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Outline

 Accounting for missing time/space histories in marked point-
process models

 Inverse prediction for nuclear forensics applications
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Point-Process Examples
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Tweets by location shown for the 
four hours before, the four hours 
during, and the four hours after 
the Paris attacks on 11/13/2015.

All forest fires in Bridger-Teton 
National Forest from 1992-
2013 

Simulated – with missing 
interval

Tweets 
during the 
2014 World

Cup

Terrorism 
events from 
GTD

Common Theme – Clustering of points in space and time



Motivation
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Many surveillance 
applications require human 
interaction to interpret 
events

Exploitation elusive – large 
data sets with missing time 
(or space) histories

• Seismic sensors 
down 

• Missing records of 
terrorism events

Simulated temporal point processes with sensors 
down from 20 to 40 seconds



Point Processes with Missing Data
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Can we model and correlate 
events that happen in a self-
exciting process with missing 
time histories?

Self-Exciting? Events cluster 
in time and space (a.k.a. 
Hawkes process)

Simulated temporal point processes with 
sensors down from 20 to 40 seconds



Bayesian Approach to Missing Data

 Observed event times        , parameters  
 Missing Data              = latent parameters
 Want the posterior:

 Two Steps in Gibbs Sampler  of 

6

Complete-data posterior – either using branching 
structure or conditional intensity   

Missing data step – propose missing data, 
accept/reject

(With implicit conditioning on known unobserved interval(s))



1. Complete-Data Hawkes Process 
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 A temporal point process           is characterized by its 
conditional intensity

 Simplified ‘Hawkes’ process form with exponential decay:

 Parameters:

 - Immigrant Intensity 

 - Total offspring intensity

 - Normalized offspring intensity

In general:



1. Complete Data Likelihood
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 Observed data                                     on     

 Known as the ‘conditional intensity formulation’ of likelihood 

 MLE is numerically unstable (Veen and Schoenberg 2008)

 Rasmussen (2013): Complete-data Bayesian models via MCMC



2. Missing Data Step
 Assume [��, ��] is the unobserved interval (WLOG)

 Proposal for missing data 
 Conditional distribution of data given history up to time ��

 Simulated using thinning method developed by (Ogata 1981) 

 MH ratio for missing data
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- current missing data

- proposed missing data

Current, proposed data up to time



Simulated Results
 Complete-data posterior: 

 Likelihood known,  specify priors, apply MH-within-Gibbs
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 Augment with missing data step
 Efficiency gains by considering the branching structure of the process 

(Rasmussen 2013)

Truth/Posterior MeansObserved/Complete



Branching Structure
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Depiction of 
Branching 
Structure with 2 
parents

t

1. The parents follow a Poisson process with intensity �
2. Each parent generates a cluster,      , where the clusters are 

assumed to be independent 
3. A cluster       consists of points of offspring with the following structure: 

Generation 0 consists of the parents. Recursively, each     in generation �
generates offspring of generation � + 1 from a Poisson process with 
intensity function

4. The process, is the union of all the clusters 



MCMC with Branching Structure

 Let                        denote the branching structure
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means        is a parent 

means        is an offspring of  

 Partition the arrival times

 ‘Cluster process formulation’ of likelihood



MCMC with Branching Structure

 All full conditionals now include conditioning on branching 
structure

 Include a step to sample the branching structure: 
 Assume uniform prior on branching structure
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 Advantages:
 Reduced likelihood computational burden in MH ratios

 Inference on the latent branching structure (like missing data)

 Numerical stability of likelihood (Veen and Schoenberg 2008)

 More efficient convergence



Simulated Results

 Posterior given complete data: 
 Likelihood known,  specify priors, apply MH-within-Gibbs
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Using conditional intensity formulation Using cluster process formulation

Truth/Posterior MeansTruth/Posterior Means



Ignore missing data?
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 Bias posteriors (especially for the mean) if missing data is ignored (Orange)

 Larger uncertainty with missing data compared to complete data



Global Terrorism Database
 The Global Terrorism Database (2017) (GTD) is an open-source database 

including information on terrorism events around the world from 1970-2015 

 Look at 1990-1997 in Columbia - multiple problems with guerrillas, 
paramilitaries, and narcotics 

 The database is missing records for the entire year of 1993 
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• A partial recovery of 21 events 
during 1993 is available (green)

• Safe to assume there were 
many more events 



Global Terrorism Database
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 Parameter estimates accounting for missing data increase, 
number of estimated events on order of those recovered 
in the data set 

 Number of events in 1993

 95% CI: (69,201)

 Slightly below database’s 
estimate of 225 events



NUCLEAR FORENSICS RESEARCH
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Nuclear Forensics
 U.S. Government is conducting research in nuclear forensics

 Two main objectives
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Stone, Richard. Science 355 (6328), 897.

Attribute interdicted material to a source. 
E.g. Understand how it was produced

Understand the detonation device

C. Anderson-Cook et al. / Chemometrics and Intelligent Laboratory Systems 149 (2015) 107–117 



Attribution of Material
 Mining of historical production databases

 Mostly U.S., limited variation, missing data

 Machine learning – where was each piece of material produced?

 New Experiments
 How do variations in inputs affect outputs? Production data doesn’t 

help much.

 DOE for inverse prediction?

 Inverse prediction methods

20

Production

Inverse Prediction Problem



Pu Signatures Project
 Objective: 

 Produce Pu oxalate, measure characteristics, predict processing 
conditions

21

Example: Pu Signatures project – production of Pu(III) oxalate



Experimental Design
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Representation of Design: 6 factors, 2 separate designs, some settings not feasible

 Little/no research for inverse problem

 Philosophy: Span factor space of interest, allow for 
accurate forward models, provide rich training data set 
for direct inverse models 
 I-optimality, considering span, replication, feasibility



Approaches for Inverse Modeling

 Causal Modeling Approach

 Forward models

�� = �� ��, ��, … , ��

 ‘Invert’ using new signature to 
“predict” factor values
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Factors = Processing conditions: ��, ��, …,��

Responses = Measurements of processed material:  ��, ��, …,��

Signature = Complete set of responses, � ={��, ��, …, ��}

Inverse “Soft” Modeling Approach

Build supervised learning models  
�� = �� �

Predict value of jth factor directly

���
∗ = �� �∗

C. Anderson-Cook et al. / Chemometrics and Intelligent Laboratory Systems 149 (2015) 107–117 

Example: classical – minimize an objective function

Example: Bayesian – posterior for �∗



Inverse Prediction Research

Two Main Objectives (so far)
1. Down-select a set of responses

 Could take many measurements

 Costly, time-consuming (after all, it’s radioactive material)

 Limited amount of material? We don’t know what we’ll get

 Want the most informative/discriminating set of responses

2. Confidence in predictions
 Idea is to inform criminal investigations

 Large number of ways to produce material – training data is limited

 How can we tell if the predictions will be informative in an actual 
interdiction?

24



Down-selecting a set of Responses

 Strategy to down-select an informative/discriminating subset 
of responses among a candidate set
 Responses can yield accurate, precise, and unconfounded predictions of the 

factors

 High level idea (Details if time)
 Fit forward models 

 Need to estimate �∗ given new �∗

 Swith role of � and � using local linearity to estimate prediction 
variance �(�)

 Choose a set with a

 reasonable number of responses

 small prediction variance across space of interest.

�� = �� ��; � + �� , � = 1, 2, … , �
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Glass Composition Example
 Study to investigate how glass properties varied as a function of composition 

 Constituents are mole ratios: X� = ����/����, �� = ���/����,  �� = �����/����

 Goal: Predict constituents based on six glass properties (� = 1, … , 6) 

 Simple linear models: ��� = ���� + ������ + ������ + ������

 Best forward models (using ��) are of density and refraction
 Don’t depend on Na�O
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Property: � = 1, … , 6 ��� ��� (����) ��� (��0) ��� ����� ��� ��

1. Coeff. of Thermal Expansion 156 (6) 71(10) ---- -217(31) 3.1 0.86

2. Softening Temperature 393(16) -105(25) ---- 695(63) 5.7 0.93

3. Glass Transition Temperature 375(15) -105(24) ---- 412(66) 6.4 0.82

4. Crystallization Temperature 571(29) -220(489) ---- 710(147) 14.7 0.74

5. Density 2.5(0.02) ---- 1.1(0.05) 0.5(0.12) 0.01 0.97

6. Refraction 1.5(0.003) 0.01(0.004) 0.08(0.005) 0.1(0.012) 0.001 0.97



Prediction of Glass Composition
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 Good for prediction ��0 and �����, 
not as good for ���0

 Strongest models don’t depend on 
���0

 Intuition: need strong forward 
models for inverse prediction

 Density is responsible for the precise 
predictions of ��� – Barium is very 
dense compared to other constituents



Average Prediction Variance
 Switch roles: �∗ − ��� = Β� �∗

 Estimated prediction variance: Β��� ��Β�
��

- Can be (approximately) generalized 
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Subset
������(��)

(����)

������(��)

(���)

������(��)

(�����)

All Responses 0.08 0.013 0.018

Excluding
Density

0.08 0.02 0.019

Excluding 
Refraction 0.08 0.013 0.019

 Excluding density results in ~1.5 times increase in the root prediction variance of 
��

 Multivariate response is less informative for predicting �� if density is excluded

 Excluding refraction is not as detrimental – despite a good forward model 
(redundancy)



Confidence in Predictions
 Idea is to inform criminal investigations

 Large number of ways to produce material – training data is 
limited

 How can we tell if the predictions we make trained on the 
data we have will be informative in an actual interdiction?
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Main Idea 

 Try many methods

 Don’t just use the best one – but look for consistency

 Consistency builds confidence predictions are robust to the 
various assumptions of each method



Pu Production Data 
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SEM measurements Precipitation variables (factors)

Burney, G. A. and Smith, P. K. (1984), “Contolled PuO2 Particle Size from Pu(III) Oxalate 
Precipitation,” 
Tech. rep., Savannah RiverLaboratory Technical Report DP-1689.

 Mostly weak relationships 
between factors and responses

 Strong correlations between 
responses

 Poor predictive performance 
likely

 Shows in large variation of 
performance between several 
methods

Historical Pu production data

 3 precipitation variable

 5 Scanning Electron 
Microscope measurements
 Ave. length, width, height, etc. of 

particle size distributions



Large Variation between methods
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Methods

 Classical and Bayesian 
linear models, PCR, PLSR

Observations

 Prior mean (i.e. no 
modeling) predictions do 
well. 

 Best performing method 
(lowest RMSE) is not 
consistent across 
precipitation variables. 



Large Variation between methods

32

Predictions for a single holdout 
sample

Observations

 Multimodal posteriors

 Large variation in point 
estimates

 Bottom line:
 No agreement between 

various methods

 Predictions are ambiguous

 To improve prediction

 Search for a better set of 
responses

 Collect more data 

– mostly one-factor-at-a-
time with many levels

– fine for original purpose



What if…responses were better
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Stronger relationships, less correlation 
between responses

Results in more agreement between the 
methods



Collaborators

 Point Process with missing Data
 PI: J. Derek Tucker, Lyndsay Shand, Jonathan Lane, Kathy Simonson, 

John Rowe

 Nuclear Forensics
 Christine Anderson-Cook, Adah Zhang, Edward Thomas
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Down-selecting a set of Responses

 Strategy to down-select an informative/discriminating subset of responses 
among a candidate set
 Responses can yield accurate, precise, and unconfounded predictions of the factors

 Main Idea 

 Estimate prediction variance given a set of responses

 Choose a set with a

 reasonable number of responses

 small prediction variance.

 Depends on an assumed ‘forward model’ for each of � responses related 
to � causal factors

�� = �� ��; � + �� , � = 1, 2, … , �

�� – ��� response, �� – model parameters, � – factors, �� – mean zero error 
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Predicting �: Least Squares Accounting for Errors 

 Estimate each model:   �� ≈ �� ���; � , � = 1, … , �

 A new observed multivariate response (�∗ = ��
∗, … , ��

∗ �
) is used to predict unknown 

levels of factors �∗

 Find an “optimal” solution ��∗ such that ���
∗ ≈ ��

∗ , � = 1, … , � where ���
∗ = �� ��� , ��∗

 Prediction error at candidate solution ��:   �� = ��
� − ��

∗ where ��� = �� ��� , ��

 Solved iteratively – requires ���, initial ��, and ��

��
∗ = �� �� , �∗ + ��

∗

�� ∗ = argmin� ������

� = ��, … , ��
�

,   � = cov(�) (function of ��)
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Accounting for Errors using 

 To estimate � first decompose ��:

 Interpretation of components of ��

 �� = �� ��� , �� − �� �� , �� : error due to uncertainty in model parameters

 �� = �� �� , �� − ��(�� , �∗) : error due to uncertainty in the candidate solution ��

 Assuming properly specified models and unbiased solutions:  � �� = 0 and

 ��, �� - first order approximations, �� - use residuals

 Simplifying assumptions – each component diagonal, covariance 0. 

�� = ��
� − ��

∗ = �� ��� , �� − �� ��, �∗ − ��
∗ =

�� + �� − ��
∗

�� = �� ��� , �� − �� �� , �� and �� = �� �� , �� − ��(�� , �∗)

�: = cov(�) = �� �� + �� �� + 2����� �� + ��

39



Variance-Covariance of Prediction
 Assume forward models are 

1. Continuous functions of the factors

2. Not highly non-linear

 First-order linear approximation to ��
∗ = ��(�� , �∗) near �∗

 Local linear regression of �∗ on ���� �∗ leads to an estimate of the covariance 

of ��∗

 Multivariate response is
 Informative if diagonal elements are sufficiently small

 Discriminating if the off diagonal elements are sufficiently small 

 Covariance depends on location in the design space
40

��
∗ = �� �� , �∗ ≈ �� ��; ��∗ + ∑ ��� ���

∗ ���
∗ − ��

∗�
��� ,  where ��� ���

∗ =
�

���
�� ��; ���

∗ .

����∗ = ��� ��∗ �� ���� �� ∗
��

,    where ���� ��∗ =
�

���
�� ���; �� ∗ .



Synthetic Example: 16 Response Surfaces
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Goal: Choose a subset of the 16 response surfaces that is informative (small prediction 
variance) and discriminating (not redundant) for prediction of �� and ��

1-4: peaks

5-8 : hillsides

9-12: rising ridges

13-16: saddles

16 Response surfaces 



Prediction Variance

 Analytical results using  ���� ∗ = ��� ��∗ �� ���� ��∗
��

 Two candidate sets of responses: � = {1,2, … , 16} and � =
{9,10, 11, 12}

42

� = {9,10,11,12}� = 1,2, … , 16

 Value depends on �∗. Smaller standard deviation across design space when using all 16 
responses

 Relative increase using just four responses is small across the design space



Average Prediction Variance

 Set {9,10,11,12} is a good choice for prediction across the space of interest if 
constraints exist in obtaining new measurements

 Responses in this set complement each other well – i.e. steep contours are present in 
one or more of the responses throughout the range of interest

 Ideal combination: responses with strong difference across input space, and several 
responses with different shaped relationships
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Subset ������ ���
∗ ������ ���

∗

{1,2,…,16} 0.0075 0.0075

{7,8} 0.0286 0.0286

{3,7,9,13} 0.0291 0.0154

{9,10,11,12} 0.0121 0.0121

~ 4x larger (for ���
∗)

~ 1.6x larger for ¼ of 
responses


