
Exploring Flexible Communications for
Streamlining DNN Ensemble Training Pipelines

Randall Pittman∗, Hui Guan∗, Xipeng Shen∗, Seung-Hwan Lim† and Robert M. Patton†
∗North Carolina State University, Raleigh, NC
†Oak Ridge National Laboratory, Oak Ridge, TN

Emails: {rbpittma, hguan2, xshen5}@ncsu.edu, {lims1, pattonrm}@ornl.gov

Abstract—Parallel training of a Deep Neural Network (DNN)
ensemble on a cluster of nodes is a common practice to train
multiple models in order to construct a model with a higher
prediction accuracy, or to quickly tune the parameters of a
training model. Existing ensemble training pipelines perform a
great deal of redundant operations, resulting in unnecessary CPU
usage, or even poor pipeline performance. In order to remove
these redundancies, we need pipelines with more communication
flexibility than existing DNN frameworks can provide. This
project investigates a series of designs to improve pipeline
flexibility and adaptivity, while also increasing performance. We
implement our designs using Tensorflow with Horovod, and test
it using several large DNNs in a large scale GPU cluster, the
Titan supercomputer at Oak Ridge National Lab. Our results
show that with the new flexible communication schemes, the CPU
time spent during training is reduced by 2-11X. Furthermore, our
implementation can achieve up to 10X speedups when CPU core
limits are imposed. Our best pipeline also reduces the average
power draw of the ensemble training process by 5-16% when
compared to the baseline.

I. INTRODUCTION

Recent years have witnessed rapid progress in the develop-
ment of Deep Neural Networks (DNNs). Ensemble training
of DNNs refers to the use of many computing nodes to
concurrently train a number of DNNs on a dataset. It has
two purposes. The first is to search for the best configurations
of DNN hyperparameters, such as the number of layers, the
number of filters at each layer, the appropriate learning rates,
and so on. This is called hyperparameter tuning, which is
essential for finding the DNN that works the best for a
particular task [1], [2]. The second is to produce a collection
of DNNs that work together (e.g., through majority voting)
to make more accurate predictions than each individual DNN
can provide [3], [4]. For either purpose, such ensemble training
multiplies the I/O and CPU demand on an already burdened
system, since it duplicates the model training pipeline across
different nodes.

The DNN training pipeline is an iterative process that con-
sists of reading, preprocessing, and computing/training stages.
Data is first read from a storage system, then preprocessed

This manuscript has been authored by UT-Battelle, LLC under Contract No.
DE-AC05-00OR22725 with the U.S. Department of Energy. The United States
Government retains and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a non-exclusive, paid-
up, irrevocable, world-wide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for United States Government
purposes. The Department of Energy will provide public access to these results
of federally sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).

for training using the CPU, and lastly is sent to the GPU
for DNN training. A common implementation of an ensemble
training pipeline is constructed by duplicating this pipeline
onto multiple machines to train models in parallel. Such a
simple parallelization scheme inherently creates redundancies,
particularly for the preprocessing stage.

Preprocessing is CPU-intensive and can form the bottleneck
of the pipeline. In ensemble training, each DNN model is often
trained over the same data,1 and hence much redundancy exist
in the preprocessing operations (e.g., resizing and cropping)
being performed for each DNN. The result is that while
preprocessing takes unnecessarily high CPU usage and power
consumptions on every compute node in the ensemble training,
the rate of preprocessing may remain behind the demand from
the GPU for training a model over prepared data.

The difficulty in resolving these redundant operations is
the lack of flexibility in model training pipelines. Since most
present frameworks (e.g. TensorFlow, Caffe, and Torch) focus
on training a single model, they do not provide sufficient
flexibility to allow pipelines to fit the demands of parallel
ensemble training in distributed environments. The Horovod
library [5], an addon to Tensorflow, provides better distributed
training capabilities, but is still too rigid in design to support
ensemble training.

The overarching goal of the research direction presented
here is to add flexibility into existing DNN frameworks to
enable customizable communications in parallel ensemble
training, and further to identify the communication schemes
that best suite DNN ensemble training in both training time
and power consumption.

In this study, we analyze a series of queues used to buffer
data between each stage in the machine learning pipeline,
allowing us to isolate potential bottlenecks. We discover a
bottleneck in the preprocessing stage that can hinder DNN
training speed. To add flexibility to present frameworks, we
modify the Horovod [5] library to support arbitrary MPI
group allocation. Using this addition with Tensorflow, we
examine three pipeline designs that we refer to as All-Shared,
Single-Broadcast, and Multi-Broadcast. These pipelines are
constructed from existing MPI collective operations, such as
all-gather and broadcast.

The All-Shared pipeline shares the preprocessing step across

1Some ensemble trainings use different segments of a large dataset to train
different models. That scenario is beyond the focus of this work.

all members in the ensemble, whereas Single-Broadcast and
Multi-Broadcast share within a subset of the ensemble. Single-
Broadcast elects a leader to broadcast the preprocessed data
to other nodes, while Multi-Broadcast performs asynchronous
broadcasts from multiple nodes. We examine these three cases
as an initial study of different primitive pipeline communica-
tion schemes.

Among these pipelines, the All-Shared scheme provides
significantly more efficient parallel ensemble training. Using
the Titan supercomputer at Oak Ridge National Laboratory, we
show that the preprocessing stage can indeed form a bottleneck
for some DNN; for Alexnet, it takes 96% CPU usage while
still limiting the GPU training stage at only 66% of its peak
throughput. Our best optimized pipeline can meet and exceed
Alexnet’s preprocessing demand by up to 2X, while reducing
CPU usage by 2-11X. When the available CPU cores are
limited, the less CPU demands of the improved pipeline yields
up to 10X faster training rates than the default pipeline does.
Lastly, we provide experimental results on Titan showing that
during training, our best pipeline uses 5-16% less energy than
the default does.

In summary, we present the following key contributions:
1) To our best knowledge, this is the first work that

systematically characterizes performance issues present
in parallel DNN ensemble training in large distributed
environments. (Section III)

2) It adds into existing DNN ensemble training pipelines
with flexible communication controls. (Section IV)

3) It provides the first known exploration of distributed
communication schemes for streamlining parallel en-
semble training pipelines in large distributed environ-
ments. (Section IV)

4) It offers a thorough performance analysis of the capa-
bilities of these pipelines on the Titan supercomputer.
(Section VI)

We will first introduce DNN pipelines, showing how they can
be extended for ensemble training. After seeing the shortcom-
ings of more simplistic designs, we will present our alternative
pipelines. Lastly, we will provide detailed experiments to show
the benefits our optimizations yield.

II. BACKGROUNDS

A. Deep Neural Network Training Pipeline

A typical deep neural network training pipeline contains
three stages: reading the data from storage systems, prepro-
cessing the data, and training the model (see Figure 1). Data
is first read into a queue, and is then run through various
transformations known as preprocessing. Afterwards, the data
is queued again and arranged into batches. The batch size
is the number of data the network trains simultaneously per
step. When training DNNs, it is important not to overfit to a
particular dataset. Preprocessing typically helps with this goal
by modifying input data to be more generic.

The first stage in preprocessing raw data is decoding,
perhaps from a compressed state. For example, jpg files are
heavily compressed and need to be decoded before use. The

second stage, known as data augmentation, transforms the data
with a series of random operations to be more generic.

Many expensive data preprocessing operations are per-
formed on a point by point basis. For example, image pre-
processing allows us to flip, rotate, blur, and resize images to
allow for more general cases than what is being provided by
the dataset. While this increases the computational complexity
of the input pipeline, it also increases the generality of the final
DNN. Many other preprocessing techniques exist for other
data types, not exclusively images. Both audio [6] and sensor
[7] data have a wide range of preprocessing techniques that
can be applied.

Preprocessing techniques can further be divided into online
and offline preprocessing. In the offline case, preprocessed
data is saved to storage, then loaded directly into the pipeline
when training begins. On the other hand, online preprocessing
techniques are used every time the dataset is loaded. Online is
particularly useful when randomized preprocessing techniques
are used. Images may be flipped, rotated, or cropped in random
ways, allowing a single image to provide a vast array of
possible inputs to a DNN. Online preprocessing is the method
commonly used in DNN training as its dynamic nature makes
it more effective in preventing overfitting a dataset, allowing
much more general applications for the network. In modern
implementations of DNN training, online preprocessing typi-
cally serves as one stage in the training pipeline; the pipeline
structure helps hide its runtime overhead.

B. Heterogeneous GPU-CPU cluster for DNN training
pipeline

The modern high performance computing cluster has
evolved into a hybrid architecture that houses CPUs and GPUs
on each node in order to handle other computationally heavy
workloads with high energy efficiency [8]–[10]. One of the
most prominent large-scale examples of such an architecture
is the Titan supercomputer located at Oak Ridge National
Laboratory. Each of Titan’s 18,688 nodes features both a 16-
Core AMD CPU and a K20X Nvidia GPU [11]. The next
supercomputer that will soon be replacing Titan is called
Summit, which is anticipated to be ready for researchers
in 2018. Summit will contain 2 IBM Power9 CPUs and 6
Nvidia Volta GPUs [12]. With this level of computing power,

Preprocessing
Queue

IO device

Preprocessing

Compute
Queue

 GPU

Fig. 1: A typical pipeline for DNN training.

2

researchers can use each node to either train larger networks,
or train smaller networks faster using techniques such as batch
parallelism.

Heterogeneous GPU-CPU clusters are particularly well
suited towards DNN training, since the CPU and GPU can
work together to accelerate the training pipeline. In het-
erogeneous GPU-CPU clusters, the GPU is generally given
the training task and the CPU is in charge of reading and
preprocessing data into batches that the GPU can quickly
use, ideally with as little idle time as possible. Such a
division of pipeline steps is largely to achieve maximal training
throughput on the GPU, since GPUs are generally able to
process machine learning kernels to train DNN models with
a higher throughput than multi-core CPUs [13]. To achieve
maximal training throughput, it is generally best to preserve
cache and memory states on the GPU. If the GPU were to
attempt preprocessing as well as training, the CPU would
need to perform additional data copies (TF records) to GPU
memory; kernel switches will add extra overhead, depending
on how well the fusion of the preprocessing and training
stages is performed. Furthermore, extra memory would need
to be allocated on the GPU for the preprocessing stage, which
constricts the maximum batch size that can be used on a large
network. Thus, in general, performing preprocessing on GPU
does not give performance benefits. The general goal is to
make the GPU’s training stage as efficient as possible, while
the preprocessing on the CPU side attempts to saturate GPU
resources.

III. ENSEMBLE PERFORMANCE

In this section we discuss the scheme of the typical DNN
ensemble training pipelines used in existing work. We refer to
such pipelines as the duplicated pipelines scheme, and provide
a Tensorflow implementation that is used to test and analyze
its performance. We later use this implementation as a baseline
against which other schemes may be compared.

A. Duplicated Pipelines and the Implementation

DNN ensemble training consists of the training of a num-
ber of DNN variants. These variants are independent from
one another. The scheme commonly used in existing work,
duplicated pipeline scheme, launches N duplicated pipelines
with each running on one (or more) nodes training one DNN
variant in the ensemble.

We implement the scheme based on Tensorflow.2 We use
the Slim module [14] as a starting point, since it includes
the implementations of several popular networks, such as
Inception, Alexnet, and VGG. Furthermore, Slim provides
a robust set of preprocessing operations by default for the
Imagenet dataset, which proved quite useful for our tests. In
our experiments, each DNN runs on one Titan node.

B. Settings for Testing

We describe the settings used in our performance testing of
various ensemble training schemes as follows. Some of these

2All Tensorflow code is version 1.3.0.

choices are designed to draw out problems of interest that may
arise from an ensemble of DNNs.

1) Workloads: In general, parallel model training can be
used as a fast method for hyper-parameter tuning [15], or it can
be used to create multiple learners for increased classification
accuracy, or to learn an ensemble model [3], [4]. An ensemble
model is most effective when each DNN serves a useful
and probably unique testing purpose, and has been modified
appropriately to suit that purpose. As discussed earlier, the
final result is intended to be more diverse than any single
classifier could be. Towards this goal, our study investigates
the system efficiency of parallel ensemble training.

The more complicated case arises when the differences
between each DNN are substantial enough to cause significant
changes in performance. For example, each model may contain
varying numbers of hidden layers or different numbers of
nodes within each layer. Since the number of layers in a
network is a primary factor influencing training time [4], such
changes could cause significant differences in training times
between the members of the ensemble. While this area may be
an interesting point for a future optimization study, managing
the burst computational requirements from many concurrent
model training pipelines poses the most urgent problem. In
light of this, our experiments focus on the DNN variants
in an ensemble that are of the same structure but differ in
their learning rates, initial filter values, or other non-structural
parameters.

2) Datasets: When considering the effects of preprocess-
ing, computation, IO usage, network traffic, etc., it is rea-
sonable to require that the input dataset dimension and the
number of elements be large. Smaller datasets such as MNIST
or Cifar-103 will likely require very little resources and will
train quickly. The primary dataset used for this research is a
subset4 of ImageNet [16], where the entire dataset contains
over 14 million images of size 224 × 224. With this dataset
it is much easier to investigate the performance effects of
DNN ensembles. For a given dataset, we also expect that every
image will need to be processed by every DNN in an ensemble.

C. Baseline
In this section we provide data that characterizes the per-

formance of individual DNNs, as well as DNN ensembles.
1) Single Node: We begin with a performance evaluation of

the default pipeline shown in Figure 1 on a single node. Since
the primary goal of the pipeline is to saturate the GPU with
prepared data, we present a scenario in which the GPU can
process data quickly. We use Alexnet for this purpose since it
is a smaller network that uses a larger batch size of 128 [17].

Since preprocessing occurs on the CPU, it is important to
allow parallelism over all CPU cores. Multi-core execution
can drastically speed up preprocessing, and can sometimes
utilize all CPU resources for the task. The DNN computation
is affected little by the high CPU usage since it executes on
the GPU. Tensorflow allows such CPU parallelism by default,

3Both datasets contain 60000 images. MNIST images have size 28 × 28,
and Cifar-10 images have size 32× 32

4Our subset contains approximately 1.3 million images.

3

0 200 400 600 800 1000
training step

0

20

40

60

80

100
%

 f
ul

l
 to-preprocessing queue
 compute queue

Fig. 2: For the default single pipeline, the preprocessing queue
is always full, while the compute queue empties quickly. Thus
the preprocessing task is the bottleneck.

0 100 200 300 400 500

time (sec)

0

20

40

60

80

100

%
 C

or
e

U
til

iz
at

io
n

Fig. 3: Default single pipeline core utilization for each of the
16 cores on a single Titan node when training Alexnet. The
average core utilization over the entire graph is 94.3%. When
the startup phase is excluded, the average is 96.0%.

but in our case we needed to manually change the number of
parallelism threads. We set inter op parallelism threads and
intra op parallelism threads to 16 in order to maximize the
usability of the 16-core CPUs available on each Titan node.
The former enables parallelism between multiple operations,
while the latter parallelizes individual operations if supported.
We also needed to set a flag when launching the Titan job that
enabled multi-core usage for each node5.

Since Tensorflow training requires that the graph be con-
structed symbolically, and is only executed within an API
session call, it is difficult to obtain direct performance diag-
nostics at runtime. Thus we use Tensorboard6 summaries on
the various queue sizes in the pipeline to determine where
bottlenecks might be occurring. Since the operation that saves
summaries in Tensorflow can affect training performance, we
save summaries every 20 steps and disable certain costly
summary operations, such as preprocessed image viewing. We
run Alexnet for 1000 steps on the ImageNet dataset, then
analyze the relevant queues in Tensorboard.

Figure 2 shows the measured size of the preprocessing and
compute queues during the training process. As shown before
in Figure 1, the preprocessing queue is the data that is about to
be preprocessed, and the compute queue is the preprocessed
data being fed to the DNN. In this case, the preprocessing
queue fills up quickly enough that the summary data for this
queue reports that it is always full. On the other hand, the
compute queue fills up during the startup phase, then empties
out in the first few hundred steps. In Tensorflow, the first step
of the training process is typically many times slower than
the rest. This is primarily due to various initialization and

5Titan jobs are executed using the aprun command. Passing the number
of allowed threads using the option -d allows multiple cores to be used by a
single task. We used -d16 to enable all cores to be used for each Tensorflow
session.

6Tensorboard is a diagnostic tool designed to parse and display summary
data produced during a Tensorflow training session.

Node 1 Node 2

IO device

Node n

Fig. 4: Duplicated pipelines that can be used to concurrently
train DNNs.

optimization routines that are being executed at runtime. The
result is that the batch queue has time to fill while the first
step is executing, but cannot keep up after the first step. The
bottleneck in this case is therefore the preprocessing stage.

It is important to show that the preprocessing uses the entire
CPU. Figure 3 shows the utilization level for each of the
16 cores in our default single pipeline test. Once Tensorflow
has finished initializing, we see the utilization reach peak
levels and remain there. The average measured utilization for
this test was 96.0% after startup. From these series of tests,
we conclude that a heavy preprocessing load with a smaller
DNN is capable of shifting the bottleneck from the model
training to the preprocessing. More computationally intense
models (e.g., GoogleNet with Inception modules) can also
create similar issues on newer hardwares like NVIDIA V100
with TensorCore technology, where processing rate for deep
learning workloads is 90 times improved [18].

2) Multiple Nodes: The natural extension to the single
pipeline in Figure 1 is to duplicate each pipeline for each
DNN in an ensemble. This duplicated pipeline is shown in
Figure 4. In theory, each DNN could be an arbitrary network,
but our present tests use the same network for the sake of

4

analyzing optimization potential.
We first note two main concerns arising from the duplicated

pipeline. First, each node reads its own copy of the dataset,
which is highly redundant and places unnecessary strain on
the storage systems7. High IO usage could in theory lead to
scalability problems. Second, the preprocessing operations are
redundant since the same data is being modified. 8 While
this does not present scalability problems, it does result in
unnecessary CPU usage. As shown earlier in Figure 3, the
CPU usage could actually be quite high. This presents some
opportunities for pipeline optimization.

In order to test potential scalability issues, we perform a
test of the duplication pipeline on 1000 nodes of Titan and
compare overall training time to that of nodes run individually.
Table I shows the results of executing 2000 steps of Alexnet
on 1000 nodes of Titan in parallel, as well as the results for
an isolated node running by itself. We execute the single-node
test 50 times for a more precise result. While the 1000 nodes
exhibited slightly higher variance in its runtimes, the overall
runtime was not affected. This demonstrates that the storage
systems in Titan did not suffer performance issues caused by
the high number of data requests.

IV. OPTIMIZED PIPELINES

Keeping in mind the issues with the duplicated pipeline
discussed in the previous section, we establish three objectives
for designing pipelines to increase system efficiency:

1) Eliminate pipeline redundancies through data sharing.
2) Enable sharing by increasing pipeline flexibility.
3) Use increased flexibility to accelerate the pipeline.

Towards these goals, we focus on balancing the computational
demand for preprocessing and model training. The key is in
making the pipeline more intelligently take advantage of the
computing resource in a cluster of nodes to both minimize
redundant preprocessing and speeding it up.

A. Problem statement

Let n be the total number of DNNs being trained. Since
each DNN uses a single compute node, n is also the number
of nodes being used for the ensemble training. Let p be the
number of nodes performing preprocessing operations, where
p ≤ n. Suppose the i’th preprocessor produces a data-block
Di. When designing a new pipeline, the goal is to have every

7Unless the file-system uses caches and each node is reading data from the
same files in such a way that the cache scores successive hits.

8The data decoding portion of preprocessing is always redundant. On the
other hand, data augmentation operations could be considered as different
in order to feed each DNN with unique final data. We do not consider this
special case, but instead treat these operations as redundant.

TABLE I: Statistics comparing the total run time in seconds
for 50 solo runs and a parallel run of 1000 nodes for 2000
Alexnet steps.

Avg (sec) Std Dev (sec) Min (sec) Max (sec)
Solo 1132.3 1.429 1129.7 1134.5

Parallel 1132.2 1.962 1125.0 1139.0

node contain D = [D1, D2, ..., Dp] after the communication
stage. Note that for simplicity of notation, D refers to the
dataset at any stage of the pipeline, either before or after being
preprocessed.

Given a particular DNN and hardware system, let rc be
the GPU’s compute throughput, and let rp be the CPU’s
preprocessing throughput. Both can be measured in units of
images/second. In order to achieve maximum training speed,
we need rp ≥ rc. However, this may not be the case, as we
have already shown with Alexnet on Titan. A solution to this
challenge is to share preprocessing steps across n machines
for each data partition, which can raise the throughput of
preprocessing up to nrp ≥ rc.

Taking this approach, the number of machines, n needed
to satisfy nrp ≥ rc was relatively small for our test cases.
For example, our tests revealed that n = 2 is theoretically
sufficient to saturate Alexnet’s compute rate. If more advanced
preprocessing techniques are used to enhance model training,
the computational requirements on the CPU will increase and
may require larger n to satisfy the condition.

In practice, nrp is only an upper bound on the possible
preprocessing rate. After the data has been prepared, it must
be shared over the cluster’s network to each training node.
We define peak(n) as the peak rate at which images can
be received by each of the n nodes in such a cluster. Due
to the communication overhead, peak(n) ≤ nrp. The gap
between peak(n) and nrp tends to increase as n grows. It is
hence important to consider flexible pipeline designs to better
utilize the capabilities of the cluster without adding too much
overhead. Later on, we will show detailed empirical results in
this regard.

In the remainder of this section, we introduce our method
for improving pipeline flexibility, and further explore different
communication patterns as alternatives to the baseline of the
duplicated pipelines.

B. Horovod groups

Horovod [5] is a distributed deep-learning library for Ten-
sorflow. Although distributed Tensorflow [19] provides im-
plicit tensor sends and receives, it does not provide efficient
collective operations (e.g. all-gather). Horovod fills the gap by
supporting collective operations, including all-gather, broad-
cast, and all-reduce. Thus, it allows tensor objects to be sent
through MPI collectives.

However, one limitation in Horovod is its master-worker
communication structure. It is designed to train individual
large DNNs in a batch-parallel manner. This task needs only
one global communicator. More specifically, it is designed to
operate in “ticks”, each consisting in a series of operation
requests to the master, followed by a done message. Such a
structure forces all communication to occur on a global scale,
specifically, using MPI COMM WORLD as the communica-
tor for MPI messages. When designing custom pipelines, we
need the ability to use MPI collectives within a subset of ranks.

To solve this issue, we added functionality to this library
to create Horovod Groups. This addition allows the user
to provide a list of groups that should be created upon

5

Read D1 PreprocessNode 1 Train DNN 1

A
ll-

G
at

he
rRead D2 PreprocessNode 2 Train DNN 2

Train DNN nRead Dn PreprocessNode n

Fig. 5: Illustration of the All-Shared (AS) pipeline. The dataset
D is divided into n partitions for each reader.

initialization of the library. Whenever a collective operation is
created, a group index must be provided indicating which MPI
communicator to use for the operation. 9 This allows data to
be broadcasted or all-gathered between subsets of MPI ranks.
In addition to normal Horovod requirements, the user must
provide a list of groups to create within MPI. For example,
providing the list [[0, 1, 2], [2, 3, 4]] creates two groups: the first
contains ranks 0, 1, 2, and the second contains 2, 3, 4. Any call
to a library function, such as all-gather, will then require a
group index, 0 or 1, specifying which group the operation
belongs to.

C. All-Shared

To share preprocessed data with all nodes, one possible
approach is to make every node a preprocessor (n = p) with
each using an exclusive portion of the dataset, and then share
each node’s data with all other nodes. The MPI all-gather
operation is well suited to this purpose. We refer to this as
the All-Shared (AS) pipeline, as depicted in Figure 5.

The primary benefit of this design is to maximally share
all the preprocessing across all the compute nodes. The
limitation, however, is the lack of flexibility. For training
more computationally heavy neural network models, it seems
unnecessary to require that every node instantiate a data reader
and preprocessing stage, when a small number of nodes could
provide enough preprocessed data to training models. By using
less nodes for preprocessing, perhaps we can use less CPU.
Our next two designs attempt to take advantage of this fact,
thereby increasing their flexibility.

D. Single-Broadcast

We now wish to allow the number of preprocessors p to be
adjustable. Suppose the GPUs of n nodes are used for the GPU
compute stage of the pipeline, while preprocessing happens on
the CPUs of the first p (1, . . . , p) of those n nodes.

As a first step, we can perform an all-gather among the
preprocessor nodes 1, . . . , p. Now each node has access to all
the data, but the remaining n−p nodes have none. One method
to resolve this is to elect node p to broadcast its data out to
nodes p+1, . . . , n. This process is shown in Figure 6, and we
refer to this pipeline as Single-Broadcast (SB).

9The groups created need not be mutually exclusive.

Read D1 PreprocessNode 1 Train DNN 1

A
ll-

G
at

he
r

Read D2 PreprocessNode 2 Train DNN 2

Train DNN p+1

Node n

Train DNN pRead Dp PreprocessNode p

Node p+1

B
ro

ad
ca

st
 fr

om
 p

Train DNN n

Fig. 6: Illustration of the Single-Broadcast (SB) pipeline.
The dataset D is divided into p partitions for each reader
instead of n, since there are now p readers feeding their own
preprocessor.

Read D1 PreprocessNode 1 Train DNN 1

Read D2 PreprocessNode 2 Train DNN 2

Train DNN p+1

Node n

Train DNN pRead Dp PreprocessNode p

Node p+1

Train DNN n

B
ro

ad
ca

st
 fr

om
 1

B
ro

ad
ca

st
 fr

om
 2

B
ro

ad
ca

st
 fr

om
 p

Fig. 7: Illustration of the Multi-Broadcast (MB) pipeline.
Similar to the Single-Broadcast design, the dataset is divided
into p partitions. Each Di for 1 ≤ i ≤ p is broadcast to all
nodes with the i’th preprocessor node as the root.

E. Multi-Broadcast

Each node i in 1, . . . , p has its own data item Di. Instead
of running an all-gather between preprocessors, each i could
broadcast its Di to all other nodes. In Multi-Broadcast, we
avoid the initial all-gather by performing asynchronous broad-
casts from each preprocessor, as shown in Figure 7.

From a high level perspective, we can observe that AS
(all-to-all) is a specific instance of MB (some-to-all) where
p = n. However the implementation of MB uses a series of
asynchronous parallel broadcasts to implement the some-to-
all operation. This differs from the built-in MPI all-gather
collective, and may use much more CPU. Thus we do not
treat AS as a special case of MB, though it may be viewed as
an MPI-optimized routine for the case p = n.

V. METRICS

In this section we introduce the DNNs and metrics used to
compare the baseline and our alternate pipeline designs.

A. Peak Preprocessor Throughput

Previously we defined peak(n) as the function representing
the maximum image preprocessing throughput in a pipeline
for a given number of nodes n used for the pipeline. The
peak function is a good method to measure the scalability
of a pipeline, and provides the best mechanism for speed
comparison to other pipelines.

6

Note that peak(n) is only a measure of preprocessing image
throughput, and does not involve any DNN training. In order
to test the value of this function for a specific pipeline, we
construct the compute queue that stores batches ready to be
trained, then we dequeue a batch. Repeating this operation
quickly enough causes the pipeline to reach peak image
throughput.

The importance of measuring peak(n) is apparent when
the compute throughput rc is also considered. As mentioned
before, we must have peak(n) ≥ rc in order to saturate GPU
resources. Towards this end, we additionally gather the value
of rc for each DNN in our tests. To obtain rc, we calculate the
average step duration for a specific DNN, while also pausing
between steps to allow all queuing systems to catch up. This
ensures that the GPU will have data ready to be dequeued
when the next step is timed. By averaging the seconds per
step, we then invert and multiply by the batch size to obtain
images per second, or rc.

B. CPU Usage
As a standard, it is important for the optimized version

to run with at least the same training rate as the baseline.
However, it is not expected for the optimized pipeline to train
DNNs faster than the baseline under normal conditions. We
previously established that it is possible for preprocessing
to form a bottleneck, but this is a more unusual case. If
preprocessing is not a problem, our optimized pipeline should
not increase the training rate. In most of our tests, the GPU
performance was the limiting factor. Recall that this may
change when Summit becomes available, since there are many
more GPUs on the new node architecture.

To measure overall CPU load, we use the mpstat command
to obtain CPU utilization statistics on each compute node in 4
second intervals. After training is complete, we integrate CPU
utilization statistics over time to obtain CPU usage for the job.

C. Core Usage Limits
Another useful metric is the runtime of the training process

when a CPU core limit is imposed. Some cluster systems allow
nodes to be shared by users who have requested few CPU
cores for their job. For such systems, the charge allocated to
the user’s account for such a job is typically only charged for
the number of cores allocated.

Unfortunately, node sharing and custom CPU core alloca-
tion is not allowed on Titan. In practice, however, a cluster’s
allocation scheme may be more flexible (e.g., Amazon AWS).
By limiting the cores used by ensemble training, these cores
can be left in an idle state to save power, or they can be
used for other jobs. Overall, there may be good reason to
impose core limits on ensemble training. We therefore test
our pipeline under limited core conditions, while comparing
the overall runtime to the baseline under the same limits.

Since Titan does not support node sharing nor partial core
allocation, we simulate a limited CPU environment by con-
trolling the number of threads allocated to each MPI rank10.

10The number of MPI threads per rank is controlled by the -d option passed
to the aprun command.

Since each rank is allowed to use an entire node, the number
of threads corresponds to the number of CPU cores allowed.
As an example, when simulating a 3 core limitation training
Alexnet on a basic pipeline, cores 0-2 average 95% utilization
while cores 3-15 use at most an average of 0.6%.

D. Energy Usage

A secondary benefit from decreased CPU usage is power
savings. On Titan, we collect energy consumption data through
2 metered cabinets. Each of these cabinets includes 96 nodes,
8 of which are service nodes, leaving a total of 88 nodes for
user jobs. One limitation of these cabinets is that they only
record the consumption of the entire cabinet, so distinguishing
between the power usage of different devices within the
cabinet is impossible. Thus the results we report are the power
consumption of all devices in the cabinet, not just the CPU.
In order to eliminate possible power variances due to jobs
executing on different systems, we reserved only one cabinet
for all jobs. We submit each ensemble training job sequentially,
with approximately 2 minute breaks between the job’s end and
the next launch. We record measurements from two runs for
each type of job.

We observed that intensive tasks can cause the cabinet to
use a flat peak power of 32.767KW. Since we had 88 nodes
available, we decided to use only 80 of them for ensemble
training tests in order to lessen the impact of this maximum
output on the quality of the results.

VI. RESULTS

A. Peak Preprocessing Throughput

In order to effectively compare each pipeline to find the
best, we first observe differences in peak throughput of the
preprocessing stage, or peak(n). Recall that this function
is a measure of the steady state image throughput for the
preprocessing stage; the compute stage is stripped such that
it only receives the preprocessed images but and does not do
any DNN training.

Figure 8a shows the value of peak(n) for n ≤ 150 for
increments of 5 nodes. All-Shared pipeline uses all nodes for
both preprocessing and the stripped compute stage; SB-npre=5
and SB-npre=20 are Single-Broadcast pipelines with 5 and 20
of the nodes for preprocessing respectively; MB-npre=5 and
MB-npre=20 are the corresponding Multi-Broadcast pipelines.
We observe that changing the number of preprocessors be-
tween 5 and 20 does little to affect the throughput as n
increases. Furthermore, the SB and MB pipelines are incapable
of saturating the compute queue for Alexnet, since they drop
below its the throughput of its compute stage. They however
can still meet the demands of the compute stages in larger
networks (e.g., Inception and VGG).

In order to clarify this data when core usage is restricted,
Figure 8b shows peak(n) for up to 50 nodes when only 4
cores are used in each node. The performance for SB and
MB is markedly decreased, while AS remains unchanged. This
confirms that AS is better in terms of peak throughput for both
full-core and partial core training.

7

0 50 100 150
nodes (n)

0

100

200

300

400

500

600

700

800
im

ag
e/

se
c

Alexnet

Inception V1
VGG-A

All-Shared
SB-npre=5
SB-npre=20
MB-npre=5
MB-npre=20

(a) There are 16 CPU cores for use in each node.

0 10 20 30 40 50
nodes (n)

0

100

200

300

400

500

600

700

800

im
ag

e/
se

c

Alexnet

Inception V1

VGG-A

All-Shared
SB-npre=5
SB-npre=20
MB-npre=5
MB-npre=20

(b) There are 4 CPU cores for use in each node.

Fig. 8: The curves show the peak preprocessing throughputs (peak(n)) when n, the number of nodes for the stripped DNN
pipeline (i.e., the compute stage receives but does not actually use the preprocessed images for DNN training), increases.
All-Shared pipeline uses all nodes for both preprocessing and the stripped compute stage; SB-npre=5 and SB-npre=20 are
Single-Broadcast pipelines with 5 and 20 of the nodes for preprocessing respectively; MB-npre=5 and MB-npre=20 are the
corresponding Multi-Broadcast pipelines. The horizontal dashed lines indicate the measured demand in images/sec of the actual
(unstripped) compute stages of three DNN models on a Titan GPU.

0 10 20 30 40 50
nodes

0

0.5

1

1.5

2

2.5

3

3.5

C
PU

 u
sa

ge
 (

no
rm

al
iz

ed
 to

 A
S)

SB
MB

Fig. 9: CPU usage for SB and MB on Alexnet normalized to
the CPU usage for AS.

0 10 20 30 40 50
nodes

1

3

5

7

9

11

C
PU

 R
ed

uc
tio

n

Alexnet
Inception V1
VGG-A

Fig. 10: CPU usage reduction for the All-Shared pipeline
compared to the baseline. Each network/n combination was
trained over 1000 steps.

For SB and MB, these results point towards the broadcast
operation as a performance problem. As n increases while
p remains constant, the broadcast size also increases. This
correlates to the slow decrease in throughput seen in Figure 8.

As a final test for the broadcasting pipelines, we compare
the CPU usage for AS, SB, and MB in Figure 9. We vary
the number of nodes in the ensemble between 10 and 50 and
normalize the resulting CPU usage to the AS pipeline. The SB
pipeline uses marginally more CPU than AS, while MB uses
far more. This indicates that both of these pipelines are inferior
to AS in both preprocessor throughput and CPU usage. Thus,
our next series of tests are only performed on AS.

TABLE II: Specifications of the DNNs used for testing.

DNN Batch Size # Layers # Params
Alexnet 128 8 60M

Inception V1 32 22 6.8M
VGG-A 32 11 133M

B. CPU

We use the Alexnet, Inception, and VGG models for DNN
tests (see Table II). These models are commonly used for
DNN benchmarking ([20]–[25]). For our tests, their different
training speeds place different levels of stress on our pipelines.

8

1 2 4 8 12 16
cores

1

3

5

7

9

11

Sp
ee

du
p

Alexnet
Inception V1
VGG-A

Fig. 11: Runtime improvement of AS over the baseline when
CPU-core limits are imposed. The ensemble contained 100
networks, each trained over 1000 steps.

Figure 10 shows the reduced CPU usage provided by the
AS pipeline. We see that the usage is reduced by up to 10.8X,
3.5X, and 2.4X for Alexnet, Inception, and VGG, respectively.
We observe that the reduction is inversely proportional to the
compute demand of the network, as shown by the dotted lines
in Figure 8. The compute demand is the primary indicator
of how much CPU time is needed to preprocess data for the
GPU. Higher demanding networks like Alexnet will cause the
preprocessing stage to use much more CPU, while Inception
and VGG will use less. Thus we see smaller reductions for
larger/slower networks.

Aside from measuring CPU usage reduction, we also test
training time when CPU limits are imposed. Figure 11 shows
the speedup that AS provides when both AS and the baseline
are subjected to core restrictions. Recall that each Titan node
has a 16 core CPU.

Alexnet sees a speedup of up to 10X for 1 core allocation
on the AS pipeline. To understand this, Table III provides
information on how each pipeline slows down under core
limitations. From this table, we see that Alexnet’s speedup
is due primarily to the dramatic slowdown that the baseline
incurs (9.6X) from this limitation, since it relies on additional
CPU power to preprocess data. In contrast, the AS pipeline
only incurs a 54% slowdown due to the severe core limitation.
While the AS pipeline’s large number of individual processor
cores should in theory be able to handle the necessary prepro-
cessing, having only 1 core limits other systems as well from
executing efficiently, thus causing the slowdown. However, the
AS pipeline is able to train Inception and VGG on 1 core
incurring only a 6% and 2% slowdown, respectively. Since less
preprocessing is needed for these networks, less competition
for CPU resources is present, allowing near-full-speed training.
As with the CPU-reduction results, the potential speedups
under core limitations is inversely proportional to the size of
the DNN being trained. To reiterate, this is simply because
larger networks need less CPU for preprocessing since they
train slowly.

TABLE III: Slowdowns under a 1-core limitation, measured
relative to the 16-core performance of the same DNN and
pipeline.

Pipeline DNN 1-core slowdown
Alexnet 9.61X

Baseline Inception 3.49X
VGG 1.83X

Alexnet 1.54X
All-Shared Inception 1.06X

VGG 1.02X

0 200 400 600 800 1000 1200
time (sec)

0

2

4

6

8

10

12

14

K
W

 (
w

ith
ou

t i
dl

e
po

w
er

)

Baseline
All-Shared

Fig. 12: Power draw comparison between AS and the baseline
running 80 nodes of Alexnet.

C. Energy Consumption

As seen in Table IV, the minimum energy for the Titan
metered cabinet was found to be roughly 19KW, while the
maximum energy observed for the most intensive job was
32.767KW. Since the idling power is a significant 58% of
the maximum power, savings will be reported based on the
relative increase above the idling power.

Figure 12 shows the power consumption of the AS pipeline
compared to the baseline when training 80 nodes of Alexnet.
Since the baseline suffers from performance issues in its
preprocessing, it takes more time to train its DNNs, and this
is reflected in the figure.

Table V shows the average energy consumption in Kilo-
Watts (KW) during training for Alexnet, Inception, and VGG
on the baseline and AS pipelines. The energy demand for AS
over the idle usage was 4.5%-15.8% less than for the baseline.

TABLE IV: The minimum energy usage for one of Titan’s
metered cabinets, averaged over 45 minutes of idle time with
1-second interval sampling.

Minimum power Variance Max observed power
18.985KW 5.355× 10−4 32.767KW

9

TABLE V: Average energy consumption during training for
each of AS and the baseline on Alexnet, Inception, and VGG.

Pipeline DNN KW KW (without idle) Savings %
Alexnet 32.745 13.760

Baseline Inception 31.318 12.333
VGG 31.509 12.524

Alexnet 30.576 11.591 15.8%
All-Shared Inception 30.084 11.099 10.0%

VGG 30.940 11.955 4.5%

VII. RELATED WORK

Recent work has tried to increase the scalability of ma-
chine learning algorithms in distributed environments. When
discussing scalability, it is important to distinguish between a
single network vs. many networks in distributed environments.

Much research is being done to accelerate the training
of a single large network over distributed systems. Google’s
DistBelief framework [26] is an example of this, as it provides
a way to scale a very large network over potentially thousands
of nodes. Li et al. [27] create a framework that maintains a
set of global parameters while distributing data and workloads
to a set of worker nodes. More recent work in this area
has focused on specific cluster architectures and algorithms.
Chung et al. [28] create an implementation of a data-parallel
training algorithm that is designed specifically to scale well
on a large number of loosely connected processors. They test
their implementation on the IBM Blue Gene/Q cluster and
find linear performance scaling up to 4096 processes with no
accuracy loss.

Apache Spark [29] is also often employed to train either
a single large model or many independent models, through
the packaged MLLib library [30] or external libraries like
TensorFlow [20] and H2O [31]. However, Spark provides lim-
ited functionality in controlling communication mechanisms to
distribute the dataset among computational tasks.

The work by Kurth and others [32] is the most closely
related to this study, where the authors considered DNN train-
ing in high performance computing environments. However,
this study was performed on a cluster of Xeon-Phi processors,
while our work used a large scale GPU cluster. In addition, that
prior study focused on communication methods in the context
of model parameter updates during the training process. Our
study considers various communication methods in distribut-
ing training data, including preprocessing and I/O from the
storage systems, in the context of DNN data pipelines.

Research has also made strides in accelerating networks
designed to fit on a single device. Yu et al. [33] take a
hardware-oriented approach by customizing weight pruning 11

to fit the underlying hardware being used. They note that
hardware devices such as microcontrollers, CPUs, and GPUs
have different execution patterns that are most efficient. They
take advantage of this by carefully choosing when to prune out

11Weight pruning involves analyzing a network during the training process
to see if any of the network’s nodes or weights are redundant or useless.
Pruning can result in smaller memory footprint and faster training, but can
also potentially reduce accuracy.

nodes or weights from the network. This results in 1.25-3.54X
speedups depending on the hardware used.

Little work has been performed in the area of ensemble
DNN training, as most researchers have focused on training
a large DNN in distributed environments. However, Microsoft
researchers have produced a tool called Adam [34] that has
goals similar to [27] and partially relates to our work. Again,
the tool primarily deals with accelerating larger networks
over distributed nodes, but their pipeline has some elements
in common with our current work. They mention concerns
with heavy preprocessing tasks caused by complex image
transformations. They similarly offload these tasks to a set of
nodes dedicated to queuing preprocessed data to feed worker
nodes more efficiently. Nevertheless, their work optimizes the
training of a single DNN over multiple CPU-based machines.
As GPU-based distributed systems can train similar models
with much smaller cluster configuration than CPU-based sys-
tems [13], this study focuses on the potential gains from more
efficient pipelines for multi-DNN systems in distributed GPU
environments.

VIII. CONCLUSION

This research investigated the performance properties of
DNN ensemble pipelines. We modified the Horovod library
to provide additional communication flexibility to Tensorflow
that is not present in other Deep Learning frameworks. Lever-
aging this tool, we developed a series of pipelines which
eliminated redundant preprocessing operations. The best of
these was selected based upon its ability to supply the most
preprocessed data while requiring minimal CPU resources.

The All-Shared pipeline was able to reduce CPU usage by
2-11X when more than 5 nodes were present in the ensemble,
while providing nearly twice the throughput that Alexnet
demanded. Under CPU core restrictions, the AS pipeline was
able to achieve up to 10X speedups over the baseline. Lastly,
this pipeline uses 5-16% less energy on Titan than our baseline
used.

This work assumes that DNNs in the ensemble behave
similar to one other, with respect to both the training rate
and prediction accuracy, and every model fits in one compute
node. A future direction to extend is to consider the more com-
plicated cases where models vary in size and training speeds,
and some may even require parallel training on multiple nodes.
Ultimately, we envision this research aligning with the broader
goal of creating an adaptive machine learning pipeline that
provides portable performance across system architectures.

ACKNOWLEDGMENT

This research used resources of the Oak Ridge Leadership
Computing Facility, which is a DOE Office of Science User
Facility supported under Contract DE-AC05-00OR22725. This
material is based upon work supported by DOE Early Career
Award (DE-SC0013700), the National Science Foundation
(NSF) under Grants No. CCF-1455404, CCF-1525609, CNS-
1717425, CCF-1703487. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of DOE
or NSF.

10

REFERENCES

[1] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method for
deep neural network compression,” arXiv preprint arXiv:1707.06342,
2017.

[2] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” arXiv preprint arXiv:1608.08710, 2016.

[3] J. Lin and A. Kolcz, “Large-scale machine learning at twitter,” in
Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data. ACM, 2012, pp. 793–804.

[4] S. Gupta, W. Zhang, and F. Wang, “Model accuracy and runtime tradeoff
in distributed deep learning: A systematic study,” in Data Mining
(ICDM), 2016 IEEE 16th International Conference on. IEEE, 2016,
pp. 171–180.

[5] A. Sergeev and M. D. Balso, “Horovod: fast and easy distributed deep
learning in TensorFlow,” arXiv preprint arXiv:1802.05799, 2018.

[6] K. Choi, G. Fazekas, K. Cho, and M. Sandler, “A comparison on
audio signal preprocessing methods for deep neural networks on music
tagging,” arXiv preprint arXiv:1709.01922, 2017.

[7] D. Figo, P. C. Diniz, D. R. Ferreira, and J. M. Cardoso, “Preprocessing
techniques for context recognition from accelerometer data,” Personal
and Ubiquitous Computing, vol. 14, no. 7, pp. 645–662, 2010.

[8] A. Bland, W. Joubert, D. Maxwell, N. Podhorszki, J. Rogers, G. Ship-
man, and A. Tharrington, “Titan: 20-petaflop cray xk6 at oak ridge
national laboratory,” Contemporary High Performance Computing: From
Petascale Toward Exascale, CRC Computational Science Series. Taylor
and Francis, 2013.

[9] B. Wang, B. Wu, D. Li, X. Shen, W. Yu, Y. Jiao, and J. S. Vetter,
“Exploring hybrid memory for gpu energy efficiency through software-
hardware co-design,” in Proceedings of the 22nd international confer-
ence on Parallel architectures and compilation techniques. IEEE Press,
2013, pp. 93–102.

[10] E. Z. Zhang, Y. Jiang, Z. Guo, and X. Shen, “Streamlining gpu
applications on the fly: thread divergence elimination through runtime
thread-data remapping,” in Proceedings of the 24th ACM International
Conference on Supercomputing. ACM, 2010, pp. 115–126.

[11] Titan specs: https://www.olcf.ornl.gov/computing-resources/
titan-cray-xk7/. [Online]. Available: https://www.olcf.ornl.gov/
computing-resources/titan-cray-xk7/

[12] Summit specs: https://www.olcf.ornl.gov/summit/. [Online]. Available:
https://www.olcf.ornl.gov/summit/

[13] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew,
“Deep learning with cots hpc systems,” in International Conference on
Machine Learning, 2013, pp. 1337–1345.

[14] “Tensorflow-slim,” https://github.com/tensorflow/models/tree/master/
research/slim.

[15] S. R. Young, D. C. Rose, T. P. Karnowski, S.-H. Lim, and R. M. Patton,
“Optimizing deep learning hyper-parameters through an evolutionary
algorithm,” in Proceedings of the Workshop on Machine Learning in
High-Performance Computing Environments. ACM, 2015, p. 4.

[16] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp.
211–252, 2012.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc.,
2012, pp. 1097–1105. [Online]. Available: http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.
pdf

[18] S. Markidis, S. W. Der Chien, E. Laure, I. B. Peng, and J. S. Vetter,
“Nvidia tensor core programmability, performance & precision,” arXiv
preprint arXiv:1803.04014, 2018.

[19] Distributed Tensorflow: https://www.tensorflow.org/deploy/distributed.
[Online]. Available: https://www.tensorflow.org/deploy/distributed

[20] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning.” in OSDI, vol. 16, 2016, pp. 265–283.

[21] R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau,
N. Ballas, F. Bastien, J. Bayer, A. Belikov, A. Belopolsky et al.,
“Theano: A python framework for fast computation of mathematical
expressions,” arXiv preprint arXiv:1605.02688, vol. 472, p. 473, 2016.

[22] A. Canziani, A. Paszke, and E. Culurciello, “An analysis of deep
neural network models for practical applications,” arXiv preprint
arXiv:1605.07678, 2016.

[23] K. He and J. Sun, “Convolutional neural networks at constrained time
cost,” in Computer Vision and Pattern Recognition (CVPR), 2015 IEEE
Conference on. IEEE, 2015, pp. 5353–5360.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision,
2015, pp. 1026–1034.

[25] L. Song, Y. Wang, Y. Han, X. Zhao, B. Liu, and X. Li, “C-brain:
A deep learning accelerator that tames the diversity of cnns through
adaptive data-level parallelization,” in Design Automation Conference
(DAC), 2016 53nd ACM/EDAC/IEEE. IEEE, 2016, pp. 1–6.

[26] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior,
P. Tucker, K. Yang, Q. V. Le et al., “Large scale distributed deep
networks,” in Advances in neural information processing systems, 2012,
pp. 1223–1231.

[27] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed machine
learning with the parameter server.” in OSDI, vol. 1, no. 10.4, 2014,
p. 3.

[28] I.-H. Chung, T. N. Sainath, B. Ramabhadran, M. Picheny, J. Gunnels,
V. Austel, U. Chauhari, and B. Kingsbury, “Parallel deep neural network
training for big data on blue gene/q,” IEEE Transactions on Parallel and
Distributed Systems, vol. 28, no. 6, pp. 1703–1714, 2017.

[29] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in Pro-
ceedings of the 9th USENIX conference on Networked Systems Design
and Implementation. USENIX Association, 2012, pp. 2–2.

[30] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen et al., “Mllib: Machine learning
in apache spark,” The Journal of Machine Learning Research, vol. 17,
no. 1, pp. 1235–1241, 2016.

[31] H2O, open source machine learning platform. [Online]. Available:
https://www.h2o.ai/

[32] T. Kurth, J. Zhang, N. Satish, E. Racah, I. Mitliagkas, M. M. A. Patwary,
T. Malas, N. Sundaram, W. Bhimji, M. Smorkalov et al., “Deep learning
at 15pf: supervised and semi-supervised classification for scientific data,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 2017, p. 7.

[33] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke,
“Scalpel: Customizing dnn pruning to the underlying hardware paral-
lelism,” in Proceedings of the 44th Annual International Symposium on
Computer Architecture. ACM, 2017, pp. 548–560.

[34] T. M. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project
adam: Building an efficient and scalable deep learning training system.”
in OSDI, vol. 14, 2014, pp. 571–582.

[35] “Project source code,” https://github.com/rbpittman/ensemble.
[36] R. Pittman, “Horovod groups,” https://github.com/rbpittman/horovod,

2018.

APPENDIX
ARTIFACT DESCRIPTION

In this section we provide a rough outline of our code-
base deployment procedure, as well as some of the details
of implementation that could affect the reproducibility of the
project.

A. Code Sources and Dependencies

There are two main code repositories for the project. The
primary code scripts for Tensorflow are contained in [35]. In
order to run Single-Broadcast or Multi-Broadcast pipelines,
Horovod Groups [36] is needed. For the All-Shared pipeline,
Horovod is needed. To swap out these Horovod installations,
modify your PYTHONPATH to include the correct installation
directory depending on the pipeline being used.

Horovod Groups requires that the MPI installation
can run in multi-threaded mode. That is, it initializes

11

https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/
https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/
https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/
https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/
https://www.olcf.ornl.gov/summit/
https://www.olcf.ornl.gov/summit/
https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/slim
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://www.tensorflow.org/deploy/distributed
https://www.tensorflow.org/deploy/distributed
https://www.h2o.ai/
https://github.com/rbpittman/ensemble
https://github.com/rbpittman/horovod

MPI using MPI_Init_thread, and requests
MPI_THREAD_MULTIPLE for its thread support. In
order to run tests with the SB and MB pipelines using
Horovod Groups, you will need to verify that your system
supports multi-threaded MPI.

Our Python code calls several system commands, including
the mkdir, date, and mpstat commands. These are used
for log directory creation for various ranks, timestamp retrieval
(for the energy tests), and CPU usage statistics. These com-
mands will need to be installed on the system.

Our cluster job scripts all use the .pbs extension. These
scripts are specific to our system/directory configuration on
Titan, and cannot be used in other locations. Since each cluster
has its own method for running various MPI/Tensorflow code,
you will need to construct a new set of job scripts for your
cluster.

Note that our implementation on Titan used a Singularity in-
stallation of Tensorflow, through the recommendation of OLCF
staff. Therefore, many of our job scripts contain singularity
command wrappers. Additionally, the Titan compute nodes
and default Tensorflow Singularity image do not feature the
mpstat command. Thus, we built our own Singularity image
to include this command.

B. Compilation

The only compilation needed for this project is Horovod
and Horovod Groups, which can both be built using the same
commands. Since no Tensorflow modifications were made
for this project, your own installation of Tensorflow should
work. Note that since Tensorflow is rapidly changing, it is
quite possible that installations newer than 1.3.0 will have
unexpected errors.

C. Reproducibility

1) Preprocessing Throughput Tests: We ran a series of
tests on the capabilities of each pipeline, measuring what we
refer to in this paper as the peak(n) function for the pipeline.
Depending on your MPI installation and particularly on your
cluster’s network architecture, you will likely see differences
in each pipelines overall performance. However, we do expect
that the relationships between AS, MB, and SB will remain
the same.

2) Multi-Core CPU Tests: This work relies heavily on
multi-core Tensorflow execution. It will be important to ensure
that your MPI/cluster configuration will allow MPI ranks to
use multiple CPU cores.

Our various CPU tests also rely on the ability of the system
to restrict core usage. This might be accomplished by reserving
only a subset of the CPU cores within your cluster, but this
was not possible on Titan since users can only reserve entire
compute nodes. We used the -d flag to limit the number of
cores MPI ranks could use for our tests. Whatever the means,
reproducing the CPU core limitations tests will require this
capability.

The Slim module by default includes some preprocessing
capabilities. This module also provides a fast_mode flag
for preprocessing. If this flag is true, the module will select

a random resizing algorithm to shrink the raw input image
to the correct DNN dimensions. Some of these algorithms
are more costly than others. We left fast_mode disabled to
provide the best preprocessing capabilities for DNN training.
This also increases CPU usage, and is therefore important to
more precisely reproduce our results.

The largest speedup reported in this paper is about 10X
for Alexnet. This value depends on the cluster’s individual
GPU and CPU performance. On Titan, we observed that the
16-core CPU is not able to keep up with the GPU for the
Alexnet DNN, experiencing a 34% slower training speed than
the GPU can handle. A system with higher CPU to GPU power
would see less performance degradation, and thus the reported
10X speedup would be less. However, a system with more
GPU power would see higher CPU usage and slower training
due to preprocessing, resulting in greater speeups. Overall, the
CPU to GPU power ratio will be different for your system, and
will likely produce different speedups. Nevertheless, we expect
that the AS pipeline will typically be capable of producing
speedups for the 1-2 core case.

3) Energy Tests: Our energy tests required extended com-
munication and assistance from OLCF staff. For our tests, we
ensured that the 80-node job allocations were sent to only
1 metered cabinet. Our reported Kilo-Watt values are for the
entire cabinet, which contained 96 nodes. Since we discovered
a significant 58% idle power usage for this cabinet, we decided
to factor this out of our savings reports. Thus, in order to
get an accurate reproduction of these results, the idle power
consumption for your testing system will need to be obtained.

12

	Introduction
	Backgrounds
	Deep Neural Network Training Pipeline
	Heterogeneous GPU-CPU cluster for DNN training pipeline

	Ensemble Performance
	Duplicated Pipelines and the Implementation
	Settings for Testing
	Workloads
	Datasets

	Baseline
	Single Node
	Multiple Nodes

	Optimized Pipelines
	Problem statement
	Horovod groups
	All-Shared
	Single-Broadcast
	Multi-Broadcast

	Metrics
	Peak Preprocessor Throughput
	CPU Usage
	Core Usage Limits
	Energy Usage

	Results
	Peak Preprocessing Throughput
	CPU
	Energy Consumption

	Related Work
	Conclusion
	References
	Appendix: Artifact Description
	Code Sources and Dependencies
	Compilation
	Reproducibility
	Preprocessing Throughput Tests
	Multi-Core CPU Tests
	Energy Tests

