SAND2017- 10601P

Sandia theory updates

detecting crosstalk, drift, context dependence
pyGSTi updates

Robin Blume-Kohout, Erik Nielsen,
Tim Proctor, Kenny Rudinger, Kevin Young

0. OEPARTIENT OF '
m M Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of
Sandia

ndia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security




Outline @

= Detecting differences between datasets

= Depending on experiment design, can detect context
dependence, drift, crosstalk

= Expects chunked data

= Detecting crosstalk
= Testing for conditional independence

= Detecting and characterizing drift
= Time dependent changes in the measurement probabilities
= Requires measurement record (not just total counts)

= Updates to pyGSTi

= HTML reports, non-Markovian error bars, standard practice GST




Detecting drift and crosstalk i

= Do my qubit operations change when | change an “external
variable?

= E.g., today vs. tomorrow (drift), simultaneously operating on another
qubit or not (operation crosstalk), etc.

= Can detect change by looking at differences in observed counts for
same gate sequences.

= This framework:

» |s sensitive to drift on timescales greater than individual sequence
runtime.

= Can use GST sequences but does not require GST analysis.
= |s entirely agnostic to structure of underlying dynamics.

= Relatively coarse-grained.



Checking the equality of coin flipg®&=

h, heads hg heads
N, flips Ng flips

Data A Data B




Checking the equality of coin flipg®&=

h, heads hg heads
N, flips Ng flips
Data A Data B
Crosstalk
Driven neighbor |dle neighbor
Drift
Today Tomorrow

Context
With fiber noise Without fiber noise
cancelation cancelation
With filter A With filter B




Checking the equality of coin flipg®&=

h, heads hg heads
N, flips Ng flips
Data A Data B

h, + hy heads
N, + Ng flips

Combined data A + B




Checking the equality of coin flipg®&=

Pa=ha/ Ny ps =hg/ Np

Data A Data B

Paig = (hy + hg) /(N + Np)

Combined data A + B

Hypothesis testing

H,: All data is drawn from the binomial distribution with p,.z

H,: Data A drawn from binomial distribution with p, and
Data B drawn from binomial distribution with pg




Checking the equality of coin flipg®&=

Pa=ha/ Ny ps =hg/ Np

Data A Data B

Pa+g = (hy + hg) /(N + Np)

Combined data A + B

Likelihood Ratio Test

[ ha+hp 1—pas.n)YatNp—ha—hp
Score = —2log ATB _ 9] ‘ Pa+p (1= pais)
£A£B (pﬁf(l . pA)NA_hA> (pgﬁ (1 . pB)NB—hB)

If the distributions are the same, the score will be chi? distributed.




Drift detection in Rigetti device )

Simulated Markovian GST data Experimental GST data (Rigetti)

p-value histogram for experimental coins; ) p-v_alue histogram f0l_’ experimental GOi_nS;
Comparing datasets ['Simulated 0', 'Simulated 1] p=0 0 times; 8010 total sequences Comparing datasets ['Experimental 0, 'Experimental 1'] p=0 5 times; 8010 total sequences
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Simulated data where the bias does not Experimental data where bias
change across sweeps apparently does change across sweeps

(8010 gate strings) (8010 gate strings).
“1 in «” chance the gate sets are the

same.



Drift detection in Rigetti device ()

Simulated Markovian GST data Experimental GST data (Rigetti)
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Simulated data where the bias does not Experimental data where bias does
change across sweeps change across sweeps
(8010 gate strings) (8010 gate strings).
“1 in «” chance the gate sets are the
same.



Operation crosstalk on IBM QX2 @&

= Experiment A (Before)
LGST sequences on qubit A
Idle gates on qubit B
= Experiment B (During)
LGST sequences on qubit A
Driving qubit B with H gates
= Experiment C (After)
LGST sequences on qubit A
Idle gates on qubit B




Operation crosstalk on IBM QX2 B&.

= Experiment A (Before)
= LGST sequences on qubit A
= [dle gates on qubit B
= Experiment B (During)
= LGST sequences on qubit A
» Driving qubit B with H gates
= Experiment C (After)
= LGST sequences on qubit A
= [dle gates on qubit B
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Operation crosstalk on IBM QX2 B&.

= Experiment A (Before)
= LGST sequences on qubit A
= /dle gates on qubit B
= Experiment B (During)
= LGST sequences on qubit A
» Driving qubit B with H gates
= Experiment C (After)
= LGST sequences on qubit A
= [dle gates on qubit B
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Operation crosstalk on IBM QX2 @&

. 2500
o Drive CNOTs on —%— crosstalk score
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These tools are part of pyGSTi @&

= You will need the beta branch of the software
../PpyGSTi$ git checkout beta

= Contained in:
pygsti.objects.DataComparator([ds O,..,ds n])

= Demonstrated in:
Tutorial 17: Pure Data Analysis

= Direct questions to

= Erik Nielsen: enielse@sandia.gov

= Kenny Rudinger: kmrudin@sandia.gov




Crosstalk detection via

conditional independence testing

Ideal:

Problematic:
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Measurement results
on individual qubits

Experimental settings

Pr( R1|S11, S12, S13, S21, S22, S23, ...) = Pr( R1| S11, S12, S13)

« A statistically motivated way to detect crosstalk. The conditional independence tests
can be done at some significance level.

* The method can capture many different kinds of "crosstalk” (and more generally,
parallel context dependence) at once.

« Can use existing GST data, and is computationally efficient,




Crosstalk detection on Rigetti device HE-

2222222222222222222222

= Crosstalk detection done for all adjacent
qubit pairs.

= LGST gate sequences performed on two
qubits, with only the Identity germ to probe
for idle crosstalk.

= See significant crosstalk on all but Q,/Q,
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= Experiment:
= LGST on qubit A

= Driving qubit B with H gates

= Crosstalk detection done for all qubit pairs.
= Only Q1/ Q2 crosstalk detected

= |BM QX websitel'l reports little coherent crosstalk between
qubits 1 and 2 (ZZ interaction)

= We hypothesize: We're seeing measurement crosstalk since
the resonators for these two qubits are close in frequency.

[1] https://github.com/QISKit/ibmgx-backend-information/blob/master/backends/ibmgx2/README.md




Characterizing
time dependence




Spectral analysis of time-dependent ®&E.
data

= Data is alength N bit string representing equally-spaced

measurements:
x={0,1,0,0,1,0,1,0,1,1,1,1,0,1, ... }

= Hypothesis testing:

« HO: Data drawn from N independent flips of a coin with a
time-independent (but unknown) bias p.

= H1: The bias p(t) is a non-constant function of time.

= N bits of information. So can only hope to detect p(t)
described by k<<N parameters.

=  We consider the most physically relevant case: Fourier-
sparse p(i).




Spectral analysis of time-dependent ®&E.

data — monochromatic dri
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Spectral analysis of time-dependent ®&E.
data — monochromatic drift
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Spectral analysis of time-dependent @
data — monochromatic drift
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Spectral analysis of time-dependent @
data — monochromatic drift
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Spectral analysis of time-dependent @
data — monochromatic drift

1.0 T T T T -
N N arl — Probability function p(t)
0.8} A n ’ - - Low pass filter on data ||
’ )t [ . b ;1, P! I T
_a‘ ! : ‘I ! v ' 1 "
= 0.6
e}
©
8 0.4
[
[
0.2
0.0 L . . .
200 400 600 800 1000
Time step

Power spectrum

l s e Data spectrum
25 plt) spectrum

201 The rest is consistent

- = 99% confidence level significance threshold




Spectral analysis of time-dependent @
data — monochromatic drift

1.0 T T T T -
A " — Probability function p(t)

o8l 1;1\ ) | ; ! - - Low pass filter on data ||
- J‘I : Lo . I'I J\‘ o ﬂ\r'\ ! " R T
— |
= 0.6F
o
18]
8 0.4
[
o
0.2
0'00 260 4(I}l} Gl’l}() S(IIIO 1000
Time sten
Power spectrum
30 T T T T
= » Nojse-removed data spectrum
254 . plt) spectrum
Zero OUt the noise. - - 99% confidence level significance threshold
. 0] S (note: we actually do this to the modes, notthe . ... _ ~ .- .- .- - - ----i-----i-co 1
Q power spectrum, because they have phase-info.)
= 15
o
o
10}
5 5
0
0 200 400 600 800 1000

Frequency
I ——————



Spectral analysis of time-dependent ®&E.
data — monochromatic drift
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Spectral analysis of time-dependent ®&E.
data — polychromatic drift
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Spectral analysis of time-dependent @&
data — general drift
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Spectral analysis of time-dependent ®&E.
data — general drift

Summed power test statistic
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Spectral analysis of time-dependent ®&E.
data — randomized benchmarking

« Error model: each Clifford followed by unitary U(t) = exp(—icos(wt)o,)
« Each sequence performed exactly once.
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Spectral analysis of time-dependent ®&E.
data — GST

« This analysis assumes GST sequences are rastered

Time P
Circuit 1 outcomes |0 ... 10 T
Circuit 2 outcomes 1 ... 0 ... 1
Circuit 3 outcomes 0 ... 0 ... 1
Circuit 4 outcomes o |... 1 ... 1

* Noise model: Hamiltonian noise in gates fluctuating at several
low frequencies




Spectral analysis of time-dependent ®&E.
data — GST

» The power spectrum for any given sequence may not be
sufficient to detect drift




Spectral analysis of time-dependent ®&E.
data — GST

» The power spectrum for any given sequence may not be
sufficient to detect drift

»  Amplifies the signal and suppresses the noise

= Many frequencies appear due to harmonics and aliasing

— True power spectrum

08 Clear sharp spikes at all of the s
. main signal frequencies
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Recent updates to
pyGSTi




Recent (beta-level) pyGSTi
updates

= Using these under-development features requires
that you be on the ‘beta’ branch of pyGSTi

Better data visualization (HTML reports)

= Problem: pyGSTi’s reports required lots of scrolling
and flipping between different PDF files to compare
analyses.

= Solution: now reports are HTML documents!

= Allows interactive reports & denser data

= Effectively “layers” of PDF reports folded into one
= Multiple gauge optimizations
= Multiple models
= Multiple data sets




Recent pyGSTi updates (cont) @

Non-Markovian error bars

* Problem: how to convey uncertainty in a gate set when the usual
GST estimate cannot fit the data well (i.e. there’s “non-
markovian” errors) .

= Solution (in progress): define some type of “non-markovian
error bars”. Currently we have two ways of doing-this:
= Type1: error bars based on distance from truth

= TypeZ2: normal in-model error bars based on data with artificially
reduced counts so that it can be fit as well as expected.

\ -
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black = sequence omitted,
white = sequence kept




Recent pyGSTi updates (cont) @

Standard practice GST - convenient interface for multiple GST estimates

Problem1: sometimes GST will give gate estimates that are not CPTP, and this
invalidates metrics such as the process fidelity (can get process infidelities < 0, etc).

Problem2: knowing the “right” parameters for gauge optimization is difficult, and
GST analyses can be difficult to interpret because it’s difficult to separate gauge
artifacts from actual gate errors.

Solution: We've tried to bottle several “standard” ways of running GST which
includes:

= both CPTP and TP fits
= Multiple gauge optimizations
= Automatic computation of non-Markovian error bars when needed.

To run GST using these standard-practice setting, just call do _stdpractice gst
instead of do_long sequence gst.

Integrates nicely with HTML reports, which are able to display multiple estimates
and gauge optimizations at once.
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