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Introduction and Background

Ohmic metal evaluation
• Five metal stacks
• Rapid thermal anneal process
• TEM analysis of Ti/Al/Ni/Au

HEMT device 
• Fabrication
• Characterization results

Conclusions
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Project Goal
• Develop Ohmic contacts Al0.45Ga0.55N/Al0.3Ga0.7N High Electron 

Mobility Transistors (HEMTs)
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Si

WBG SiC

UWBG

SiC converter is 10% the volume and weight of 
Si for equivalent capability (10 kV, 100 A)

Project Goal
• Develop Ohmic contacts Al0.45Ga0.55N/Al0.3Ga0.7N HEMTs
Motivation
• Next-generation power switches
• RF devices
• Optoelectronic applications
• Higher Al compositions have potentially superior electrical and 

thermal properties, but making Ohmic contacts is challenging
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Motivation
• Next-generation power switches
• RF devices
• Optoelectronic applications
• Higher Al compositions have potentially superior electrical and 

thermal properties, but making Ohmic contacts is challenging

M. E. Coltrin and R. J. Kaplar, Journal of Applied Physics, vol. 121, no. 055706, 2017 

Alloy Scattering → Bathtub Shape
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Project Goal
• Develop Ohmic contacts Al0.45Ga0.55N/Al0.3Ga0.7N HEMTs
Motivation
• Next-generation power switches
• RF devices
• Optoelectronic applications
• Higher Al compositions have potentially superior electrical 

and thermal properties, but making Ohmic contacts is 
challenging

Approach
• Intermediate aluminum fraction 
• Low mobility, but good platform for Ohmic contact 

development
• Evaluate five Ohmic contact stacks; planar configuration 
• Build HEMT
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Why is making an Ohmic contact to AlGaN challenging?

Metal Semiconductor

Thermionic Emission
Low surface doping

Schroder, D. K. (2006). Semiconductor Material and Device Characterization. 

Field Emission
High surface doping

Metal Semiconductor

Si
1.12 eV

GaAs
1.424 eV

GaN
~3.4 eV

Al0.45GaN
~4.5 eV

AlN
~6.0 eV
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Why is making an Ohmic contact to AlGaN challenging?

Reported specific contact resistances of AlGaN-channel HEMTs rise exponentially with 
increasing Al fraction.
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Techniques/Approaches
Various metal stacks

• Ti/Al1,3,8

• Ti/Al/Ni/Au2,12

• Ti/Al/Mo/Au7

• Ti/Al/W5

• V/Al/Ni/Au15

Treatments
• Si implant in Ohmic regions1,3

• Selective area regrowth12

• Recessed etching13

• Mo/Al/Mo/Au6

• Nb/Ti/Al/Ni/Au4

• Zr/Al/Mo/Au9,10,11

• V/Al/V/Au14
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Techniques/Approaches
Various metal stacks

• Ti/Al1,3,8

• Ti/Al/Ni/Au2,12

• Ti/Al/Mo/Au7

• Ti/Al/W5

• V/Al/Ni/Au15

Treatments
• Si implant in Ohmic regions1,3

• Selective area regrowth12

• Recessed etching13

Proposed AlGaN HEMT Ohmic Contact Mechanisms16

• Metal spiking through the barrier
• Ti-N forms → lowers barrier height
• Ti reacts with N → forms N-vacancies or Ti-N complex that is highly conductive
• Other possibilities

• Mo/Al/Mo/Au6

• Nb/Ti/Al/Ni/Au4

• Zr/Al/Mo/Au9,10,11

• V/Al/V/Au14
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AlGaN Barrier

AlGaN Channel
AlN

Sapphire Substrate

Source Gate Drain

2DEG
4. Non-oxidizing

3. “Barrier”

2. Aluminum

1. Direct Contact
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Ohmic contact metal stack evaluation
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Gold

Refractory

Refractory

4. Non-oxidizing

3. “Barrier”

2. Aluminum

1. Direct Contact
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Metallization Stacks

Stack A Stack B Stack C Stack D Stack E

500 Å Au

150 Å Ni

1000 Å Al

250 Å Ti

500 Å Au

350 Å Mo

600 Å Al

150 Å Ti

500 Å Au

350 Å Mo

1200 Å Al

150 Å Zr

500 Å Au

400 Å Mo

1000 Å Al

200 Å Ti

200 Å Nb

1000 Å Au

200 Å V

800 Å Al

150 Å V

The five stacks we tried:

AlGaN Barrier

AlGaN Channel
AlN

Sapphire Substrate

Source Gate Drain

2DEG
4. Non-oxidizing

3. “Barrier”

2. Aluminum

1. Direct Contact
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Al0.45Ga0.55N (500 Å, Barrier)

Al0.3Ga0.7N (2700 Å, Channel)

AlN (1.6 µm)

Al0.3Ga0.7N (3.9 µm)

Thick Sapphire Substrate Nb/Ti/Al/Mo/Au

• Standard photolithography
• Metal deposition and liftoff
• Singulate
• Rapid thermal anneal (30 s, 
Nitrogen ambient)

•850°C
•900°C
•950°C

•Current-Voltage measurements
•Extract sheet and specific 
contact resistance 
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Nb/Ti/Al/Mo/Au

• Standard photolithography
• Metal deposition and liftoff
• Singulate
• Rapid thermal anneal (30 s, 
Nitrogen ambient)

•850°C
•900°C
•950°C

•Current-Voltage measurements
•Extract sheet and specific 
contact resistance 

Al0.45Ga0.55N (500 Å, Barrier)

Al0.3Ga0.7N (2700 Å, Channel)

AlN (1.6 µm)

Al0.3Ga0.7N (3.9 µm)

Thick Sapphire Substrate
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Nb/Ti/Al/Mo/Au

• Standard photolithography
• Metal deposition and liftoff
• Singulate
• Rapid thermal anneal (30 s, 
Nitrogen ambient)

•850°C
•900°C
•950°C

•Current-Voltage measurements
•Extract sheet and specific 
contact resistance 

Al0.45Ga0.55N (500 Å, Barrier)

Al0.3Ga0.7N (2700 Å, Channel)

AlN (1.6 µm)

Al0.3Ga0.7N (3.9 µm)

Thick Sapphire Substrate
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Summary of metal stack and RTA results

• Ti/Al/Ni/Au produced lowest specific contact resistances (3x10-6 Ω 
cm²)

• All three Ti-based metals had  good performance at 900°C
• Zr/Al/Mo/Au was consistently linear at all annealing temperatures 

studied
• What is happening between 850 and 900°C? → TEM

Klein, B. A., (2017). ECS Journal of Solid State Science and Technology 6(11): S3067-S3071.
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850°C Anneal 900°C Anneal

View of available imaging area

HAADF STEM, Z-Contrast
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850°C Anneal 900°C Anneal

Vertical threading dislocations visible on both samples

HAADF STEM, Z-Contrast

Nanopipes

Nanopipes
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850°C Anneal 900°C Anneal

HAADF STEM, Z-Contrast

Al0.45Ga0.55N

Al0.30Ga0.70N



TEM: Ti/Al/Ni/Au
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850°C Anneal 900°C Anneal

HAADF STEM, Z-Contrast

Al0.45Ga0.55N

Al0.30Ga0.70N

V Defect



EDS Overlay
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Red = Al-Ga-N (low Al)
Green = Al-Ga-N (high Al)
Cyan = Ti-Au-Al
Blue = Au (Ti)
Magenta = Ni-Al
Yellow = Al-O850°C Ti/Al/Ni/Au Anneal

900°C Ti/Al/Ni/Au Anneal

HAADF STEM, Z-Contrast



TEM RTA Temperature Comparison
Ti/Al/Ni/Au
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• AlGaN-Metal interface has Ti-Al-Au
• No obvious spiking in area viewed; smooth interface
• V-defects observed on 900°C might be promoting Ohmic 

contacts
• Grains of Al-O and Ni-Al
• “Au diffusion barrier” metal (Ni) is not a barrier for 850°C or 

900°C anneal

Schottky Contacts Ohmic Contacts

Klein, B. A., (2017). ECS Journal of Solid State Science and Technology 6(11): S3067-S3071.



HEMT Device
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• HEMTs fabricated on a quarter of a 
2” wafer with uniform sheet resistance
• Ti/Al/Ni/Au annealed at 900 and 
950°C, 30 s, nitrogen ambient
• Post-anneal metal surface 
morphology was rough

Quarter A

Sheet resistance map

Al0.45Ga0.55N (500 Å, Barrier)

Al0.3Ga0.7N (2700 Å, Channel)

AlN (1.6 µm)

Al0.3Ga0.7N (3.9 µm)

Thick Sapphire Substrate



CTLM Results for Device Wafer
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CTLM Current-Voltage Sweeps

• Linear current voltage sweeps at 0°C
• Current compliance set to 10 mA

•Current-Voltage sweeps performed at 
multiple temperatures
•8.5 µm CTLM pad spacing
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Klein, B. A., (2017). ECS Journal of Solid State Science and Technology 6(11): S3067-S3071.



Temperature Dependence of Contacts
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With increasing temperature from -50 to 200°C:
•Specific contact resistance improves (3x improvement)

→Conduction mechanism attributed to thermionic emission
•Sheet resistance degrades

Klein, B. A., (2017). ECS Journal of Solid State Science and Technology 6(11): S3067-S3071.



HEMT Device
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• Room temperature averages:
ρc = 2.5 x 10-5 Ω cm²
RSH = 3.9 kΩ / □

Klein, B. A., (2017). ECS Journal of Solid State Science and Technology 6(11): S3067-S3071.



HEMT Device Results
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•Drain current = 125 mA/mm (4Vgate), 70 mA/mm (2Vgate)
•ION/IOFF ≈ 8x108 

Baca, A. G., (2017). ECS Journal of Solid State Science and Technology 6(11): S3010-S3013.



HEMT Device Results
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•Drain current drops (by a factor of 2.7) with increasing temperature
•High-temperature operation limited by transport properties

Baca, A. G., (2017). ECS Journal of Solid State Science and Technology 6(11): S3010-S3013.



HEMT Contact Resistance Overview
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Conclusions
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•Evaluated five planar Ohmic contact metals for Al0.45Ga0.55N/Al0.3Ga0.7N HEMT
•Ti/Al/Ni/Au selected

•The Ti/Al/Ni/Au Ohmic contacts were used in final HEMT 
devices:

•Current densities up to 70 mA/mm at VGATE = 2 V, 
125mA/mm at VGATE = 4 V

•Specific contact resistance = 2.5 x 10-5 Ω cm² 
•Sheet resistance = 3.9 kΩ / □

•TEM analysis of Ti/Al/Ni/Au for 850 and 900°C anneal temperature 
•Smooth Ti-Al-Au/AlGaN interface with a few v-defects
•No indication of metal spiking

•Temperature dependence of contacts
•Thermionic emission
•Improvement in specific contact resistance with increasing temperature
•Degradation in sheet resistance with increasing temperature
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Map of HEMT maximum current (mA) at Vg = 2 V
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Red = good , Green = bad

Lower currents on edge of wafer attributed to annealing


