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Topology Optimization for Structural Design

RISK-AVERSE DESIGN OF STRUCTURES

Given volume fraction V; € (0,1), max compliance n, Q C R3,

Minimize Prob [/Q F(& x) - (U(2))(&,x)dx >n

ini
0<z<1

st [ z(x) dx < WlQ|, where U(z) = u: = — (H'(Q))? solves

P4
Forcing F(¢) —V - (E(2) : eu(&)) = F(&), in Q, as.
enfl) = %(Vu(g) +vu@ET), g s

Setup: The forcing or load F(£) on the right part
of the bracket is uncertain. Additionally, there is

an uncertain Dirichlet condition on the U(é) = g(é), on 897 aiSy
displacement at the bolt location, see g(&).

@ Uncertainty in external forces (loads) and boundary conditions.

@ Reliability formulation of the compliance objective: Compute
light-weight designs that reduce the probability of structural failure.
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Optimal Control of Thermal Fluids

RISK-AVERSE CONTROL OF DYNAMICAL MULTIPHYSICS SYSTEMS

Minimize Risk <
< 2(t) < b(t) Or

[ wx (U(z))(s,m“"a')ﬁdx)

where U(z) = u: = — (H*(2))® x L2([0, 7"") solves

) alé(f ) vBu(€) + (ue) - TIuE) + V() + 1 T()g = 0
(&) e ag(f) — U AT(E) +u(é)-VT(E) =0

Setup: The velocity field and temperature at the inlet I}, are a.s and V ‘u — 0 in Q x [0 Tﬁnal Wlth BCS
time dependent and uncertain, see ug(&, t) and To(&, t). A e (5) ' [ I ]‘

time dependent temperature control z(t) is applied on the top _ _ ) final
and bottom boundaries, [c and Iy, to create thermal flow u=u({, t) and T = To(&, t) on iy x [0, 7], etc.,

counteracting the vortex in the recirculation zone Q.

and heat-flux control z(t) = z satisfying

oT(€)
on

h(z—T(&)) on Ty and lc.

@ Uncertainty in the velocity field and temperature at the inlet.

@ A thermal fluid system with time-dependent temperature control.
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@ Function-space optimization of PDEs with random inputs.

Large-scale numerical optimization.

Large-dimensional spaces of uncertain parameters.

o Risk functions: mathematics, computational cost, usefulness.

Nonsmooth objective functions and constraints.

@ Time consistency for optimal control of dynamical systems.
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Challenges

Function-space optimization of PDEs with random inputs.
Large-scale numerical optimization.

Large-dimensional spaces of uncertain parameters.

Risk functions: mathematics, computational cost, usefulness.
Nonsmooth objective functions and constraints.

Time consistency for optimal control of dynamical systems.

Identify a computational core and discuss algorithms . ..
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Challenges

@ Function-space optimization of PDEs with random inputs.
o Large-scale numerical optimization.

o Large-dimensional spaces of uncertain parameters.

@ Risk functions: mathematics, computational cost, usefulness.
@ Nonsmooth objective functions and constraints.

@ Time consistency for optimal control of dynamical systems.

% ldentify a computational core and discuss algorithms . ..
for nonlinear nonconvex constraints and objective functions.
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Full space and Reduced space

uertT),iznez {R(JF(u,z:€)) + 0(2)}

min {R(Jr(5(2:€), €)) + p(2)}
subject to c(u,z;£) =0 a.s.

a.s.: almost surely
Probability Space: (Q, F,P) where F C2% and P : F — [0,1]
Uncertain Inputs: §:Q — = where Z:=¢(Q2) CR™
Random Variable Space: X is a space of random variables
Deterministic State Space: U is a Hilbert space
Control Space: Z is a Hilbert space (deterministic)
Numerical Surrogate: R:X —RU{c0}
Uncertain Objectives: Jr:UXx=Z=2 X, JF:UXZXx=Z—= X
Random Field PDE Solution: S:Z x = — U with ¢(5(2),z;£) =0 as.
Control Penalty: p:Z—>RU{c0}

Nl . Ricea Algoithms for PDE-Constrained Optimization Under Uncertainty 6
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Modeling Risk

What is risk?
In our optimization problems, Jr(5(z;§), &) and Jr(u, z; £) are risks!

We cannot directly minimize Jz and Jr. Range space: random variables!

We must quantify, i.e., scalarize risk.

o Risk-Neutral Stochastic Programming: Minimize on average
R(X) =E[X].
@ Risk-Averse Stochastic Programming: Model risk preference
R(X) = E[X] + cE[(X — E[X])2]"/%.
@ Probabilistic Optimization: Minimize the probability of loss
R(X) =P(X > 7).
@ Stochastic Orders: Model risk preference with a benchmark Y
P(X <x)<P(Y<x) VxeR
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Measuring Risk

Optimized Certainty Equivalents (Ben Tal & Teboulle, 2007, Math. Fin.)

R(X) = inf{t +E[v(X — )]}

where v : R — R is a convex regret function that satisfies

v(0) =0, v(x)>x Vx=#0.

A functional H : X — RU {oco} is a coherent measure of risk if
@ Subadditivity: H(X + X') < H(X) + H(X').
@ Monotonicity: X > X' ae. = H(X) > H(X).
@ Translation Equivariance: H(X +t) =H(X)+t, VteR.
@ Positive Homogeneity: H(tX) = tH(X), Vt>O0.

Properties: R is convex and translation equivariant.

R is positive homogeneous <> v is piecewise linear with kink at 0
R is monotonic <= v is nondecreasing
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Risk Measure Examples

Mean-Plus-Variance: Not monotonic

R(X) = E[X] + cE[|X — E[X]*]

v(x) = x + o

Conditional value-at-risk: Coherent, not diff’ble

Entropic Risk: Not coherent, derivative not Lipschitz

R(X) = ¢ ' log E[exp(cX)]
v(x) = (exp(cx) —1)/c
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:
Risk Measure Examples

Mean-Plus-Variance: Not monotonic
R(X) = E[X] + cE[|X — E[X]]
v(x) = x + o’
Smoothed CVaR: Not positive homogeneous

R(X) = inf{t +E[v(X - )]}

=2 if x<—¢
v(x) = x4 x if x € (—67 le_ﬁﬁ)

B2 ; B

ﬁ (X - 2(1—B)> ifx > 15

- _— N v(x)a
Entropic Risk: Not coherent, derivative not Lipschitz
R(X) = ¢ ' log E[exp(cX)] L
v(x) = (exp(ex) — 1)/c i X
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Minimizing Expectation

is at the core of minimizing many useful risk measures.
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Minimizing Expectation
is at the core of minimizing many useful risk measures.

and key for minimizing smooth approximations of
nonsmooth risk measures.
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Minimizing Expectation
is at the core of minimizing many useful risk measures.

and key for minimizing smooth approximations of
nonsmooth risk measures.

and so for scalable computations we consider:

i JF u, z; z
it (B, 56) + p(2)} mip {ECn(S(:6), ) + o(2)}

subject to c(u,z;£) =0 as.
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Minimizing Expectation
. is at the core of minimizing many useful risk measures.

. and key for minimizing smooth approximations of
nonsmooth risk measures.

. and so for scalable computations we consider:

i JF u, z; z
i (BCR(, Z 6]+ (=)} [ min {E(Jr(S(2:€), ) + p(2)} ]

subject to c(u,z;£) =0 a.s.

... and generalize to solving smooth NLPs:

min J(x) Telg J(z)

xeX:={UxXZxZ}

subject to ¢(x) =0

UNCONSTRAINED
MINIMIZATION

CONSTRAINED MINIMIZATION
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Trust Regions for Unconstrained NLPs

Given: z, mo(s) = J(zo+s), Jo~ T, Ao >0, and gtol > 0.
While ||[Vmi(s)||z > gtol

© Model Update: Choose a new mi(s) = J(zx + s). < Adaptivity

© Step Computation: Approximate a solution, s, to the subproblem

min my(s) subject to ||s]|z < Ag.
S€Z

© Objective Update: Choose a new Ji(z) = J(z). < Adaptivity

© Step Acceptance: Compute

_ Ti(ze) — Tz + Sk)_

mic(0) — mu(sk)
If px > n € (0,1), then zx41 = zk + sk else zky1 = z«.

© Trust Region Update: Choose a new trust region radius, Ax1.

EndWhile
Sandia
National  D. Ridzal Algorithms for PDE-Constrained Optimization Under Uncertainty 11
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Inexact Gradients and Objective Functions
Kouri, Heinkenschloss, Ridzal, van Bloemen Waanders, 2014, SISC

Inexact Gradients
There exists ¢ > 0 independent of k such that

[Vm(0) = VI (2)llz < cmin{[|Vmi(0)l|z, Ax}
(Carter 1989, Heinkenschloss and Vicente 2001).

Inexact Objective Functions
There exists K > 0, w € (0,1), and 6,(z,s) — 0 as r — 0 such that

(T (2) = T (2 + s)) — (T(2k) — Ti(z + sk))| < KO, (2, sK)
Or (2, s)* < nmin {(mk(0) — mi(sk)), rc}-

Here, n > 0 is tied to algorithmic parameters and limy_, o rx = 0.
(Carter 1989, Ziems and Ulbrich 2013).
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Inexact Gradients and Objective Functions
Kouri, Heinkenschloss, Ridzal, van Bloemen Waanders, 2014, SISC

Inexact Gradients
There exists ¢ > 0 independent of k such that

[Vm(0) = VI (2)llz < cmin{[|Vmi(0)l|z, Ax}
(Carter 1989, Heinkenschloss and Vicente 2001).

Inexact Objective Functions
There exists K > 0, w € (0,1), and 6,(z,s) — 0 as r — 0 such that

(T (zx) — T (2 + sk)) — (Te(zx) — Ti(z + sk))| < KOr, (zx, sk)
Or, (2k, 56)° < mmin {(mi(0) — m(s«)), r} -
Here, n > 0 is tied to algorithmic parameters and limy_, o rx = 0.

(Carter 1989, Ziems and Ulbrich 2013).

@ Cannot compute J(z«) and V.J (2x).
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Inexact Gradients and Objective Functions
Kouri, Heinkenschloss, Ridzal, van Bloemen Waanders, 2014, SISC

Inexact Gradients
There exists ¢ > 0 independent of k such that

[Vm(0) = VI (2)llz < cmin{[|Vmi(0)l|z, Ax}
(Carter 1989, Heinkenschloss and Vicente 2001).

Inexact Objective Functions
There exists K > 0, w € (0,1), and 6,(z,s) — 0 as r — 0 such that

(T (2) = T (2 + s)) — (T(2k) — Ti(z + sk))| < KO, (2, sK)
Or (2, s)* < nmin {(mk(0) — mi(sk)), rc}-

Here, n > 0 is tied to algorithmic parameters and limy_, o rx = 0.
(Carter 1989, Ziems and Ulbrich 2013).

@ Cannot compute J(z«) and V.J (2x).

@ Control errors using dimension-adaptive sparse grids, by estimating
them on a forward neighborhood of a current index set.
Sandia
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Adaptive sparse grids for the gradient

@ Admissible index set Zf C N™ and quadrature approximation of

J(2) = E[Jp(z:)], ie., Trs(2) = Yiezs (87 @ -+ ® 8 [ Jr(z:€) |-
o [[Sigzs(df @+ @ MV O, < cmin {IVTzs (212, A}

Initialization: Seti=(1,...,1), A= {i}, O =0, g = (6} ® -+ ® §M)[VIr(z;: €)] and
B =0i=|gllz, g=g, and TOL = c min{||g||z, Ak}.
While 5 > TOL
@ Select i € A corresponding to the largest 5;
@ Set A« A\ {i} and O + O U {i}
e Update the error indicator 8 <+ 8 — 5
o For{=1,...,m
@ Setj=i+eg
@ If O U {j} is admissible
Set A + AU {j}
Set gy = (5} @ -+ - ® &M)[VIr(2k: €)]
© Set fi = |lgllz
@ Update the gradient approximation g < g + gj
(5]
(6]

(-]

Update the error indicator 3 < 8 + f3;
Update the stopping tolerance TOL = ¢ min{||g||z, A}

© Endif
© EndFor
EndWhile
Set Z; = AU O and Vmy(0) = g.
Sandia
National . Ridzal Algorithms for PDE-Constrained Optimization Under Uncertainty 13

Laboratories



m Motivation Formulations Risk Algorithms Software Numerical results
Adaptive sparse grids for the objective

o | Yigrp (67 ® - ® Oim)[Jr(zk + 5i €) — Jr(2k: )| = b

Intialization: Seti=(1,...,1), A= {i}, © = 0, TOL = (n min{pred,, n })/*,
O, = 19;~: (6;1 Q- ® 6;&/’)[JR(zk + sk &) — Jr(zk; €)] and credy = V.
While |6| > TOL

@ Select i € A corresponding to the largest |9;]

@ Set A« A\ {i} and O + O U {i}

e Update the error indicator ék — O — O

Q@ For¢=1,....m
@ Setj=i+es
@ If O U {j} is admissible
@ Set A« AU{j}
@ Set 9 = (51 ® --- ® 8 Un(2e + 54i €) — Jrlzii €)]
© Update the computed reduction credy <— credi + ;
@ Update the error indicator 6y < 0, + ¥;
© EndIf
© EndFor

EndWhile
Return Zp = AU O and credj.

Sandia
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Trust Regions for Constrained NLPs
Solve equality-constrained optimization problem:

min J(x) subject to c(x)=0
xeX

Define Lagrangian functional L: X x C — R:
Lx, A) = J(x) + (A e(x))c

If regular point x, is a local solution of the NLP, then there exists a
A« € C satisfying the first-order necessary optimality conditions:

Vid (%) + cx(x:)* A = 0
c(x)=0

Solve a sequence of nonconvex quadratic trust-region subproblems:

. 1
min §<VXXL(X/<, Ak)S, S)x + (ViLl(Xic, M), $)x + L(xic, Ak)
&

st lx)s+cla) =0, |slx < Ak

Possible incompatibility of constraints: composite-step approach.
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Composite-step Approach for the Solution
of the Trust-region Subproblem

ex(xk)s +c(x) =0

@ Trust-region step:
Sk = Nk + t

@ Quasi-normal step ny:

reduces linear infeasibility

[r7n€i)rg [lex(xk)n + C(Xk)||2C
s.t. [[nlx < CAk

o Tangential step t;:

improves optimality while
staying in the null space of
the linearized constraints

. 1
min §<VXXL(XI<7 At + mi)s t 4+ i) x 4+ (Vak (3, Ak)s t+ ni)x + L(xks Ak)

s.t. Cx(Xk)t':O7 ||t+nk||x < Ag
Omojokun (1989), Byrd, Hribar, Nocedal (1997), Dennis, El-Alem, Maciel (1997) £
Sandia
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Matrix-free Composite-step Algorithm

Composite step: s = ni + ¢

& (x6)s + c(x¢) = 0 : i B

© Compute quasi-normal step ny
using Powell’s dogleg method,
satisfying inexactness conditions.

@ Solve tangential subproblem for
with projected Steihaug-Toint CG,
satisfying inexactness conditions.

© Restore linearized feasibility,
yielding tangential step t.

Update Lagrange multipliers Ay1.

© 0

Evaluate progress.

Sandia
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Matrix-free Composite-step Algorithm

Composite step: s, = ny + tx

Sx(xk)s + c(x) =0

© Compute quasi-normal step ny
using Powell’s dogleg method,
satisfying inexactness conditions.

@ Solve tangential subproblem for
with projected Steihaug-Toint CG,
satisfying inexactness conditions.

© Restore linearized feasibility,
yielding tangential step t.

Update Lagrange multipliers Axy1.

© 0

Evaluate progress.

Inexactness is interpreted in the
context of linear systems, and
Ay their iterative solution.

Heinkenschloss, Ridzal, SIAM J. Opt. (2014)
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-
Linear Systems

. are all augmented constraint systems

I c(xk)* yt bt el
Y 2 ) +<e2

Cx(Xk) 0 y b?

@ The size of (e! €?) is governed by various model reduction
conditions, i.e., the progress of the optimization algorithm:

lellx + lle*llc < func (|Ib*[lx, 16l c, ly*llx, Ak, €)

@ Preconditioning for X = U x Z with ¢ (xx) = Cx = [C, G

*
ly 0 C Iy 0 0
* —
0 Iz ¢| — P=|0 I 0
—x ~—1
C, G O 0 0 C*C;
Sandia
National D. Ridzal Algorithms for PDE-Constrained Optimization Under Uncertainty 18
Laboratories




.ﬂ‘ Motivation Formulations Risk Algorithms Software Numerical results
Semi-discretization for the Expected Value

o We approximate E[X] = |- p(£)X(£)d€ with the quadrature Eq,
Q
Eq[X] = wiX(&), with points {&1, ..., o}, weights {wa, ..., wo}.
k=1

@ Our semi-discrete optimization problem is

Q
minimize Z wixJr(uk,z) subject to c(uk,z;ék) =0, k=1,...,Q
k=1

uy,...,ug€lU, zeZ

@ Family of possible Lagrangians Lg : U? x Z x U? — R U {o0},

Q Q
L(u17 -y UQ, Z, )‘17 ceey )‘Q) = Z WkJF(Uk,Z)—f—Z Vk<)‘k7 C(uka Z;gk)>C7
k=1

k=1
governed by the choice of weights {vk},?zl. Two choices are:
— w=1k=1,..,Q, for a "finite-dimensional” view; and
— vw=wg, k=1,...,Q, for an “infinite-dimensional” view.

Sandia
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Augmented System for Minimizing Expectation
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Iy 0 0 0 w(Ch 0 0
0y 0 w(C2) 0
0 0
0 0 / U 0 0 0 VQ( CS )*
0 0 0 Iz w(CQ) w(E) vo(CR)*
%1 C ,} 0 Vi Czl 0 0 0
0 V2 C 3 0 Vo Cz2 0 0 0
0 :
0 0 .. VQ @ f‘) vQ CZQ 0 0
D. Ridzal Algorithms for PDE-Constrained Optimization Under Uncertainty 20
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Augmented System for Minimizing Expectation

Iy 0 ... 0 0 w(CL)? 0 0

0 Iy 0 0 w(C2)* ... 0

: : 0 : : : 0

0 0 ... Iy 0 0 0 . vo(Co)

0O 0 ... 0 Iz vi(CH)* w(C?)* ... v(CR)*
wCl 0 ... 0 v CL 0 0 0

0 V2C3 0 V2CZ2 0 0 0

: : -0 : : :

0 0 ...VQCL? VQCZQ 0 0

@ Applying the preconditioner P to this system is scalable, due
to the parallelization in block-diagonal operators C, and (C,)*.

o Inverses of each C/ and (C!)* are applied *very* inexactly.
u

u
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Software
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Rapid Optimization Library

@ Trilinos package for matrix-free nonlinear optimization: unconstrained,
equality-constrained, inequality-constrained, line searches, trust regions, ...
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Rapid Optimization Library

@ Trilinos package for matrix-free nonlinear optimization: unconstrained,
equality-constrained, inequality-constrained, line searches, trust regions, ...

@ Adjoint interface for simulation-based optimization — SimOpt.

Sandia
National D. Ridzal Algorithms for PDE-Constrained Optimization Under Uncertainty 21
Laboratories



d Motivation Formulations Risk Algorithms Software Numerical results
Rapid Optimization Library

@ Trilinos package for matrix-free nonlinear optimization: unconstrained,
equality-constrained, inequality-constrained, line searches, trust regions, ...

@ Adjoint interface for simulation-based optimization — SimOpt.
@ Built from ground-up for optimization under uncertainty:

o Risk modeling based on various concepts: risk neutrality, risk

aversion, buffered probability, stochastic orders.

e Utilities for statistical estimation; concept of risk quadrangle.

o Bring-your-own sampler, in addition to the default Monte Carlo.

o Interface to Dakota for sparse grids.
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Rapid Optimization Library

Trilinos package for matrix-free nonlinear optimization: unconstrained,
equality-constrained, inequality-constrained, line searches, trust regions, ...
Adjoint interface for simulation-based optimization — SimOpt.
Built from ground-up for optimization under uncertainty:

o Risk modeling based on various concepts: risk neutrality, risk

aversion, buffered probability, stochastic orders.

e Utilities for statistical estimation; concept of risk quadrangle.

o Bring-your-own sampler, in addition to the default Monte Carlo.

o Interface to Dakota for sparse grids.
If you have a (parametrized) deterministic optimization ready, turning
it into stochastic optimization amounts to flipping a few switches in
the ROL options file.

D. Ridzal Algorithms for PDE-Constrained Optimization Under Uncertainty 21
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Optimizing CVD Reactors under Uncertainty

.1 0 2
min §E [/D(V X u(z))dx] + 5 |z|” dx

Fe

where S(z) = (u(z), p(z), T(z)) solves the Boussinesq flow equations,

—v(§)V2u+ (u- V)u+Vp+n(£)Tg =0,
v

cu=0,

—k(§)AT +u-VT =0,
u—u =0,

u—u, =0,

u=0,

u=0,

-
(&) 5
T=T(¢

1(€) 3L + h(E)(z— T) =0,

ee

~

inD, as.,
inD, as.,
inD, as.,
onl;, as.,
onl,, as.,
on Ty, as.,
onlg, as.,

where I'; = [1/3,2/3] x {1}, T = ([0,1/3] U [2/3,1]) x {1}, T, = [0,1] x {0}
and I = {0,1} x [0,1]. The inflow and outflow velocities, u; and u, are
deterministic while the coefficients v, 1, k, h and T, are uncertain.

I
ro \/ ro
Comput.
domain D. D
rC I-C
My
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Optimizing CVD Reactors under Uncertainty

@ Uncertain variables:

1 100 Gr o1+ 001w
vV — = —— = —=072—F,
Re 1400y, | R 1+0.01énsa
1 5 1+ 0.01&n,3
and K= —— = e
Re Pr (1 +0.01&n41)?

where Re is the Reynolds number, Gr is the Grashof number and Pr is the Prandtl number.

@ The offset N is the total number of random variables associated with T}, and h. The
uncertainty in Tp, is modeled by the expansion

np .
To(x,€) = 140.025 > & @

k=1
The coefficient h has a similar expansion for x = 0 and for x = 1 with n; and n, terms
respectively. All & are uniformly distributed on [—1, 1].

@ The curves on the top of the computational domain schematic are the inflow and outflow
profiles of the velocity, given by

2(3—x)x ifo<x<1i
u(x) = —4(x~%)(%—x) if%<x<%
2(x—2)(1—x) if2<x<1
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Uncontrolled State

Expected values of the uncontrolled velocity field (left), pressure (middle)
and temperature (right):

Uncontrolled Velocity Uncontrolled Pressure Uncontrolled Temperature

- i

@ Finite elements on a uniform mesh of 33x33 quadrilaterals.

@ For the velocity and pressure, Q2-Q1 Taylor-Hood finite element pair;
for the temperature, Q2 finite element.

@ Sparse grids built on one-dimensional Clenshaw-Curtis quadrature.
@ Maximum sparse grid: level-3 isotropic Clenshaw-Curtis, Q = 2245 points.
@ Implemented in ROL, PDE-OPT Application Development Kit.
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Reduced Space: Sparse-grid Adaptivity

Controlled Temperature

Controlled Pressure

Controlled Velocity
A 09
01
04
0.09 08
035
0.08 07
007 i 06
025
006 | — — = 0s
005 — 02
04
004
015 -
0.03
01 -
0.02
0,05
001 .
o 0
Left Controls Right Controls
06 06
04 04
02 02
0 4
02 02
04 0.4
06 06
08 08
0 02 04 06 08 1 4 02 04 06 08 1

Optimal controls along the left vertical side wall (left image) and the right
vertical side wall (right image) of the problem domain D.
lsboratories
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Reduced Space: Sparse-grid Adaptivity

iter NAEN) IVmi(0)]| 2 Iskllz Ay cg  accept obj  grad
0 0.07457916  5.063 x 102 = 10.000 — — 1 3
1 0.07469930 5.063 x 1072  10.000 1.445 1 0 3 3
2 0.07469930  5.063 x 1072 1.445 0.361 1 0 3 3
3 0.05636707 4.875 x 1072 0.361 0.903 1 1 3 3
4 0.05636707  4.875 x 1072 0.903 0.226 1 0 3 3
5  0.04757099  2.059 x 1072 0.226 0.226 1 1 3 3
6 0.04680338  1.143 x 1072 0.226 0.226 2 1 103 117
7 0.04611002  3.468 x 1073 0.226 0.564 2 1 139 195
8 0.04511802  3.255 x 1073 0.564 1.411 2 il 117 233
9  0.04494516  1.085 x 1073 1.411 3.527 3 i 229 579
10 0.04499733 2331 x 107* 2.838 8.818 6 1 579 949
11 0.04499338  6.211 x 1075 0.967 22.045 7 1 2245 1219
12 0.04499329  1.002 x 10~° 0.127 55.113 8 1 2245 2245
13 0.04499327  7.034 x 107° 0.072 137.784 11 1 2245 2245

Iteration history for reduced-space adaptive sparse-grid approach.

@ Sequential solution, direct linear solver, single computational core.
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Reduced Space: Sparse-grid Adaptivity

Controlled Temperature

Controlled Pressure

Controlled Velocity
A 09
01
04
0.09 08
035
0.08 07
007 i 06
025
006 | — — = 0s
005 — 02
04
004
015 -
0.03
01 -
0.02
0,05
001 .
o 0
Left Controls Right Controls
06 06
04 04
02 02
0 4
02 02
04 0.4
06 06
08 08
0 02 04 06 08 1 4 02 04 06 08 1

Optimal controls along the left vertical side wall (left image) and the right
vertical side wall (right image) of the problem domain D.
lsboratories
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Full Space: Inexact Linear Solvers

Controlled Pressure Controlled Temperature

09
04
08
[T e — 035 n
kel 06
_ 025 0s
02 04
015 03
a1 02
01
oos |-
- e 0
0
4 Left Controls 9 Right Controls
05 05
0 0
05 05
1 Bl
15 15
0 02 04 06 08 1 0 02 04 06 08 1

Optimal controls along the left vertical side wall (left image) and the right
vertical side wall (right image) of the problem domain D.

Sandia
@ National D. Ridzal Algorithms for PDE-Constrained Optimization Under Uncertainty 28
Laboratories



.‘& Motivation ~ Formulations ~ Risk  Algorithms  Software Numerical results

Full Space: Inexact Linear Solvers

F-GMRES used to solve augmented systems; tol = 107,

F-GMRES used to solve “inner” linearized forward and adjoint
solves, C,; ! and C,* in the P preconditioner; tol = 10~*.

@ Non-overlapping additive Schwarz domain decomposition used to
precondition inner solves: 4 subdomains, horizontal strips.

Infinite-dimensional view of Lagrangian, vi = w.

Full fixed level-3 Clenshaw-Curtis sparse grid.
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Full Space: Inexact Linear Solvers

@ F-GMRES used to solve augmented systems; tol = 107,

@ F-GMRES used to solve “inner” linearized forward and adjoint
solves, C,; ! and C,* in the P preconditioner; tol = 10~*.

@ Non-overlapping additive Schwarz domain decomposition used to
precondition inner solves: 4 subdomains, horizontal strips.

@ Infinite-dimensional view of Lagrangian, vx = w.

o Full fixed level-3 Clenshaw-Curtis sparse grid.

@ Serrano cluster at Sandia Labs; 80 dual-socket nodes, used 36 cores
per core, i.e., 2880 cores total.

@ Cores partitioned into 720 groups, for quadrature, with 4 cores each
dedicated to iterative linear solver.

o Hierarchical parallelism enabled through ROL.
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Full Space: Inexact Linear Solvers

iter J(xk) lleC)llc IV L (s i)l x A, pcg  accept Iscalls s iters
0 0.07484675 7.820623 x 10~ 8377793 x 103  1.00 x 10* — — — —
1 0.05533699  1.661657 x 1072 3.641571 x 10~*  1.00 x 10* 11 1 16 597
2 0.03588474  3.052458 x 1073 9.338262 x 10>  1.00 x 10* 13 1 33 1292
3 0.03515891  1.017679 x 10~*  7.117806 x 107°  1.00 x 10* 20 1 56 2303
4 0.03480817  1.444319 x 10~*  2.439603 x 107>  1.00 x 10* 15 1 75 3108
5 0.03480817  1.444319 x 10~* 2439321 x 10~°> 4.08 x 10° 20 0 98 4157
6  0.03465050  2.237452 x 107°  4.364539 x 107°  3.03 x 10* 2 1 104 4438
7 0.03464773 2716452 x 107 1.042585 x 10~7  3.03 x 10! 8 1 116 4989

Iteration history for full-space approach with iterative augmented system solves.

@ About 43 F-GMRES iterations per solve; encouraging, considering
that the size of the state space is more than 30 million, and that a
fairly tight tolerance was used (107°).

@ Many improvements are possible.
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=
Conclusions

o Expectation minimization is an important computational core
for optimization under uncertainty with a variety of risk models.

@ Reduced-space trust-region methods enable adaptive sampling.

@ Full-space trust-region methods enable large-scale iterative solvers.
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o Expectation minimization is an important computational core
for optimization under uncertainty with a variety of risk models.

@ Reduced-space trust-region methods enable adaptive sampling.

@ Full-space trust-region methods enable large-scale iterative solvers.

@ Working on deploying these algorithms in structural optimization:

Mean Value Risk Neutral Buffered Prob.
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o Expectation minimization is an important computational core
for optimization under uncertainty with a variety of risk models.

@ Reduced-space trust-region methods enable adaptive sampling.

@ Full-space trust-region methods enable large-scale iterative solvers.

@ Working on deploying these algorithms in structural optimization:

Mean Value Risk Neutral Buffered Prob.

Topology changes from beam to thin shell to thick shell!
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Conclusions

o Expectation minimization is an important computational core
for optimization under uncertainty with a variety of risk models.

@ Reduced-space trust-region methods enable adaptive sampling.

@ Full-space trust-region methods enable large-scale iterative solvers.

@ Working on deploying these algorithms in structural optimization:

Mean Value Risk Neutral Buffered Prob.

Topology changes from beam to thin shell to thick shell!

@ For a deep dive, see Drew Kouri's Minitutorial M T8,
Thursday, April 19, 2:30pm-4:30pm, Grand Ballroom G.

D. Ridzal Algorithms for PDE-Constrained Optimization Under Uncertainty 31



