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Topology Optimization for Structural Design

Boundary
cond gg)

RISK-AVERSE DESIGN OF STRUCTURES

Forcing Fa')

Setup: The forcing or load F() on the right part
of the bracket is uncertain. Additionally, there is
an uncertain Dirichlet condition on the
displacement at the bolt location, see g().

Given volume fraction 1/0 E (0,1), max compliance 77, Q C

Minimize Prob [f x) • (U(z)), x) dx > ri]

s.t. z(x) dx < I/0 PI, where U(z) = u : E (I-P(1.2))3 solves

—V • (E(z) : eu(0) = F(0, in Q, a.s.

Eu(0 = 
2 
—
1
(Vu(0 Vu(OT), in Q, a.s.

u(0 = g(0 , on aci, a.s.

• Uncertainty in external forces (loads) and boundary conditions.

• Reliability formulation of the compliance objective: Compute
light-weight designs that reduce the probability of structural failure.
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Optimal Control of Thermal Fluids
RISK-AVERSE CONTROL OF DYNAMICAL MULTIPHYSICS SYSTEMS

a(t) < z(t) < b(t) O
Minimize Risk (f

R 
x (U(z)W,x,7-final)12dx

where U(z) = u : E (/-11(f2))3 x L2 ([0, Tfinai
]) solves

OW) 
viAu(e) (u(0 ' .7)1-1(0 + Vil(0 + v2 T(Og = 0at

HEAT

Setup: The velocity field and temperature at the inlet fin are
time dependent and uncertain, see un(E, t) and To(E, t). A
time dependent ternperature control z(t) is applied on the top
and bottom boundaries, íg and fh, to create thermal flow
counteracting the vortex in the recirculation zone OR.

OT(0
v3.6,7-(0 u(0 • VT(0 = 0

at

a.s., and V • u(0 = 0, in S-2 x [0,7-'1, with BCs

u = uo(, t) and T = To(, t) on 1-,n X [0, Tfinal], etc.,

and heat-flux control z(t) = z satisfying

aT(0 
= h(z — T(0) on rh and fv.

(9n

• Uncertainty in the velocity field and temperature at the inlet.

• A thermal fluid system with time-dependent temperature control.
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Challenges

fe Function-space optimization of PDEs with random inputs.

• Large-scale numerical optimization.

fa Large-dimensional spaces of uncertain parameters.

co Risk functions: mathematics, computational cost, usefulness.

• Nonsmooth objective functions and constraints.

• Time consistency for optimal control of dynamical systems.
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o Large-scale numerical optimization.

fa Large-dimensional spaces of uncertain parameters.

co Risk functions: mathematics, computational cost, usefulness.

o Nonsmooth objective functions and constraints.

• Time consistency for optimal control of dynamical systems.

* Identify a computational core and discuss algorithms ...
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Challenges

• Function-space optimization of PDEs with random inputs.

• Large-scale numerical optimization.

• Large-dimensional spaces of uncertain parameters.

• Risk functions: mathematics, computational cost, usefulness.

• Nonsmooth objective functions and constraints.

• Time consistency for optimal control of dynamical systems.

* Identify a computational core and discuss algorithms ...

for nonlinear nonconvex constraints and objective functions.
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Optimization formulations
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Full space and Reduced space

min {R,(JF(u, z; )) p(z)}
uEU,zEZ

subject to c(u, z; = 0 a.s.

a.s.:

Probability Space:

Uncertain inputs:

Random Variable Space:

Deterministic State Space:

Control Space:

Numerical Surrogate:

Uncertain Objectives:

Random Field PDE Solution:

Control Penalty:

min {R,(JR(S(z; )) Ka(z)}

almost surely

(f2, P) where C 2c) and IP : —> [0,1]

: f2 E where E := (S-2) C

X is a space of random variables

U is a Hilbert space

Z is a Hilbert space (deterministic)

R, :X-111Ufool

:UxE—> X; -IF :UxZxE—X

S:ZxE—U with c(S(z), z; = 0 a.s.

p : Z —>Ru {oo}

O
Sandia
National D. Ridzal
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From expectation to risk and back

0 Sandia
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Modeling Risk
What is risk?
In our optimization problems, JR(S(z; and JF(u, z; 0 are risks!

We cannot directly minimize JR and JF. Range space: random variables!

We must quantify, i.e., scalarize risk.

o Risk-Neutral Stochastic Programming: Minimize on average

R(X)=E[X].

• Risk-Averse Stochastic Programming: Model risk preference

R(X) = E[X] + cE[(X — E[X])+l1 P .

• Probabilistic Optimization: Minimize the probability of loss

R(X)=P(X > T).

• Stochastic Orders: Model risk preference with a benchmark Y

P(X < x) <P(Y < x) V x E

C) SandiaNational D. Ridzal Algorithms for PDE-Constrained Optimization Under Uncertainty 7
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Measuring Risk
Optimized Certainty Equivalents (Ben Tal & Teboulle, 2007, Math. Fin.)

where v : Ilg

R(X) = Irgft +E[v(X — t)])-

is a convex regret function that satisfies

v(0) = 0, v(x) > x V x O.

A functional 7-t : X —> EU fool is a coherent measure of risk if

• Subadditivity: 71(X + X') < 7-t(X) 7-t(X').

• Monotonicity: X > X' a.e. 9-l(X) > 7-t(X').

• Translation Equivariance: 71(X t) =1-t(X) t, Vt E R.

• Positive Homogeneity: 7-1(tX) = t7-1(X), Vt > O.

Properties: 7Z is convex and translation equivariant.

R is positive homogeneous <> v is piecewise linear with kink at 0
R. is monotonic <> v is nondecreasing

EjSandia
National D. Ridzal Algorithrns for PDE-Constrained Optimization Under Uncertainty 8
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Mean-Plus-Variance: Not monotonic

R(X) E[X] + cE[IX — E[X]12]

v(x) = x + cx2

Conditional value-at-risk: Coherent, not diff'ble

'R,(X) = + 1 _1 i3E[(X — t)d ]l

v(x) = 
1 

1  
(x)+

Entropic Risk: Not coherent, derivative not Lipschitz

7Z(X) = c-1 log E[exp(cX)]

v(x) = (exp(cx) — 1)/c

Risk Measure Examples
v(x)

Sandia
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Mean-Plus-Variance: Not monotonic

R(X) = E[X] cE[1X —E[X]12]

v(x) = x+ cx2

Smoothed CVaR: Not positive homogeneous

R (X) = illt +E[v(X — t)]}

v(x) — 2EX2 ± x
1 

1-0 (x 2(61°-20)

if x < —6

if x E (-6, _i%)

if x > 8010

Entropic Risk: Not coherent, derivative not Lipschitz

P. (X) = c-1 log E[exp(cX)]

v(x) = (exp(cx) — 1)/c

Risk Measure Examples
v(x)

•

V(X)...s.„

Sandia
National O. Rld.al Algorithms tor PDE-Constrained Optimisation Under Uncertainty 9
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Minimizing Expectation
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Minimizing Expectation

... is at the core of minimizing many useful risk measures.
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Minimizing Expectation

is at the core of minimizing many useful risk measures.

and key for minimizing smooth approximations of
nonsmooth risk measures.

D Sandia
National D. Ridzal Algorithms for PDE-Constrained Optimization Under Uncertainty 10
Laboratories



MotNation Formulations Risk Algorithms Software Numerical results

Minimizing Expectation

is at the core of minimizing many useful risk measures.

and key for minimizing smooth approximations of
nonsmooth risk measures.

and so for scalable computations we consider:

min {E(JR(u, z; e)) p(z)}
uE U,zE Z

subject to c(u, z; e) = 0 a.s.
min {E(JR(S(z; e), e)) p(z)}
zEZ
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Minimizing Expectation

is at the core of minimizing many useful risk measures.

and key for minimizing smooth approximations of
nonsmooth risk measures.

and so for scalable computations we consider:

min -(E(JF(u, z; e)) p(z)}
uE U,zE Z

subject to c(u, z; e) = 0 a.s.

min {E(JR(S(z; e), e)) p(z)}
zEZ

... and generalize to solving smooth NLPs:

min J(x)
xEX:={1.1><Z)<E}

subject to c(x) = 0

CONSTRAINED MINIMIZATION

Sandia
National D. Ritlzal
Laboratories

min J(z)
zEZ

UNCONSTRAINED
MINIMIZATION
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Inexact trust-region algorithms
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Trust Regions for Unconstrained NLPs

Given: zo, mo(s) J(zo + s), Jo J, Ao > 0, and gtol > O.
While 1Vmk(s)1 z > gtol

• Model Update: Choose a new mk(s):,-- j(zk + s) Adaptivity

• Step Computation: Approximate a solution, sk, to the subproblem

min mk(s) subject to
s C Z

dsdz < Ak.

Objective Update: Choose a new j(z) Adaptivity

• Step Acceptance: Compute

Pk =
mk(0) Ink(sk) •

Jk(zk) Jk(zk Sk)

lf pk > e (0, 1), then 4+1= 4+ sk else 4+1= zk
O Trust Region Update: Choose a new trust region radius, k +1

EndWhile

Sandia
National D. Ridzal Algorithms for PDE-Constrained Optimization Under Uncertainty 11
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Inexact Gradients and Objective Functions
Kouri, Heinkenschloss, Ridzal, van Bloemen Waanders, 2014, SISC

Inexact Gradients
There exists c > 0 independent of k such that

11Vmk (0) — V,7(zk)11z c minfllVink(o)Hz,AkI

(Carter 1989, Heinkenschloss and Vicente 2001).

Inexact Objective Functions
There exists K > 0, w E (0,1), and Or(z,$) 0 as r 0 such that

1(J(zk) — J(zk + sk)) — (Jk(zk) — Jk(zk + sk))1 < KOrk (zi sk)

Or, (zk, sk)w < r/ min {(mk(0) — mk(sk)), rk} •

Here, n > 0 is tied to algorithmic parameters and rk = O.
(Carter 1989, Ziems and Ulbrich 2013).

0 Sandia
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O

Inexact Gradients and Objective Functions
Kouri, Heinkenschloss, Ridzal, van Bloemen Waanders, 2014, SISC

Inexact Gradients
There exists c > 0 independent of k such that

11Vmk (0) — V,7(zk)11z c minfilVink(o)Hz,AkI

(Carter 1989, Heinkenschloss and Vicente 2001).

Inexact Objective Functions
There exists K > 0, w E (0,1), and Or(z,$) 0 as r 0 such that

1(J(zk) — J(zk + sk)) — (Jk(zk) — Jk(zk + sk))1 < KOrk (zi sk)

Or, (zk, sk)w < r/ min {(mk(0) — mk(sk)), rk} •

Here, n > 0 is tied to algorithmic parameters and rk = O.
(Carter 1989, Ziems and Ulbrich 2013).

o Cannot compute J(zk) and VJ(zk).
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Inexact Gradients and Objective Functions
Kouri, Heinkenschloss, Ridzal, van Bloemen Waanders, 2014, SISC

Inexact Gradients
There exists c > 0 independent of k such that

11Vmk(0) — VJ(zk)llz cminfllVink(o)Hz,AkI

(Carter 1989, Heinkenschloss and Vicente 2001).

Inexact Objective Functions
There exists K > 0, w e (0,1), and Or(z,$) 0 as r 0 such that

I(J(zk) — J(zk + sk)) — (Jk(zk)— Jk(zk + sk))1 < KOrk (zi SO

Or, (zk, sk)w < 77 min {(mk(0) — mk(sk)), rk} •

Here, n > 0 is tied to algorithmic parameters and rk = O.
(Carter 1989, Ziems and Ulbrich 2013).

• Cannot compute J(zk) and V,.7(zk).

• Control errors using dimension-adaptive sparse grids, by estimating
them on a forward neighborhood of a current index set.

0 Sandia
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•

Adaptive sparse grids for the gradient
• Admissible index set If c Nm and quadrature approximation of

3(z) =E[JR(z; 0], i.e., 3if (z) = EieIfW • • • 0 ,V,0[JR(z; ].

• < c min {11V..74(zk)Hz,Ak}IlEim(51 61AA44)[VJR(z; 0111z
Initialization: Set i = (1, ... , 1), A = {i}, O = 0, gi = Oil- ® • • • ® (5n[VJR(zk; 0] and

0 = A = llgillz, g = gi, and TOL = c min{ lIgIlz, AO.
While 0 > TOL

Select i e A corresponding to the largest Pi
Set ,A—A \ fil and (.9.<— OU{i}
Update the error indicator /3 <— ,3 — f3;

O For f = 1, ... , m
O Set j = i+ et
O lf O U {j} is admissible

O Set A A u DI
O Set g) = ((V 0 • • • 0 (51,779[VJR(zk i 0]

O Set A = llgillz
O Update the gradient approximation g <— g + gj
431 Update the error indicator /3 0 + A
O Update the stopping tolerance TOL = c min{ llgllzi Ak}

CI Endlf
CI) EndFor

EndWhile

Set 4 = A U O and Vmk(0) = g.

0 Sandia
National D. Ridzal Algorithms for PDE-Constrained Optimization Under Uncertainty 13
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Adaptive sparse grids for the objective

WI ® • • • ® Si,;,")[-JR(zk + sk; — JR(zk; )] = 9 k

lntialization: Set i = (1, ... ,1), A = {i}, 0 = 0, TOL = (77 min{predk, rk1)1/w,

Õk = t9i = (S1'1 0 • • • 0 6V)PR(zk + sk; — JR(zk; 0] and credk =

While Pk > TOL
• Select i E „4 corresponding to the largest 1'0;1

• Set A <— A\ and 0 U {i}

• Update the error indicator 6i, •(— Bk — 3i

• For = 1, m

• Set j = i + et

O If O U -La is admissible

• Set A t— AU ID
• Set 191 = (ail 0 • • • sig )LJR(zk + sk; — JR(zk; 01
• Update the computed reduction credk credk +1.9j

O Update the error indicator Ok •(— Bk +19)
Q Endlf

• EndFor

EndWhile

Return 4 = A U and credk.

0 Sandia
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Trust Regions for Constrained NLPs
Solve equality-constrained optimization problem:

min
x 

J(x) subject to c(x) = 0
xc 

Define Lagrangian functional L:XxCIR:

L(x, À) = J(x) + A c(x))C

If regular point x, is a local solution of the NLP, then there exists a
E C satisfying the first-order necessary optimality conditions:

V xJ(x*) + = 0

c(x*) = 0

Solve a sequence of nonconvex quadratic trust-region subproblems:

min —
2 
(VxxL(xk, Ak)s, s)x + (VxL(xk, AO, s)x + L(Xk, 

SEX
s.t. cx(xk)s+ c-(xk) = , 11.511x G Ak

Possible incompatibility of constraints: composite-step approach.

(2 Sand a
National D. Ridzal
Laboratories

Algorithms for PDE-Constrained Optimization Under Uncertainty 15



MotNation Formulations Risk Algorithms Software Numerical results

Sandia
National D. Ridzal Algorithms for PDE-Constrained Optimization Under Uncertainty 16
Laboratories

Composite-step Approach for the Solution
of the Trust-region Subproblem

• Trust-region step:

Sk = nk tk

• Quasi-normal step nk:
reduces linear infeasibility

min Ilcx(xk)n+ c(xk)11cnEX

s.t. CAk

• Tangential step tk:
improves optimality while
staying in the null space of
the linearized constraints

2
mi
X 
n -(V.L(xk,Ak)(t + nat+ nk)X+ x L(xk, 4), t nk)x L(xk, Ak)

tE 

s.t. cx(xk)t = 0, Mt+ flax Ak

ck(xk)s+ c(xk) = 0

libOmojokun (1989), Byrd, Hribar, Nocedal (1997), Dennis, El-Alem, Maciel (1997) 
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9

Matrix-free Composite-step Algorithm
Composite step: sk = n k + tk

c,(xk )t = 0

Ck()(k)s + c.(xk) 0

4) Compute quasi-normal step nk
using Powell's dogleg method,
satisfying inexactness conditions.

• Solve tangential subproblem for ik
with projected Steihaug-Toint CG,
satisfying inexactness conditions.

• Restore linearized feasibility,
yielding tangential step tk.

• Update Lagrange multipliers Ak+1.

• Evaluate progress.

Heinkenschloss, Ridzal, SIAM J. Opt. (2014)

O
Sandia
National D. Ridzal
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Matrix-free Composite-step Algorithm
Composite step: sk = n k + tk

c,(xk )t = 0

cx(xk)s + c(xk) = 0

4) Compute quasi-normal step nk
using Powell's dogleg method,
satisfying inexactness conditions.

• Solve tangential subproblem for ik
with projected Steihaug-Toint CG,
satisfying inexactness conditions.

• Restore linearized feasibility,
yielding tangential step tk.

• Update Lagrange multipliers Ak+1.

• Evaluate progress.

Inexactness is interpreted in the
context of linear systems, and
their iterative solution.

Heinkenschloss, Ridzal, SIAM J. Opt. (2014)

O
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Linear Systems

... are all augmented constraint systems

cx(xk)* y
l

cx(xk) 0 ) Y
2 bb12)

• The size of (el e2) is governed by various model reduction
conditions, i.e., the progress of the optimization algorithm:

Ilel l x + e
2
11c < func Obi lx, I b2 1 C, Ak,

el

e2

• Preconditioning for X=Ux Z with cx(xk) = Cx = CA:

/ cn 0 0

0 /z Cz P =

(/u

0 /z 0->"

\ct, 0 0 C*CiT1

ID Sandia
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Semi-discretization for the Expected Value

co We approximate E[X] = f_ p(e)X(Ock with the quadrature Ec? ,

Q
EQ [X] =

k=1

wkX(G), with points {6, ..., c;,}, weights {w3.,•••,

• Our semi-discrete optimization problem is

Q
minimize E 14/0F(Lik, z)

k=1

subject to c(uk, z; = 0, k =

• Family of possible Lagrangians LQ : UQ x Z x UQ —X U

Q Q
L(u1, tic?, z, A1, ..., Ac2) = wk-fr(uk,z)+ vk(Ak, c(uk,z; G))C,

k=1 k=1

governed by the choice of weights { vk}(2_1. Two choices are:

— vk = 1, k = 1, Q, for a "finite-dimensional" view; and

— vk = Wk, k = 1, Q, for an "infinite-dimensional" view.

Sandia
National D. Ridzal Algorithrns for PDE-Constrained Optimization Under Uncertainty 19
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Augmented System for Minimizing Expectation

lu o o o vi(CD* 0 .. . 0

0 lu 0 0 0 v2(c2)* 0

0 0

0 0 . .. lu 0 0 . . vc? ( )*
•

0 0 .. 0 ( CD* v2 ( )* .. . vc? ( )*

tvlcul

0

o

v2

*

0

o

v2C"?

0 .. . 0

0

0 0 . .. vc? vc? C? 0

Sandia
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Augmented System for Minimizing Expectation

/ 1u
0

0
lu

vi(Cul)*

v2 ( C„2 )* .. .

0 0

0 0 ... lu . . vc? (CY)*

0 0 .. 0 IZ vi(cD* v2(CD* vc2(0)*
tvlcul

0

o

v2

0

0 v2

0 ... 0

* 0 0

0 0 . .. vc? vqCQ 0 0 0

• Applying the preconditioner P to this system is scalable, due
to the parallelization in block-diagonal operators C, and (C,,)*.

• Inverses of each Cu' and (CL)* are applied *very* inexactly.

Clj Sandia
National D. Ridzal Algorithms for PDE-Constrained Optimization Under Uncertainty 20
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Software

Sandia
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Rapid Optimization Library

1W-
6 Trilinos package for matrix-free nonlinear optimization: unconstrained,

equality-constrained, inequality-constrained, line searches, trust regions, ...

C') Sandia
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Rapid Optimization Library

Rn
6 Trilinos package for matrix-free nonlinear optimization: unconstrained,

equality-constrained, inequality-constrained, line searches, trust regions, ...

6 Adjoint interface for simulation-based optimization — SimOpt.

Ei Sandia
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Rapid Optimization Library

Rn
• Trilinos package for matrix-free nonlinear optimization: unconstrained,

equality-constrained, inequality-constrained, line searches, trust regions, ...

o Adjoint interface for simulation-based optimization — SimOpt.

e Built from ground-up for optimization under uncertainty:

o Risk modeling based on various concepts: risk neutrality, risk
aversion, buffered probability, stochastic orders.

• Utilities for statistical estimation; concept of risk quadrangle.
o Bring-your-own sampler, in addition to the default Monte Carlo.
o Interface to Dakota for sparse grids.

El Sandia
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Rapid Optimization Library

1W-
• Trilinos package for matrix-free nonlinear optimization: unconstrained,

equality-constrained, inequality-constrained, line searches, trust regions, ...

o Adjoint interface for simulation-based optimization — SimOpt.

e Built from ground-up for optimization under uncertainty:

o Risk modeling based on various concepts: risk neutrality, risk
aversion, buffered probability, stochastic orders.

• Utilities for statistical estimation; concept of risk quadrangle.
• Bring-your-own sampler, in addition to the default Monte Carlo.
• Interface to Dakota for sparse grids.

• If you have a (parametrized) deterministic optimization ready, turning
it into stochastic optimization amounts to flipping a few switches in
the ROL options file.

ID Sandia
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Numerical results
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Optimizing CVD Reactors under Uncertainty

1
mi
Z 
n —,IE [f 

2
(V x u(z))dx] + f lzl 2 dx

zE D 

where S(z) = (u(z), p(z), T(z)) solves the Boussinesq flow equations,

—v(0.72 u (u • V)u + V p

—KWAT

77(0 Tg = 0,
V • u = 0,

u • VT = 0,
u — Li; = 0,
u — uo = 0,

u = 0,
u = 0,

T = 0,
km
T= To(0,

tc(0 f,T, + h(0(z — T) = 0,

in D, a.s.,
in D, a.s.,
in D, a.s.,
on a.s.,
on fo, a.s.,
on rb, a.s.,
on I-0, a.s.,

where fi = [1/3,2/3] x {1}, ro = ([0,1/3] U [2/3,1]) x {1}, rb = [0, x {0}

and rc = {0,1} x [0,1]. The inflow and outflow velocities, ui and uo are

deterministic while the coefficients v, h and Tb are uncertain.

Comput.
domain D .

Sandia
National D. Ridzal
Laboratories

D

ry

Scenarios
of Tb
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Optimizing CVD Reactors under Uncertainty
• Uncertain variables:

1  100 Gr 1 +0.0g.N+1
v = = , n = = 0.72 

Re 1 + 0.016J+1. Re2 1 + 0.01eN+2 '

1 5 1 + 0.0gN+3 
and k = = 10

Re Pr (1 + 0.0gN+02

where Re is the Reynolds number, Gr is the Grashof number and Pr is the Prandtl number.

• The offset N is the total number of random variables associated with Tb and h. The
uncertainty in Tb is modeled by the expansion

b .N/ sin( kx)
T b(x , = 1 + 0.025 2_, irk •

k=1

The coefficient h has a similar expansion for x = 0 and for x = 1 with ue and r)r terms
respectively. All are uniformly distributed on [-1, 1].

• The curves on the top of the computational domain schematic are the inflow and outflow
profiles of the velocity, given by

— X)X if 0 <x<

u(x) =I —4 (x — (i — ifi<x<i

2 (x — (1 — x) if 3 < x < 1
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Uncontrolled State
Expected values of the uncontrolled velocity field (left), pressure (middle)

and temperature (right):

Uncontrolled Velociry Uncontrolled Pressure
Uncontrolled Temperature

• Finite elements on a uniform mesh of 33x33 quadrilaterals.

• For the velocity and pressure, Q2-Q1 Taylor-Hood finite element pair;

for the temperature, Q2 finite element.

• Sparse grids built on one-dimensional Clenshaw-Curtis quadrature.

• Maximum sparse grid: level-3 isotropic Clenshaw-Curtis, Q = 2245 points.

• Implemented in ROL, PDE-OPT Application Development Kit.
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Reduced Space: Sparse-grid Adaptivity

ten Controls
0.6

0.0

0.2

0.4

0.0

0.4

0.2

Controlkd Temp

1
Right Controls

Optimal controls along the left vertical side wall (left image) and the right
vertical side wall (right image) of the problem domain D.
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Reduced Space: Sparse-grid Adaptivity

iter ..71,(4) IT Ink(0)11Z llskHZ A k cg accept obj grad

0 0.07457916 5.063 x 10-2 - 10.000 - - 1 3

1 0.07469930 5.063 x 10-2 10.000 1.445 1 0 3 3

2 0.07469930 5.063 x 10-2 1.445 0.361 1 0 3 3

3 0.05636707 4.875 x 10-2 0.361 0.903 1 1 3 3

4 0.05636707 4.875 x 10-2 0.903 0.226 1 0 3 3

5 0.04757099 2.059 x 10-2 0.226 0.226 1 1 3 3

6 0.04680338 1.143 x 10-2 0.226 0.226 2 1 103 117

7 0.04611002 3.468 x 10-3 0.226 0.564 2 1 139 195

8 0.04511802 3.255 x 10-3 0.564 1.411 2 1 117 233

9 0.04494516 1.085 x 10-3 1.411 3.527 3 1 229 579

10 0.04499733 2.331 x 10-4 2.838 8.818 6 1 579 949

11 0.04499338 6.211 x 10-5 0.967 22.045 7 1 2245 1219

12 0.04499329 1.002 x 10-6 0.127 55.113 8 1 2245 2245

13 0.04499327 7.034 x 10-9 0.072 137.784 11 1 2245 2245

Iteration history for reduced-space adaptive sparse-grid approach

Q Sequential solution, direct linear solver, single computational core.
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Reduced Space: Sparse-grid Adaptivity

ten Controls
0.6

0.0

0.2

0.4

0.0

0.4

0.2

Controlkd Temp

1
Right Controls

Optimal controls along the left vertical side wall (left image) and the right
vertical side wall (right image) of the problem domain D.
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Full Space: Inexact Linear Solvers
Co trolled Veloci

0 2

Controlled Pressure Contmlled Temperature

0 09

0 08
0 35

0.25

0 0 0 2

0 15

0 0

-0.5

Right Controls

0 6

Optimal controls along the left vertical side wall (left image) and the right

vertical side wall (right image) of the problem domain D.
C] Saida
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Full Space: Inexact Linear Solvers

• F-GMRES used to solve augmented systems; tol = 10-6.

• F-GMRES used to solve "inner" linearized forward and adjoint
solves, C,,-1 and Ci,—* in the P preconditioner; tol = 10-4.

• Non-overlapping additive Schwarz domain decomposition used to
precondition inner solves: 4 subdomains, horizontal strips.

• lnfinite-dimensional view of Lagrangian, vk = wk.

• Full fixed level-3 Clenshaw-Curtis sparse grid.
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Full Space: Inexact Linear Solvers

• F-GMRES used to solve augmented systems; tol = 10-6.

• F-GMRES used to solve "inner" linearized forward and adjoint
solves, C,,-1 and Ci,—* in the P preconditioner; tol = 10-4.

• Non-overlapping additive Schwarz domain decomposition used to
precondition inner solves: 4 subdomains, horizontal strips.

• lnfinite-dimensional view of Lagrangian, vk = wk.

• Full fixed level-3 Clenshaw-Curtis sparse grid.

• Serrano cluster at Sandia Labs; 80 dual-socket nodes, used 36 cores
per core, i.e., 2880 cores total.

• Cores partitioned into 720 groups, for quadrature, with 4 cores each
dedicated to iterative linear solver.

• Hierarchical parallelism enabled through ROL.
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Full Space: Inexact Linear Solvers

iter ../(4) llc(xk)llc IIVL(xk, Ak)IIX ak pcg accept ls calls Is iters

0 0.07484675 7.820623 x 10-15 8.377793 x 10-3 1.00 x 104 - - - -

1 0.05533699 1.661657 x 10-2 3.641571 x 10-4 1.00 x IV 11 1 16 597

2 0.03588474 3.052458 x 10-3 9.338262 x 10-5 1.00 x 104 13 1 33 1292

3 0.03515891 1.017679 x 10-4 7.117806 x 10-5 1.00 x 1.04 20 1 56 2303

4 0.03480817 1.444319 x 10-4 2.439603 x 10-5 1.00 x 104 15 1 75 3108

5 0.03480817 1.444319 x 10-4 2.439321 x 10-5 4.08 x 10° 20 0 98 4157

6 0.03465050 2.237452 x 10-6 4.364539 x 10-5 3.03 x 101 2 1 104 4438

7 0.03464773 2.716452 x 10-7 1.042585 x 10-7 3.03 x 101 8 1 116 4989

Iteration history for full-space approach with iterative augmented system solves.

• About 43 F-GMRES iterations per solve; encouraging, considering
that the size of the state space is more than 30 million, and that a
fairly tight tolerance was used (10-6).

• Many improvements are possible.
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Conclusions
o Expectation minimization is an important computational core

for optimization under uncertainty with a variety of risk models.
• Reduced-space trust-region methods enable adaptive sampling.
• Full-space trust-region methods enable large-scale iterative solvers.
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Conclusions
o Expectation minimization is an important computational core

for optimization under uncertainty with a variety of risk models.
• Reduced-space trust-region methods enable adaptive sampling.
• Full-space trust-region methods enable large-scale iterative solvers.

o Working on deploying these algorithms in structural optimization:

Mean Value Risk Neutral Buffered Prob.
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Conclusions
o Expectation minimization is an important computational core

for optimization under uncertainty with a variety of risk models.
• Reduced-space trust-region methods enable adaptive sampling.
• Full-space trust-region methods enable large-scale iterative solvers.

o Working on deploying these algorithms in structural optimization:

Mean Value Risk Neutral Buffered Prob.

Topology changes from beam to thin shell to thick shell!
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Conclusions
o Expectation minimization is an important computational core

for optimization under uncertainty with a variety of risk models.
• Reduced-space trust-region methods enable adaptive sampling.
• Full-space trust-region methods enable large-scale iterative solvers.

o Working on deploying these algorithms in structural optimization:

Mean Value Risk Neutral Buffered Prob.

Topology changes from beam to thin shell to thick shell!

• For a deep dive, see Drew Kouri's Minitutorial MT8,
Thursday, April 19, 2:30pm-4:30pm, Grand Ballroom G.
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