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ABSTRACT.

Efforts to optimize the design of mechanical systems for
preestablished use environments and to extend the
durations of use cycles establish a need for in-service
health monitoring.” Numerous studies have proposed
measures of structural response for the identification of
structural damage, but few have suggested systematic
techniques to guide the decision as to whether or not
damage has occurred based on acquired data. Such
techniques are necessary because in field applications the
environments in which systems operate and the
measurements that characterize system behavior are
random.

This paper investigates the use of artificial neural networks
(ANNs) to identify damage in mechanical systems. Two
probabilistic neural networks (PNNs) are developed and
used to judge whether or not damage has occurred in a
specific mechanical system, based on experimental
measurements. The first PNN is a classical type that casts
Bayesian decision analysis into an ANN framework; it uses
exemplars measured from the undamaged and damaged
system to establish whether system response
measurements of unknown origin come from the former class
(undamaged) or the latter class (damaged). The second
PNN establishes the character of the undamaged system in
terms of a kernel density estimator of measures of system
response; when presented with system response measures
of unknown origin, it makes a probabilistic judgment whether
or not the data come from the undamaged population. The
physical system used to carry out the experiments is an
aerospace system component, and the environment used to
excite the system is a stationary random vibration. The
results of damage identification experiments are presented
along with conclusions rating the effectiveness of the
approaches,

NOMENCLATURE.

ANN + Attificial Neural Network

PNN . Probabilistic Neural Network

PPC . Probabilistic Pattern Classifier

VETO : Virtual Environment for Test Optimization
XY - vector of random variables with dimension n
Fx{.) . cumulative distribution function estimator
Hx, Hy  : apriori probabilities of Xand Y

Lx, Ly  loss factors associated to sources Yand X
N : number of measured data realizations

s : covariance matrix

T : a transform operator .
fx(.), fy(.) : estimated probability density functions
n . dimensionality of a source of data
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beta - distance in standard normal space

u - uniformly distributed random variable

w - uncotrelated standard normal random variable

z : datum of unknown source

@(.) - cumulative distribution function of a standard
normal random variable

o : smoothing parameter

1. INTRODUCTION

Modern practice in structural design often dictates that
systems be fabricated to minimum weight (and sometimes
cost) specifications, and yet safely sustain the loads
applied to them for a preestablished time duration. This is
possible because great strides are being made in analysis,
design and testing practice, but it is complicated by the fact
that the loads applied to any real structure are unknown and
the material properties and geometry of a structure are
random. In view of this, the responses of structures must be
monitored, and this information must be used to infer
structural functionality and safety.

There are many frameworks that can be used to assess the
relative health of a structure, and this paper presents two of
them. They are the classical probabilistic neural network
(PNN) of Specht [1], and a probabilistic pattern classifier
(PPC) that we have developed. The former is an artificial
neural network (ANN) implementation of the Bayes' decision
analysis procedure. The latter is a transform procedure that
permits us to judge the source of data of unknown origin.

The PNN requires data sets from two or more sources. For
example, this particular technique is used in the assessment
of structural damage when both normal and abnormal
operating data are available from a structure. When
presented with a datum of unknown source, the PNN judges
which set of known data is the likeliest source of the
unknown datum. The PNN implements Bayes’ decision rule
representing the probability density functions (pdf's) of the
known data sets with kernel density estimators. These were
first developed in the form in which they are used today by
Parzen [2], and their form was later generalized to the
multivariate case by Cacoullos [3]. A text that summarizes
kernel density estimators is that of Silverman [4]. The PNN is
briefly described in the following section.

The PPC requires a data set from one source. In this
particular case, the change in health of a structure is
determined using only normal operating data. When
presented with a datum of unknown origin, the PPC judges
whether the datum is a member, an outlier, or a nonmember
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of the set whose source is known. This tool also uses the pdf
representation of Parzen and Cacoullos, but given that
representation it utilizes a transform (see Rosenblatt, 6]
into the space of uncorrelated standard normal random
variables. Data of unknown origin are transformed into this
space, and a test of hypothesis is performed to judge the
source of the data, The PPC is developed in a later section.

The real test of a tool is its effectiveness in practical
application. The two health monitoring tools considered in
this study are applied to the monitoring of damage in a
physical system. The system is a stereolithography model of
an aerospace component. The system was tested using
random vibration and its response measured and used to
characterize the undamaged system. Next, a small amount
of damage was introduced into the system, and it was tested
and characterized again. This step was repeated four more
times; each time incremental damage was introduced into
the system before retesting. Finally, the PNN and PPC were
used to determine whether the incremental damage could be
recognized. The results were successful, and are presented
in detail in a fater section.

2. CLASSICAL

NETWORK THEORY
The classical probabilistic neural network (PNN) uses the
Bayesian decision analysis cast into an Atificial Neural
Network (ANN) framework to judge the origin of datum 2
given that data from two random variable sources, XandY,
are known. The known data are denoted x |y, i=1,...,N-
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The sources X and Y are assumed to be vector random
variables with dimension n, and their corresponding
realizations are also assumed to be vectors. For the two-
source case, the origin of z is determined based on the
following Bayesian decision rule

zeX if HXLXfX(z)>HYLYfY(z)

. . M
zeY if HXLXfx(z)<HYLYfY(z)

Where fx(z) and fy(z) are the estimated probability density
functions for the sources X and Y, respectively; Hy and Hy
are the a prioti probabilities of sources X and Y; and Lyand
Ly are the losses resulting from incorrect decisions that the
sources are Y and X, respectively. Often the a priori
probabilities can be determined for the source data,
however, the loss factors do require some subjective
evaluation based on the application from which the source
data have come. The key to using equation (1) is the ability
to estimate the probability density functions fx(z) and fy(z)
based on experimental data. These joint probability density
functions (pdf) can be approximated using the kernel density
estimator (see Parzen [2], Cacoullos [3] and Silverman [4]).
The kernel density estimator (kde) is a data based estimator
and one form is

Fo(z)= ——— s ¥
X Nezr)"?|s]"?

j%exp(—é(z - xj)T s~ ! (z - xj)) %)

Of course, the kernel in this expression, is a multivariate
normal pdf. The kernel density estimator is a superposition
of N multivariate normal densities centered at each
measured realization of X, This summation is normalized so
that its hyperspace volume equals one. S'is the covariance
matrix for the kernel. This matrix can conveniently be
approximated by the general form

S=0‘21 3

where [ is the identity matrix and o2 is the smoothing
parameter of the kde. A small smoothing parameter can
cause the estimated density function to show distinct modes
at the locations of the training data, while a large value of ¢
provides greater smoothing or interpolation between points
in the density estimation. The following was utilized in the
multivariate normal kde of source X

o=0.9+{4/ (n+2)f (7+4).

!{%‘.std(xi)}2 *N—1/(n+4) (@)

where std(x;) refers to the standard deviation of the random
variable source X, and the other parameters were previously
described.

3. PROBABILISTIC PATTERN CLASSIFIER
THEORY

The probabilistic pattern classifier (PPC) is similar to the
PNN in that it seeks to distinguish the source of a datum of
unknown origin. However, the PPC differs from the PNN in
that the PPC seeks to answer the question: Is the datum of
unknown origin a member of the data set of interest, oris it
an outlier, or is it a nonmember? It answers this question by:
(1) characterizing the data set of interest using the kernel
density estimator of Eq. (2), (2) using this expression to
develop a Rosenblatt transformation (see Rosenblatt, [5]) to
the space of uncorrelated standard normal random
variables, then (3) transforming the datum of unknown origin
to the standard normal space where we perform a test of
hypothesis to judge its membership. This transformation is
used to cast the data into a form that will allow us to easily
make a quantifiable decision about the membership of the
datum of unknown origin.

We commence the development by assuming that a random
variable X is characterized by a collection of data denoted

xj,j=1...,N. The source and the data it produces may be

vector quantities. The kernel density estimator for the data
is given by Eq. (2). We seek a transformation from the space
of Xto the space of uncorrelated standard normal random
variables. Such a transformation can be developed using the
Rosenblatt transformation.

The Rosenblatt transformation is a unique and invertible
mapping that permits the conversion of vector realizations of
random variables with arbitrary joint probability distribution to
vector realizations of independent, uniformly distributed
random variables on the interval [0,1). To develop the
transformation, note that there is a cumulative distribution




function (cdf) estimator that corresponds to the kde in Eq.
(2). It is easy to obtain because of the form of the
covariance matrix in Eq. (3), and is given by
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where £ is the variate vectorand & is its kth element, Xy is

the kth vector element in the jth datapoint ~ x, @(.) is the cdf
of a standard normal random variable and the other
quantities in the expression are defined following Eq. (2).
This is the joint cdf of all the random variables Xy, k=1...,n,

in the vector X, From this function all the lower order joint
cdf's (including marginal cdf’s) and-conditional cdf's can be
developed. The Rosenblatt transformation takes the form

uy=Fy, (&)

Up = Fyix,(621&) ©)

Un = Fx 1%, gy (En 1 Sntreeni 1)

where the uy, j=1...,n, are realizations of independent,
uniformly distributed random variables on {0,1], the
& j=1..,n, are elements of the vector £, and the functions
on the right hand side are one marginal (the first equation)

and several conditional cdf’'s obtained from Eq. (5). The
following shorthand notation can be adopted for Egs. (6).

u=T(E) @

where uis the vector of elements ug,k=1...,n and § is the
vector of elements &, k=1,...,n.

Because the cdf defined in Eq. (5) is monotone increasing
(The standard normal cdf, &(.) is a monotone increasing

function.), the transformation of Egs. (6) and (7) is invertible,
therefore,

& =T7(u) ®)

Because we can define the forward and inverse
transformations in Egs. (6) through (8) for a vector of random
variables Xwith arbitrary distribution, we can also define the
transformation for a vector of random variables Wthat are
uncorrelated with standard normal distribution (i.e., each
element of Wis normally distributed with mean zero and unit
variance.). The forward and inverse transformations may be
denoted

u=Te(w) w=Tg(u) ©)

where the subscript “si” refers to the fact that these are
transformations to and from the standard normal space.

The existence of the transformation in Eq. (7) and the
second transformation in Eq. (9) implies that a
transformation from a realization of a vector random variable
with arbitrary joint probability distribution to a realization of a
vector of uncorrelated standard normal random variables
can be defined. In terms of the notation in Egs. (7) and (9), it
is

w =T (T(E) (10)

This transformation, developed using the detailed forms of
Egs. (5) and (6), forms the basis of the PPC. The
transformation reflects the character of the data source X
via its measured realizations Xj, j=1..,N, because the

cdf's in Eq. (6) come from Eq. (5), and Eq. (5) involves the
X],j= 1,...,N.

The PPC operates on the following basis. We consider a
datum z of unknown origin, and make the hypothesis that it
comes from the random source X. We transform z to the
space of realizations of uncorrelated standard normal
random variables using Eq. (10). The operation yields

w, =T5(T(2)) (11)

Note that the distance from the origin of a random vector in
uncorrelated standard normal space is related to the chi
squared distribution. Specifically, the square of the distance
from the origin of a random vector with dimension n, whose
components are standard normal random variables, is chi
squared distributed with n degrees of freedom. In view of
this, the hypothesis specified above is accepted at the

o x 100% level of significance if the norm of w, (i.e., [wz])

falls in the interval [O,,’ xﬁﬂ_a], where

Fp(hre)=1-c (12)

and is the cdf of a chi squared distributed random variable
with n degrees of freedom. Otherwise, the hypothesis is
rejected.

In summary, we transform the datum z using Eq. (11),
compute the norm of w, then observe whether [w,| falls

within [0,,’ x,";',_a]. If it does, then we conclude that zis a

realization of the random variable X; otherwise, we conclude
that it is not. It is anticipated that, on average,
(1- @) x100% of the realizations z that come from the
random source X will fall in the interval. When we perform a
test under practical conditions, we will often set the
significance level in the range 0.1% through 5%. In a
heuristic sense, we can conclude that when [w| is outside

the interval [ ,1’95,2,.1_,,], but not too much greater than




1’;(%_1_“ , then z may simply be an outlier of the random

variable X. When [w| is much greater than ,’ 221-a » then
we conclude that z did not arise from the random source X.

4. APPLICATION OF PROBABILISTIC NEURAL
NETWORKS TO STRUCTURAL HEALTH
MONITORING
The current research effort has focused on the development
of two PNN software codes (the classical probabilistic neural
network and the probabilistic pattern classifier) to address
the health of mechanical structures based on experimental
data. These neural network approaches use system
response data to accurately and efficiently model the
dynamic behavior of a component under different structural
health conditions, both undamaged and damaged. Once
these complex models have been developed with measured
response data, there are numerous ways in which the
models can be used to enhance or improve the decision
making process related to the health of the structure. On-
line measurements of both inputs and responses of an
operating system, such as equipment on a production or
manufacturing line, can be used to train a neural network to
model normal response behavior of that system. Different
types of structural response measures can be used in the
neural network training process to help assure that change
in structural response or structural damage is clearly
detected. The structural response of the system can be
monitored to determine when it deviates from the established
model of normal behavior. These techniques not only have
an impact in the area of structural health monitoring but also
in the areas of experimental modeling and experimental test
simulations.

There are several key elements that are required to develop
a useful PNN. First, the selection of a kernel density
estimator (kde) plays an important role in the neural network
development process. The kde is an estimator of the
probability density function required in the decision analysis.
Second, the selection of appropriate measures of structural
response are needed that help to clearly reveal structural
damage. These elements are a critical part of the
development of a probabilistic neural network that can be
used to establish a measure of system health. Additionally,
the PNNs clearly offer the potential to more accurately model
complex nonlinear systems that have traditionally been
modeled with linear structural dynamic techniques.

There are, however, some limitations to using these neural
networks. Care needs to be taken when calculating
multivariate density estimates. The size of the exemplar or
training set needed in kernel density estimation increases
dramatically as the order or dimensionality of the density
estimation increases (Silverman, [4]). Thus, the requirement
for large amounts of experimental data in estimating the
probability densities might cause some limitations of these
neural network techniques. Also, these two techniques are
currently limited to assessing whether damage has occurred
in a structure and they do not provide a method for
determining the location or extent of the damage in the
structure. In addition, the type of smoothing chosen in the
kernel density estimation could limit not only the accuracy
but also the computational speed of the estimation. Also,

when the sample set is large, the choice of kernel estimator
may also be very important in reducing the computation time
of the probability density estimation (Silverman, [4).

5. NUMERICAL EXAMPLE

An aerospace housing component was selected as test
case hardware for generating experimental data where the
health of the system could be monitored under different
structural conditions. A test design tool called the Virtual
Environment for Test Optimization (VETO), Klenke [6], was
used to design an optimal experiment for this housing. The
VETO software simulation tool allows the user to combine
the analytical model of the structure being tested with
theoretically or experimental derived models of test
equipment and instrumentation to simulate the complete test
environment. The simulation was performed with the
assistance of advanced visualization software within a
computer environment before testing the actual hardware.
The goal of performing this test design optimization was to
select an appropriate sensor and actuator set to be placed
on the structure to maximize the dynamic response data
over a particular frequency band, up to 400 Hz. This
frequency band of interest was selected to include the first
five vibration modes of the structure. A solids model of the
aerospace housing component was used to generate a rapid
prototype component through a stereolithography process.
The testing was performed on this plastic or
stereolithography component based on the VETO test
design. Figure 1 shows a test setup photo based on the
VETO design.

Figure 1. Experimental Test Setup

The outcome of the VETO test design was to excite the
structure with stationary random vibration and to measure 55
responses on the housing component to characterize the
behavior of the system. Using the visualization software
within the VETO environment, two separate locations on the
housing structure were selected for the introduction of
damage. The basis for the selection of these locations was
made by animating the vibration modes of interest while
observing maximum strain energy density on the structure.
Five separate damage cuts were introduced at two locations




with high strain energy density to produce a detectable
change in structural response measurements needed in the
PNN analysis. The first damage location included three
successive quarter inch cuts into the outer flange near the
raised portion of the housing. The second selected damage
location on the housing included two successive cuts (for a
total of five cuts or damage cases) into the flange adjacent
to the dome and opposite the raised portion of the housing.

The selection of independent response measures for training
the PNN was a very important factor in developing a useful
tool to measure the health of the housing component. The
goal in choosing these measures was to reduce the
dimension of the neural network (from 55 measures of
response to 5 measures) while preserving or amplifying the
response differences as damage was introduced into the
structure. After some discussions with researchers in the
area of damage detection, it was determined that static
flexibility would be a good measure to show damage in a
structure. Measures of static flexibility at five locations on
the housing component were used to train the neural
networks to assist in detecting structural damage. Selecting
static flexibility as the measure of structural response to use
in the neural network applications did require some analysis
to be completed on the experimental data. Large sample
sets of data were collected from input as well as for each of
these response locations on the structure. Thirty-nine
frequency response function (frf) realizations were
calculated using smaller blocks of this large sample set of
input and response data. These frf calculations were
completed for the one undamaged case and the five
damaged cases. An approximation of the static flexibility
was calculated for each of these fif realizations. The method
for estimating the static flexibilities was to average the low
frequency frf behavior to asymptotically approximate these
measures. The difficulty in determining these estimates was
in selecting an appropriate frequency range to make the
calculations. The frequency range selected, 50 to 60 Hz,
was above the rigid body modes at 10 and 14 Hz and below
the first elastic mode at 115 Hz. A typical frequency
response function measure is shown in Figure 2.
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Figure 2. Typical Frequency Response Function

The first case study utilized these measures of static
flexibility at the five selected locations on the housing
structure as input to the classical PNN. Operation of the
classical PNN requires data from two known sources; one
set of static flexibilities from the undamaged case and one
set of static flexibilities from the group of damaged cases.
When the classical PNN was presented with data from an
unknown source (this unknown data was taken from the
sample set of undamaged or damaged flexibilities and was
subsequently not used as PNN training data), the neural
network would judge the origin of that data based on the
Bayesian decision criterion shown in Eq. (1). The a prioti
probabilities given the two known sources of data were 0.5 or
50% and the loss factors were set to 1. The results from the
classical PNN study were outstanding with the code
predicting the correct origin of an unknown source 78 out of
a possible 78 times in all damage cases. Because of the
obvious difficulties in graphically presenting the results of a
five-dimensional density, two of the five locations on the
housing structure were arbitrarily selected for displaying
results from the classical PNN. Figure 3 shows the two-
dimensional scatter plot of the static flexibilities plotted
against one another for the undamaged (o) and five
successive damaged cases (+). Each (o) and (+) represents
a single realization (total of 39/case) of these two
flexibilities.
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Figure 3. Scatter Plot of Static Flexibilities

The differences between the undamaged and damaged
cases for these two static flexibility measures are quite
apparent enabling the PNN to easily detect the origin of an
unknown source. The classical PNN was able to distinguish
the damaged from the undamaged data in all cases,
including the most lightly damage case.

The second case study utilized the same measures of static
flexibility as input to the PPC. In this case, the PPC requires
data from only a single source, such as the undamaged set
of flexibilities, and seeks to judge whether or not the data
from an unknown origin comes from that source. The
Rosenblatt transformation was used to map the static
flexibility data from the space of the kerel density estimator
into the space of uncorrelated, standard normal random
variables. This transformation was also used to transform




the data from an unknown source, static flexibility data from
the damage cases, into the standard normal space. A
distance, beta, from the origin was used as ctiterion to judge
whether the data from the unknown source (data from
successive damage cases) came from the known
undamaged source. An acceptance region, distances from
the origin considered as part of the undamaged source, was
established based on the use of the chi square distribution.
A chi square random variable with five degrees of freedom
has a 99.9% probability of a distance from the origin less
than 4.53. The results for the five damage cases input into
the probabilistic pattern classifier are shown in Figure 4 as
well as the maximum distance from the origin in standard
normal space at which a datum could be considered a
realization of a standard normal random variable (4.53). This
figure shows the trend that as damage increases in the
structure the distance measure in standard normal space
also increases, The data near beta = 12 correspond to the
first damage case. The data near beta = 50, 90 (smoother
curve), and 110, correspond to the second, third, and fourth
level damage cases, respectively. The data near beta = 90
(more erratic curve) correspond to the fifth level damage
case. At this time it is not clear to us why the fifth level
damage case yields lower beta values than the fourth level
damage case.
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Figure 4. Plot of Distance in Standard Normal Space

6. CONCLUSIONS

The results of using both the classical PNN and the PPC
were quite successful. The damage in the aerospace
housing component was identified, even in the most lightly
damaged case, using both of these techniques. These
neural networks clearly offer a robust method for assisting in
the identification of damage in structures. The use of the
Virtual Environment for Test Optimization did assist in the
neural networks ability to identify the damage in the
aerospace housing structure. The capability to design the
experiment within the computer environment and to choose
the locations to place the actuator and sensors did make it
possible to identify all the vibration modes of interest during
the experiment. Also, VETO was used to help identify
locations with high strain energy density in which to damage
the structure. The use of this experimental design tool did
provide some important insight into the testing of the

aerospace housing which provided beneficial inputs for the
neural networks.

There were, however, a humber of limitations in using these
neural network techniques. The first is the limitation of these
methods to provide or determine the location and extent of
the structural damage. Further research in these neural
networks will explore the combining of these techniques with
data condensation methods to assist identifying the location
and ultimately the extent of the structural damage. Another
limitation is the software's inability to run "real-time®. Current
efforts are under way to rewrite the codes in order to
increase their computational speed. Some additional
research will focus on the sensitivity of these neural
networks to boundary conditions. Studies will be done to
assess the effects that changing test configurations might
have on the neural network results.
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