not the 
power spectrum, because they have phase-info.)



Spectral analysis of time-dependent 
data – monochromatic drift

Zero out the noise.
(note: we actually do this to the modes, not the 
power spectrum, because they have phase-info.)

Invert the Fourier transform



Spectral analysis of time-dependent 
data – polychromatic drift

One frequency is not picked up



Spectral analysis of time-dependent 
data – general drift

All data modes 
below threshold!

Signal is low power at all frequencies



All data modes 
below threshold!

Summed power test statistic

There is a lot more high-ish 
power modes than we would 
expect with no drift.

Spectral analysis of time-dependent 
data – general drift

These mean we have detected 
drift!



• Error model: each Clifford followed by unitary

• Each sequence performed exactly once.

Excess power at the 
signal frequency

Spectral analysis of time-dependent 
data – randomized benchmarking



• This analysis assumes GST sequences are rastered

• Noise model: Hamiltonian noise in gates fluctuating at several 
low frequencies

Spectral analysis of time-dependent 
data – GST

0 … 0 … 1

1 … 0 … 1

0 … 0 … 1

0 … 1 … 1

Time

Circuit 1 outcomes

Circuit 2 outcomes

Circuit 3 outcomes

Circuit 4 outcomes



 The power spectrum for any given sequence may not be 
sufficient to detect drift

Spectral analysis of time-dependent 
data – GST



 The power spectrum for any given sequence may not be 
sufficient to detect drift

 But we can average all ~2000 power spectra

 Amplifies the signal and suppresses the noise

 Many frequencies appear due to harmonics and aliasing

Spectral analysis of time-dependent 
data – GST

Clear sharp spikes at all of the 
main signal frequencies



Recent updates to 
pyGSTi



Recent (beta-level) pyGSTi
updates

 Using these under-development features requires 
that you be on the ‘beta’ branch of pyGSTi

Better data visualization (HTML reports)
 Problem: pyGSTi’s reports required lots of scrolling 

and flipping between different PDF files to compare 
analyses.

 Solution: now reports are HTML documents!

 Allows interactive reports & denser data

 Effectively “layers” of PDF reports folded into one

 Multiple gauge optimizations

 Multiple models

 Multiple data sets



Recent pyGSTi updates (cont)
Non-Markovian error bars

 Problem: how to convey uncertainty in a gate set when the usual 
GST estimate cannot fit the data well (i.e. there’s “non-
markovian” errors) .

 Solution (in progress): define some type of “non-markovian
error bars”.  Currently we have two ways of doing this: 

 Type1: error bars based on distance from truth 

 Type2: normal in-model error bars based on data with artificially 
reduced counts so that it can be fit as well as expected.

black = sequence omitted,
white = sequence kept



Recent pyGSTi updates (cont)
Standard practice GST – convenient interface for multiple GST estimates

 Problem1: sometimes GST will give gate estimates that are not CPTP, and this 
invalidates metrics such as the process fidelity (can get process infidelities < 0, etc).

 Problem2: knowing the “right” parameters for gauge optimization is difficult, and 
GST analyses can be difficult to interpret because it’s difficult to separate gauge 
artifacts from actual gate errors.

 Solution: We’ve tried to bottle several “standard” ways of running GST which 
includes:
 both CPTP and TP fits

 Multiple gauge optimizations

 Automatic computation of non-Markovian error bars when needed.

 To run GST using these standard-practice setting, just call do_stdpractice_gst
instead of do_long_sequence_gst. 

 Integrates nicely with HTML reports, which are able to display multiple estimates 
and gauge optimizations at once.
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