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Outline ) 2=

= Accounting for missing time/space histories in marked point-
process models

= |nverse prediction for nuclear forensics applications




Point-Process Examples S
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Common Theme — Clustering of points in space and time




Motivation ),

Many surveillance
applications require human
interaction to interpret
events

Simulated temporal point processes with sensors
down from 20 to 40 seconds

Exploitation elusive — large
data sets with missing time O Glb otmpee © oo o0 @@

(or space) histories

* Seismic sensors ‘O ED cEpee o oosa» o0 @
down
* Missing records of
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terrorism events Time

Observed ® Yes @ No




Point Processes with Missing Data @&

Can we model and correlate

events that happen in a self- Simulated temporal point processes with
exciting process with missing sensors down from 20 to 40 seconds
time histories?

Self-Exciting? Events cluster COGED GOEDOO © oo e o0 o
in time and space (a.k.a.
Hawkes process) COGED S0ED OO © ooE» o0 @
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Time
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Bayesian Approach to Missing Data @

= QObserved event times t,p5, parameters ¢
" Missing Data t:ss = latent parameters
= Want the posterior:

T(@|tops) o< T(P)p(Lobs|®)

(With implicit conditioning on known unobserved interval(s))

= Two Steps in Gibbs Sampler of (@, tmiss|tobs)

- tmissato s . . . .
1. 7T(¢‘£I?) - b:) Complete-data posterior — either using branching
structure or conditional intensity

T : _, Missing data step — propose missing data,
. miss|W¥y Lobs
accept/reject
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1. Complete-Data Hawkes Process

= Atemporal point process N (t) is characterized by its
conditional intensity

A(t) = Nm (BIN{(E, ¢+ A)}[Hi]/ (A1)

= Simplified ‘Hawkes’ process form with exponential decay:

)‘(t) — U T o Z g(t — tk) In general:

k:tp <t p(t) + ) als)g(t — ti; ki)

<t

= Parameters:

= - Immigrant Intensity
= « - Total offspring intensity
= g(t) = Bexp(—pPt) - Normalized offspring intensity
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1. Complete Data Likelihood .
= Observed data © = (t1,...,t,) on [0,T)

A*(t):/O A (s|Hs)ds = M(t) + « Z G(t —tr), M(t):/O p(s)ds

= Known as the ‘conditional intensity formulation’ of likelihood
= MLE is numerically unstable (Veen and Schoenberg 2008)

= Rasmussen (2013): Complete-data Bayesian models via MCMC




2. Missing Data Step ) B,

= Assume [Ty, T,] is the unobserved interval (WLOG)
= Proposal for missing data

= Conditional distribution of data given history up to time T;

p(tmiss ‘¢7 le) X p($T2 ‘¢)

= Simulated using thinning method developed by (Ogata 1981)
= MH ratio for missing data

T = (tmiss, tobs) timiss - current missing data
T = (fmiss, tobs) fmiss - proposed missing data

LT,y LT; Current, proposed data up to time T




T

Simulated Results L

= Complete-data posterior:
= Likelihood known, specify priors, apply MH-within-Gibbs

M~ Gamma(a#,ﬁ”), Q ~ U(Eﬂsu&)a B~ U(Eﬁsﬂ'ﬁ]
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=  Augment with missing data step

= Efficiency gains by considering the branching structure of the process
(Rasmussen 2013)




Branching Structure ) i

1. The parents I follow a Poisson process with intensity u

2. Each parent t; € I generates a cluster, (;, where the clusters are
assumed to be independent

3. Acluster ()} consists of points of offspring with the following structure:
Generation 0 consists of the parents. Recursively, eacht; in generation [
generates offspring of generation [ + 1 from a Poisson process with
intensity function ag(t — ¢;)

4. The process, is the union of all the clusters

1. / ® - e
Depiction of ® 4,1 —~®

Branching \g.

Structure with 2 3
2 .9
parents 1 3




MCMC with Branching Structure ) e,

= Let Y ={y;} denotethe branching structure

y; = 0 means t; isa parent

y; = 7 means t; isan offspring of ¢;
= Partition the arrival times
Sj=1{tsyi=7}, 0<7<n

= ‘Cluster process formulation’ of likelihood

p(x|d,Y) = exp(—uT)p ™ ]| (exp(aG(Ttiﬁ))aSZ 1T 9t tjﬁ))

=1 t;€8;
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MCMC with Branching Structure — @&

= All full conditionals now include conditioning on branching
structure

" |nclude a step to sample the branching structure:

= Assume uniform prior on branching structure

. A
p(YZ — ]’ZL‘,¢) — { oag((ft

= Advantages:
= Reduced likelihood computational burden in MH ratios
= |nference on the latent branching structure (like missing data)
= Numerical stability of likelihood (Veen and Schoenberg 2008)
= More efficient convergence




Simulated Results ) e

= Posterior given complete data:
= Likelihood known, specify priors, apply MH-within-Gibbs

M~ Gamma(amﬂ”), Q ~ U(Eﬂ:u&)a B~ U(Eﬁsﬂ'ﬂ]

Truth/Posterior Means Truth/Posterior Means
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lgnore missing data? UL
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= Bias posteriors (especially for the mean) if missing data is ignored (Orange)

= Larger uncertainty with missing data compared to complete data




Global Terrorism Database ) &,

= The Global Terrorism Database (2017) (GTD) is an open-source database
including information on terrorism events around the world from 1970-2015

=  Look at 1990-1997 in Columbia - multiple problems with guerrillas,
paramilitaries, and narcotics

= The database is missing records for the entire year of 1993

Columbia
* A partial recovery of 21 events
during 1993 is available (green)
o e Safe to assume there were
P - many more events
g _f;f{
S i

1000

0 1000 2000 3000
Time (day)




Global Terrorism Database ) &,

= Parameter estimates accounting for missing data increase,

number of estimated events on order of those recovered
in the data set

o a
B 2 =  Number of events in 1993
. 1 = 95% Cl: (69,201)
*? ! 0.55 0.60 (.65 0.70 ’ 2.0 2.4 2.8 - Slightly bE|OW database’s
5 ) u estimate of 225 events

Data Set/Model
D Partial data/Complete data model
D Incomplete data/Complete data model

D Incomplete data/Missing data model
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NUCLEAR FORENSICS RESEARCH
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Nuclear Forensics

= U.S. Government is conducting research in nuclear forensics

= Two main objectives
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NUCLEAR FORENSICS

Test blasts simulate a nuclear
attack on a port

Data could help point to perpetrators in aftermath

By Richard Stone

nder cover of night, a blacked-out

fishing boat slips into Baltimore,

Maryland’s Inner Harbor. A US.

Coast Guard cutter moves to appre-

hend the intruder. But before officers

can board, both boats and much of
Baltimore disappear in an intense flash:
A nuclear bomb hidden on the boat has
detonated. As first responders rush to vie-
tims, nuclear forensics specialists scrutinize
data on radiation and acoustic and seismic
waves from sensors placed around the city
in a breakneck effort to decipher the bomb’s
design and perhaps determine
who was behind the blast.

At a time when a bomb smug-
gled by terrorists is as big a con-
cern as one from a foreign power,
delivered by missile or airplane,
an attack at a port is “definitely
a more likely scenario, says
Thomas Cartledge, a nuclear engi-
neer with the US. Defense Threat
Reduction Agency (DTRA) in Fort
Belvoir, Virginia. But forensic ex-
perts, who rely largely on nuclear
test data collected years ago in
Western deserts, lack a clear pic-
ture of how energy from a deto-

terrorism at Harvard University’s Belfer Cen-
ter for Science and International Affairs. “If
there is highly enriched uranium metal that's
shielded and below the water line, it's going
10 be really tough to detect at long range”

In case the unthinkable happens, a sen-
sor array called Discreet Oculus that is
being installed in major U.S. cities would
capture key forensic information. The ar-
ray, which DTRA is still developing, would
record radiation and seismic waves ema-
nating from the blast (Science, 11 March
2016, p. 1138). “Discreet Oculus is up
and running in several US. cities now;
Cartledge says. A sister system—a portable

Oculus and two Minikin Echo arrays at
Aberdeen, adding hydrophones, which are
not currently included in either array. An-
other set of sensors probed how seismic sig-
nals ripple through East Coast rock layers.
“These are wet-type geologies versus the
granite geologies that we see out at the typi-
cal desert sites where we've done historic
testing,” VanHoose says.

team set out to test several scenarios.
“We were looking at how a weapon might be
delivered,” Cartledge says. A detonation above
the water line—say in a container on the deck
of a cargo ship—would produce a mostly

ic signal, he says, whereas a i
in a ship’s hull, below the surface, would be
mostly seismic. “Really challenging,” he says,
is the seismo-acoustic coupling “right at the
surface”™a scenario one might expect for a
detonation aboard a smaller boat.

Finally came the big bangs. Working with
US. Navy hydrosound experts, the DTRA-
led team detonated eight 175-kilogram
TNT explosions at Aberdeen’s Briar Point
Test Pond, as well as one 455-kilogram TNT
explosion at a nearby under-
water explosives facility. The
team sheltered in a bunker about
450 meters away and watched the
explosions on closed-circuit TV.

Less than a second after a
detonation, the seismic waves ar-
rived. The bunker “really rocks,”
Cartledge says. “Wow, you don’t
think it would shake us much as
it does. That's the fun part of the
job” A moment later came the
airborne shock wave: “a very in-
tense bang” recalls Mark Leidig,
a seismologist at Weston Geo-
physical Corp., a consulting firm

nation would propagate in the  This
‘highly saturated geology of many
US. port cities. To remedy that,

October simulated the effects
of anuclear blast in a ship's hull.

in Lexington, Massachusetts, that
designed the tests.
Now comes the hard work of

uo /1o

210202

Stone, Richard. Science 355 (6328), 897.




Attribution of Material ) i,

= Mining of historical production databases

= Mostly U.S., limited variation, missing data

= Machine learning — where was each piece of material produced?

= New Experiments

= How do variations in inputs affect outputs? Production data doesn’t
help much.

= DOE for inverse prediction?
= |nverse prediction methods

Inverse Prediction Problem




Pu Signatures Project .

= QObjective:

= Produce Pu oxalate, measure characteristics, predict processing
conditions

Example: Pu Signatures project — production of Pu(lll) oxalate

Reductant, Filtratiomn,
Hydrazine | Oxalate Solution | "allcinaftiomn
or Solid “ 10-80
Plutonium Nitrate —
Feed Solution o Pl Sollution




Experimental Design

= Little/no research for inverse problem

= Philosophy: Span factor space of interest, allow for
accurate forward models, provide rich training data set
for direct inverse models
= |-optimality, considering span, replication, feasibility

Representation of Design: 6 factors, 2 separate designs, some settings not feasible
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Approaches for Inverse Modeling @&

Factors = Processing conditions: X;, X5, ...,.X
Responses = Measurements of processed material: Y;,Y;, ....Y,

p
q

Signature = Complete set of responses, ¥ ={V1,Y, ..., Y;}

= Causal Modeling Approach
= Forward models

Y; = fi(X1, X2, 0, Xp)

= ‘Invert’ using new signature to
“predict” factor values

Example: classical — minimize an objective function

q
X* = argminy Z(YJ — Y]*)2
j=1

Example: Bayesian — posterior for X*

Marginal posterior of HNOj3

Inverse “Soft” Modeling Approach
=Build supervised learning models
X; =g;()
=Predict value of j* factor directly
Xj* = 9gj (r~)

(a) Principl coordinate plot
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Inverse Prediction Research ) 2=

Two Main Objectives (so far)

1. Down-select a set of responses

=  Could take many measurements

=  Costly, time-consuming (after all, it’s radioactive material)
= Limited amount of material? We don’t know what we’ll get
=  Want the most informative/discriminating set of responses

2. Confidence in predictions
= |deais to inform criminal investigations
= Large number of ways to produce material — training data is limited

= How can we tell if the predictions will be informative in an actual
interdiction?

24
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7| Netora

Down-selecting a set of Responses

= Strategy to down-select an informative/discriminating subset

of responses among a candidate set
= Responses can yield accurate, precise, and unconfounded predictions of the
factors

= High level idea (Details if time)
= Fit forward models Y; = f;(5;; X) +€;,i =1,2,...,q
= Need to estimate X™ given new Y*

= Swith role of f and X using local linearity to estimate prediction
variance V (X)

= Choose a set with a
= reasonable number of responses
= small prediction variance across space of interest.

25



Glass Composition Example

Sandia
m National
Laboratories

Study to investigate how glass properties varied as a function of composition

= Constituents are mole ratios: X; = Na,0/P,0s5, X, = Ba0O/P,0s5, X5 = Al,05/P,04

Goal: Predict constituents based on six glass properties (i = 1, ..., 6)
Simple linear models: ¥; = B;o + Bi1 X1 + Bin X5 + Biz X3
Best forward models (using R?) are of density and refraction

= Don’t depend on Na,0O

Property:i=1,...,6

Ba0

2. Softening Temperature 393(16) -105(25) 695(63) 5.7 0.93
4. Crystallization Temperature 571(29) -220(489) 710(147) 14.7 0.74
5. Density 2.5(0.02) 1.1(0.05) 0.5(0.12) 0.01 0.97
6. Refraction 1.5(0.003) 0.01(0.004) 0.08(0.005) 0.1(0.012) 0.001 0.97

26



Prediction of Glass Composition UL

Predicted Vs. Observed: Na,O/P,0s Predicted Vs. Observed : AlL,O;/P,0s
Q, 2| correlation=0.81 Q “| correlation=0.9
o o .
Q- o
© i - Z
z <
o g o =
[ o -
© T =
Q= et
(A o . . ‘ ‘ o s L] ‘ ‘ . ‘ ‘ ‘ ‘
“Observed Na,O/P,05 " Observed ALD,/ PO T
Predicted Vs. Observed : BaO/P,0s
2 | correlation=0.97 - = Good for prediction Ba0 and Al, 03,
o not as good for Na,0
©
om - .
© - e = Strongest models don’t depend on
g : Nazo
(] .
a % = |ntuition: need strong forward

" Observed BaO/P,05

T
045

models for inverse prediction

= Density is responsible for the precise
predictions of BaO — Barium is very
dense compared to other constituents

27
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Average Prediction Variance =
= Switchroles: Y*—B, =BX*

g —1
= Estimated prediction variance: (BV_lB) - Can be (approximately) generalized

1.545

Subset \ Vargyg(X1) \/ Varg,g(X2) \/ Varg,q(X3) 2 .

(Na;0) (Ba0) (Al;03) g
E l i :;% 2 l : e
f—— 0.08 0.02 | 0019 | .
ensity g -

1.525

u
)
L]

= Excluding density results in ~1.5 times increase in the root prediction variance of
X7
= Multivariate response is less informative for predicting X, if density is excluded

2.95 3.00 3.05 3.10

Density

=  Excluding refraction is not as detrimental — despite a good forward model
(redundancy)
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Confidence in Predictions ==

= |deais to inform criminal investigations

= Large number of ways to produce material — training data is
limited

= How can we tell if the predictions we make trained on the
data we have will be informative in an actual interdiction?

Main Idea

=  Try many methods
= Don’tjust use the best one — but look for consistency

= Consistency builds confidence predictions are robust to the
various assumptions of each method

29
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Pu Production Data ) 2=

SEM measurements  Precipitation variables (factors)

A \
' | . . )
Mode | Agglndes Lengh  Widh |Thickmess | HNO; | Pu || Temp. Historical Pu production data
P | RS | PRAPIRRS |e 608 | RECeSiR | MRS ER = 3 precipitation variable
I”NIIII o .-" e SUSRRS SRRl TESERE T A f P P

= 5 Scanning Electron

2

3

2- i

1+ .

0-
1.0+ i [ =
051 Corr b : s . i ] .
00- % 1|||.I|I|J YISE| LIRB | s e Microscope measurements
10 _ o : = = Ave. length, width, height, etc. of
0.5- Conﬂl | * . . L ] - - : . . . . .

] . IR - ot article size distributions
%% nag| '0718 Ildﬁhl i ik =; R % P
-].:ﬁ: I ; ¥ . | : iy - ¥ N L] H H
05T Come || Coret || Core TR e " Mostly weak relationships
051 053 | 10563 .0-632 ! | ol et 8 between factors and responses
1.0+ | " l T .
051 Cor: || Corr: || Cor: || Com: ‘ | fhiten | Sastani ) sl g = Strong correlations between
05+ 0.735 || -0.586 || 0337 | 0311 wes . 4
1o | I i -8 responses
e - : . - S—
057 Corr: || Cormr: || Cort: || Com: || Corr: AuEEE |5 - Py
531 0393 || -0.413 ||-0.0978 | |-0.0509 | 0.391 I|| || 1} "-‘"“ e 18 F.)Oor predictive performance
Lo ; — likely
g-g: Corr: || Corr: || Cort: || Corr: || Corr: || Corr: "l . L
031 012 || 0503 || -0361 || -0.174 || 0.0988 | | 0.023 “ | ool | = Shows in large variation of
-1.0= | | . "
05 o | [corm || Com. || Come || Gore: || Come: || Com . performance between several
0357 0406 || -0681 || 0.584 || 0607 | 0.394 |-00259 D.000708 | | il | yI¥ methods

‘ ééﬁéﬁ%ééﬂéﬁﬂéhﬁ%ﬁéb éﬁéﬁﬁéﬂ‘l&‘ 'N-:Ib éﬁ%ﬁéﬁé "é?“-é:ﬂ&;'-’é;‘é-é éﬁéé;‘ﬁ;‘é'\%bﬁé Gr::‘é-‘é éﬁ;‘ é}éﬂéb

Bume)_/, G A. and Smith, P. K. (1984), “Contolled PuO.Particle Size from Pu(lll) Oxalate
?::ﬂ.p:ea;?gavannah RiverLaboratory Technical Report DP-1689. 3 0



Large Variation between methods @&

RMSE of Predictions

Precipitation Variable
@ HNOy

® P

@ Temperature

Methods

Classical and Bayesian
linear models, PCR, PLSR

Observations

Prior mean (i.e. no
modeling) predictions do
well.

Best performing method
(lowest RMSE) is not
consistent across
precipitation variables.




Large Variation between methods @&

Predictions for a single holdout

Marginal posterior of HNO; Marginal posterior of Pu Sample
T I 0.8 : | .
o751 | 1. | | Observations
2 e | e | I . .
: o1 | E o ' = Multimodal posteriors
0254 | N . L. . .
; e oo = lLarge variation in point
0.001 —= . 0.0 — . ! .
SO N estimates
h!llargipal poste.rior of Tgmpt:lrature - m Bottom Iine:
06 ) forwand full = No agreement between
/' MAP full .
B oa | forwand step various methods
§ : ste . .
S L O;L;P P = Predictions are ambiguous
| PLSR = Toimprove prediction
0.0 T T Main Effects
: Temp;’mm : = Search for a better set of

responses
Figure 8: Marginal posteriors of each of the precipitation parameters. Predictions under each of the other

models are indicated by points along the horizontal axis. The vertical dashed lines denote the range of the = Collect more data
uniform prior distribution.
— mostly one-factor-at-a-

time with many levels
— fine for original purpose
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What if...responses were better ) .

Stronger relationships, less correlation Results in more agreement between the
between responses methods
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Down-selecting a set of Responses @

= Strategy to down-select an informative/discriminating subset of responses
among a candidate set
= Responses can yield accurate, precise, and unconfounded predictions of the factors
= Main ldea
= Estimate prediction variance given a set of responses
= Choose a set with a

= reasonable number of responses
= small prediction variance.
= Depends on an assumed ‘forward model’ for each of g responses related
to p causal factors

Yi=f(B;X)+€, =12 ..,q

Y; — it" response, 5; — model parameters, X — factors, €; — mean zero error

37
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Predicting X: Least Squares Accounting for Errors @ ke

Estimate each model: Y; ~ fi(f;X),i=1,..,q

-
A new observed multivariate response (Y* = (Yl*, . Y;) ) is used to predict unknown
levels of factors X*

Yi* = fl(IBUX*) + E;

Find an “optimal” solution X* such that ¥* = ¥{" ,i = 1, ..., q where ¥;* = f;(8;, X*)
Prediction error at candidate solution X: d; = ¥; — ;" where ¥; = f;(f;, X)

X* = argminy DTV1D

D = (dl, ...,dq)T, V = cov(D) (function of X)

Solved iteratively — requires f3;, initial X, and V




Accounting for Errors using V UL

*= To estimate V first decompose d;:
di =Y =Y = fi(BuX) — fi(Bu X*) — €] =
Ai + w; — Elik
i =fi(BuX) - fi(B,X) and  w; = f;(Bi, X) — fi(B X )
= Interpretation of components of d;
= A = f;(B, X) — fi(Bi, X): error due to uncertainty in model parameters

" w; = f;(Bi, X) — f;(Bi, X*) : error due to uncertainty in the candidate solution X
= Assuming properly specified models and unbiased solutions: E(d;) = 0 and

V:=cov(D) = V3(X) + Vo (X) + 2covy (X) + V2

= V,, V., -first order approximations, I - use residuals
= Simplifying assumptions — each component diagonal, covariance 0.
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Variance-Covariance of Prediction @&=.

Assume forward models are
1. Continuous functions of the factors

2. Not highly non-linear
= First-order linear approximation to Y;" = f;(f;, X*) near X~

Vi = fi(Bu X)) = fi(B X*) + X5_1 11 (X7 ) (K] — X}'), where J;;(X}) = aixjﬁ(ﬁi?xf)-

" Local linear regression of Y* on fij (X™*) leads to an estimate of the covariance
of X*

A ~ A~ Ay A _1 A ~ ~ A
Cee = (JTE)PY(RY)) where]ij(X*)=aixjﬁ-(Bi;X*).

= Multivariate response is
* Informative if diagonal elements are sufficiently small
= Discriminating if the off diagonal elements are sufficiently small

= Covariance depends on location in the design space
40
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Synthetic Example: 16 Response Surfaces

Goal: Choose a subset of the 16 response surfaces that is informative (small prediction
variance) and discriminating (not redundant) for prediction of X; and X,

16 Response surfaces
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Prediction Variance ) 2=

= Analytical results using Cg+ = (]T(X*)V_lj()?*))_l

= Two candidate sets of responses: S = {1,2,...,16}and S =
{9,10,11,12}

S=1{12,..,16} §=1{910,11,12}

0.014

scale
X

0.010

0.006

. - -1, -0 . - ER -0, 0.0 X ER -0, 0.0
x4 *q X1 X4

= Value depends on X*. Smaller standard deviation across design space when using all 16
responses

= Relative increase using just four responses is small across the design space




Average Prediction Variance =

Subset \/ Varg,, X 1 \/ Vargyg XE

7,8 0.0286 0.0286 ~
E—
{9,10,11,12} 0.0121 0.0121 ~ 1.6x larger for % of

responsces

= Set{9,10,11,12}is a good choice for prediction across the space of interest if
constraints exist in obtaining new measurements

= Responses in this set complement each other well —i.e. steep contours are present in
one or more of the responses throughout the range of interest

= |deal combination: responses with strong difference across input space, and several
responses with different shaped relationships
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