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Abstract

The Z Machine is the world’s largest pulsed power ma-
chine, routinely delivering over 20 MA of electrical cur-
rent to tar-gets in support of US nuclear stockpile stew-
ardship and in pursuit of inertial confinement fusion. The
large-scale, multi-disciplinary nature of experiments
(“shots™) on the Z Machine requires resources and exper-
tise from disparate organizations with independent func-
tions and management, forming a Collaborative System-
of-Systems. This structure, combined with the Emergent
Knowledge Processes central to preparation and execu-
tion, creates significant challenges in planning and co-
ordinating required activities leading up to a given exper-
iment. The present work demonstrates an approach to
scheduling planned activities on “shot day” to aid in co-
ordinating workers among these different groups, using
minimal information about activities’ temporal relation-
ships to form a Simple Temporal Network (STN). Histor-
ical data is then mined for this information, allowing a
“standard” STN to be created for common shot activities,
with the minimum physically possible times (i.e., lower
bounds) between those activities defined. Activities are
then scheduled at their earliest possible times to provide
participants a “check-in” time for activities of interest.
Further work, including incorporation of upper bounds
and development of a software implementation, is then
discussed.

INTRODUCTION

“Linearity is an artificial way of viewing the world.
Real life isn’t a series of interconnected events occurring
one after another like beads strung on a necklace.”

— Ian Malcom, in Jurassic Park

The Z Machine (hereafter “Z”) is the world’s largest
pulsed power machine, routinely delivering over 20 MA
of electrical current to targets in support of various pro-
grams, including US nuclear stockpile stewardship and
pursuit of inertial confinement fusion. A single experi-
ment (or “shot”) requires months of planning, design
work, specialized hardware fabrication, and diagnostics
configuration, all involving experts from a variety of
specialized backgrounds such as plasma physics, hydro-
dynamics, dynamic material properties, laser technolo-
gies, atomic spectroscopy, neutron diagnostics, electrical
engineering, mechanical engineering, and electro-
mechanical controls. Regular operation of Z on a daily
basis requires specialists from these fields as well as tech-
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nicians and installers performing regular machine mainte-
nance and configuration, which involves activities such as
operating heavy machinery, refurbishing equipment, per-
forming routine mechanical and electrical work, and even
underwater diving, among others.

Challenges to Coordination

The activities, specialties, and organizations involved
in Z experiments and operations have evolved over time,
posing significant challenges to coordination of daily
activities using static and deterministic plans and sched-
ules. While much of the funding for the experiments and
operations of the machine comes from a single organiza-
tion, many activities and capability enhancements are
funded at least in part through alternate sources and or-
ganizations, leading to varied and dynamic relationships
between participating personnel and systems. Many of the
supporting staff for diagnostics, targets, and subsystems
have independent management and volunteer-like partici-
pation with Z experiment preparation and execution.
These traits, especially varying levels of “operational
independence” and “managerial independence” of con-
stituents, place Z on the spectrum of a Collaborative Sys-
tem-of-Systems (SoS) [1]. This type of operation has no
recognized central authority to provide top-down guid-
ance on organization and execution of work, and often
there exist no centrally or commonly defined roles and
responsibilities. While individual sections and agents may
generate their own activities and associated (implicit or
explicit) plans and schedules for those activities, such
plans and schedules may be communicated in an ad-hoc
manner or simply adapted in-situ pursuant to perceived
progress of a given experiment throughout a day. Such
behaviors (i.e., ad-hoc communication and in-situ adapta-
tion) significantly challenge efforts in higher-level plan-
ning and scheduling for experiments to aid in coordina-
tion across groups; static plans and schedules — even if
fully informed (which is rarely the case) and even if cre-
ated very close to “shot day” — can quickly become obso-
lete, causing wide-varying interpretations and even dis-
trust of any schedule updates or future experiments’
schedules.

The interfaces between participants on a given shot are
sometimes known in advance but, as mentioned above,
are often of an ad-hoc nature. Eliminating this behavior is
not possible, nor is it desirable, since in fact this ability to
adapt is widely recognized as essential to the success of Z
experiments due to the research-oriented (and therefore
often emergent) nature of much of the work. Such work is



typical of Emergent Knowledge Processes (EKPS), which
“involve intellectual activities, expert knowledge, and
diverse people in unstructured and unpredictable combi-
nations” [2].

This emergent knowledge environment poses another
major challenge to higher-level planning and scheduling
on Z, however. Many shot activities represent active areas
of research, including the primary machine’s regular
performance (e.g., delivery of electrical current), regular
diagnostics (e.g., x-ray measurement), and experimental
subsystems and diagnostics (e.g., plasma cleaning, CMOS
cameras). Activities are often planned which have no
clear upper bound of time associated with them, whether
because they involve completely novel apparatus or pro-
cedures, or because the effects and timing of the activity
have not been well-characterized by statistical methods
and measures (or cannot be due to insufficient data and/or
epistemic uncertainties). This inability to constrain opera-
tions activities’ timings to well-characterized, limited-
duration events provides the second significant challenge
to higher-level planning and scheduling of activities for a
given experiment.

Despite these two major challenges to planning and
scheduling, many stakeholders and participants in the Z
SoS consistently express a desire for a higher-level under-
standing of the system’s anticipated and actual temporal
behavior for a given experiment. To put it in the simplest
terms, the two main questions that sum up most concerns
are a form of, “How do we think we’re going to do?”
(before shot day) and “How are we doing?” (during shot
day). These two questions reflect a common need for a
consistently defined, unambiguous presentation of an
experiment’s events before shot day (which would better
enable planning and coordination ahead of time, as well
as provide an indicator for likelihood of success) and
during shot day (to better enable adaption and collabora-
tion, as well as increase the likelihood of success). In
keeping with Maier’s architectural principles for an SoS,
endeavoring to answer these questions is a form of en-
deavoring to “leverage interfaces” of and “ensure cooper-
ation” by all parties involved in the Cooperative SoS [1].
When designing a Z experiment, many activities can be
planned to happen simultaneously, and uncharacterized
(i.e., epistemic) uncertainties surround many of the activi-
ties’ timescales, so it is difficult to accurately estimate in
advance the impacts of one or more additional activities
or the uncertainty that exists when planning ahead for and
adapting during an operational day. For this reason, when
designing an experiment, it is desirable to understand the
behavioral aspect by modeling “the emergent behaviors
resulting from these complex interconnections in order to
understand how the system will perform” [3]. (For the
present work, the scope of behavior is limited to temporal
behavior.)

Equally important to enabling coordination among
independent participants, however, is understanding the
perceptual aspect, which

...relates to how the system is interpreted through
the perspective of system stakeholders. This aspect
considers individual stakeholder preferences, and
how preferences vary across stakeholders. It also
considers the changes in preferences as a response to
context shifts over time as the stakeholders interact
with the system in its environment. This aspect re-
lates to cognitive limitations, biases, and preferences
of the stakeholders. [3]

This latter aspect of the problem implies that success
can only be achieved when the temporal behavior of a Z
experiment is captured and presented in a way that can
account for the varying perceptions of what that behavior
means for individual participants.

Pitfalls of naive prediction

A common question that most Z experiment partici-
pants have asked at some time or another is, “When is
Activity X going to happen?” And indeed, a naive goal
of constructing a schedule may be to try to answer this
question in the context of the Z SoS, even with the chal-
lenges presented above. However, since most participants
agree that deterministic predictions like this question
cannot be consistently accurate, many ask instead a ques-
tion which looks less naive because it invokes probabilis-
tic measures: “When is Activity X likely to happen?” Due
to the unique characteristics of Z as a Cooperative SoS
centered around Emergent Knowledge Processes, howev-
er, this question is also naive. First, there exist little statis-
tical data on which to base probabilistic estimates for
most of the activities, and requiring data (or estimates)
from all parties involved neither encourages cooperation
nor ensures verified/validated data. Second, in a research-
intensive environment with many EKPs, where epistemic
sources of uncertainty have large effects, aleatoric distri-
butions (i.e., statistics) often prove to be unhelpful de-
scriptors of temporal behavior due to the overwhelming
effects of the uncharacterized portions of uncertainty.
Even when characterized, the meaning of long tails, ex-
treme skewness, and multiple modes of distributions vis-
a-vis planning/scheduling are virtually impossible to
communicate individually, much less in aggregate form,
to all participants in the SoS. Keeping in mind the behav-
ioral and perceptual aspects of an experiment: the answer
to this question of an activity’s “likely time” will not stay
constant throughout an experiment, the answer may be
different for every participant in the SoS due to their
perceptions when quantifying “likely” [4], and the answer
will be of varying degrees of usefulness to every partici-
pant due to cognitive limitations, biases, and preferences.
Perhaps most importantly, providing probabilistic times
does not encourage behavior that aids in real-time coordi-
nation [5], since it is always preferable for resources to be
available ahead of time. Finally, there is no (and cannot
be a) centrally defined “correct” response to probabilistic
information in an environment with independent man-
agement and operational behaviors.




METHOD

Herbert Simon points out the danger inherent in at-
tempting to answer predictive questions like those above
when he writes, “Because of the possible destabilizing
effects of taking inaccurate predictive data too seriously,
it is sometimes advantageous to omit prediction entirely”
[6]. Predictions can help participants in some environ-
ments, but the goal of the present work — in keeping with
recommendations of [1] — is to provide information that
encourages participants to cooperate with the wider
system in planning, executing, and adapting their own
work. In pursuing this type of goal, “Numbers are not the
name of this game but rather representational structures
that permit functional reasoning, however qualitative it
may be...The heart of the data problem for design is not
forecasting but constructing alternative scenarios for the
future...” [6]. “Functional reasoning” is the goal outlined:
in the present application, the function being overall SoS
coordination and interfacing of constituent members. The
present work, therefore, pursues two means of achieving
that goal: 1) require as little information as possible from
participants while still reliably modeling shot activities
(e.g., do not require statistical distributions generated
from sufficiently large empirical datasets), and 2) provide
consistently actionable information regarding alternative
scenarios to Z SoS participants in order to aid them in
their own plans, execution, adaptation, and interfacing
with other entities.

A Simple Temporal Network [7] seems a natural fit for
these two goals, due to its relatively lightweight data
requirements and its ability to aid in functional reasoning
regarding potential timeline developments. The minimum
bounds between an activity and its successors in a Z ex-
periment can in most cases be quite easily ascertained, as
participants are usually quite able to provide an optimistic
(and often even realistic) estimate of the fastest time in
which an activity can be completed, even activities which
have never been performed before. Therefore the present
work begins based on [7] by using these minimum possi-
ble times between activities to construct a directed con-
straint graph with universal (infinite) upper bounds on all
intervals, leaving a constraint graph with only minimum
bounds. This constraint graph can then be converted to a
distance graph, which is a directed edge-weighted graph
G defined as a tuple G := {V, E}:

V: set of nodes, each representing the start of activities (e.g.,
“Begin Water Fill”)

E: set of edges representing the minimum minutes between
nodes, of form destsiart — Srcsiare > a, where
dest, src €V
start = start time of activity
a€R>0

No cycles exist.

A simplified example of a distance graph comprising 3
vertices is shown in Fig. 1. Once such a graph (a Simple
Temporal Network, or STN) is created, it can be used to

schedule activities relative to one another by simple addi-
tion of the temporal constraints between nodes.

BeginVacuum

Figure 1: Simple Temporal Network (STN) comprising 3
nodes and 3 edges.

Creating and Scheduling the STN

A reduced model of a shot was created for the initial
proof of concept, comprising 15 activities across 6 inde-
pendent groups. The activities chosen were based on
operations diagnostics that automatically record machine
states based on electromechanical and electronic triggers
throughout the Z machine. As an example, a plot of hun-
dreds of past times between two activities’ start times —
vacuum and a downline shot — is shown in Fig. 2.
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Figure 2: Time in minutes between starting vacuum and a
downline shot, for a few hundred shots (indexed 0-330).

The minimum-time edges can then be derived from these
electronic records of the states of the machine; in Fig. 2’s
case, the minimum time could be estimated to be just over
60 minutes (to derive reliable minimum times from such
records, some judgment is necessary to adjust for outli-
ers). This estimate can then form the edge in the STN
between these two activities, and analysis and construc-
tion of the remaining activities and edges follows the
same pattern. The complete STN created for all 15 activi-
ties and their relationships can then be used to schedule
all activities at their earliest begin times, shown in Fig. 3.

Result: Distributed Functional Reasoning

The STN that results from this approach can provide
SoS participants with actionable information to help co-
ordinate work through functional reasoning in several
ways. First, it helps compactly summarize the “alternative
scenarios” recommended in [6] by simply showing a
lower-bounded range of time over which each activity
might happen, rather than a single prediction. This type of
summary view increases understanding of the behavioral
aspect of an experiment’s schedule of activities for all
participants.

Second, the resulting network provides an earliest time
for participants to “check-in” on shot day for any given
activity of concern. An earliest time estimate provided
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Figure 3: Scheduling of a reduced Z Simple Temporal Network based on earliest times activities could start given an
operations start time of 6am. (Vertical spacing/proximity is only a function of the non-overlapping layout algorithm.)

earlier in time will not be invalidated by later modifica-
tions to the activity’s earliest time estimate, since by defi-
nition the estimate should only get pushed later in time,
meaning that the act of “checking in” will be informative
to participants either way (i.e., either the activity will be
ready for them to participate in at the estimated time, or
the participant can get an update of when next to check-
in). This assurance of useful information encourages
behavior similar to complex sociotechnical systems like
buses and airlines, where a minimum time is given to
coordinate many participants in “checking in”, but the
estimated time of the event might be modified (usually to
be later in time, almost never earlier) from the one origi-
nally given in order to accommodate large exogenous
uncertainties. This result therefore helps directly address
both the behavioral and perceptual aspects of communi-
cating higher-level scheduling information.

FURTHER WORK

The present work can be expanded on in several ways
presently proposed. First, the STN could be greatly im-
proved with the incorporation of upper bounds on activi-
ties’ temporal relationships, to help provide not only ear-
liest estimated start times but also /atest estimated start
times of activities. Some regular machine activities do
have reliable upper limits on how long they might take,
but even one activity without a definite upper bound (of
which activities there are many in EKPs) would prevent
any estimate of latest start times for all downstream activ-
ities in the STN. Probabilistic information may help ad-
dress this problem in some fashion but is not viewed as an
ideal solution given the discussions above in Pitfalls of
Naive Prediction. In addition, upper bounds intermittently
or inconsistently incorporated into the STN could confuse
more than help participants, since the information guaran-
tees discussed above would no longer hold true. Further
work could potentially address this opportunity for im-
provement in finding a suitable method to incorporate
upper bounds.

Another area for further work is the STN’s develop-
ment into a participant-facing software tool that would
serve as a display of the STN for a given experiment.
Activities and their minimum estimates could be add-
ed/removed in advance by participants or an administra-
tor, allowing a more well-informed system-level view of

an experiment in advance of execution. In addition, if the
software tool were then connected to the machine state
sensors on which the activities are based, then the STN
could be automatically rescheduled as each activity be-
gins (or doesn’t), serving as a real-time display that par-
ticipants could reference throughout an experiment to
better help coordination (and to encourage “checking in”
on any connected device) as an experiment progresses.

CONCLUSION

This work began by classifying Z machine experiments as
a System-of-Systems with varying levels of managerial
and operational independence executing activities that
include many Emergent Knowledge Processes. Goals
were defined for higher-level planning and scheduling
activities to “leverage interfaces” and “encourage cooper-
ation” by 1) requiring minimal information from each
participant regarding their own planned activities, and 2)
aiding in functional reasoning around the execution of
activities for a given experiment. The method chosen to
achieve these goals was a Simple Temporal Network that
temporally relates each activity with its predecessors and
successors, allowing activities to be scheduled at their
earliest possible start times. A simplified model of a Z
experiment was created, and an example schedule was
shown. Further work was then discussed, including the
challenge of incorporating upper bounds into the network
and the creation of a software tool to help administer and
communicate the results of the STN’s automatic schedul-
ing/rescheduling as an experiment progresses.
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