

SAND2018-4059C

Scalable Algorithms and Software for PDE-Constrained Optimization Under Uncertainty

Denis Ridzal and Drew Kouri

Center for Computing Research

Sandia National Laboratories

SIAM Uncertainty Quantification, 04-17-2018

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Research sponsored by the DOE-NNSA ASC Program and the DOD DARPA-EQUiPS Program. SAND2018-0000 C.

Motivation

Optimization formulations

From expectation to risk and back

Inexact trust-region algorithms

Software

Numerical results

Motivation

Optimization formulations

From expectation to risk and back

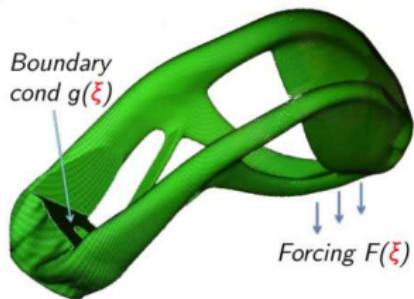
Inexact trust-region algorithms

Software

Numerical results

Topology Optimization for Structural Design

RISK-AVERSE DESIGN OF STRUCTURES



Setup: The forcing or load $F(\xi)$ on the right part of the bracket is uncertain. Additionally, there is an uncertain Dirichlet condition on the displacement at the bolt location, see $g(\xi)$.

Given volume fraction $V_0 \in (0, 1)$, max compliance η , $\Omega \subset \mathbb{R}^3$,

$$\text{Minimize}_{0 \leq z \leq 1} \text{Prob} \left[\int_{\Omega} F(\xi, x) \cdot (U(z))(\xi, x) dx \geq \eta \right]$$

s.t. $\int_{\Omega} z(x) dx \leq V_0 |\Omega|$, where $U(z) = u : \Xi \rightarrow (H^1(\Omega))^3$ solves

$$-\nabla \cdot (\mathbf{E}(z) : \epsilon u(\xi)) = F(\xi), \quad \text{in } \Omega, \text{ a.s.}$$

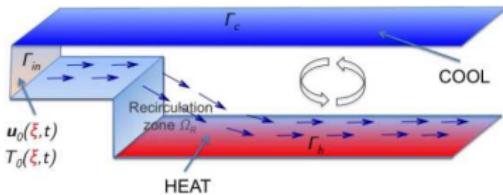
$$\epsilon u(\xi) = \frac{1}{2} (\nabla u(\xi) + \nabla u(\xi)^\top), \quad \text{in } \Omega, \text{ a.s.}$$

$$u(\xi) = g(\xi), \quad \text{on } \partial\Omega, \text{ a.s.}$$

- Uncertainty in external forces (loads) and boundary conditions.
- Reliability formulation of the compliance objective: Compute light-weight designs that reduce the probability of structural failure.

Optimal Control of Thermal Fluids

RISK-AVERSE CONTROL OF DYNAMICAL MULTIPHYSICS SYSTEMS



Setup: The velocity field and temperature at the inlet Γ_{in} are time dependent and uncertain, see $u_0(\xi, t)$ and $T_0(\xi, t)$. A time dependent temperature control $z(t)$ is applied on the top and bottom boundaries, Γ_c and Γ_h , to create thermal flow counteracting the vortex in the recirculation zone Ω_R .

$$\text{Minimize}_{a(t) \leq z(t) \leq b(t)} \text{Risk} \left(\int_{\Omega_R} |\nabla \times (\mathbf{U}(z))(\xi, x, \tau^{\text{final}})|^2 dx \right)$$

where $\mathbf{U}(z) = \mathbf{u} : \Xi \rightarrow (H^1(\Omega))^3 \times L^2([0, \tau^{\text{final}}])$ solves

$$\frac{\partial \mathbf{u}(\xi)}{\partial t} - \nu_1 \Delta \mathbf{u}(\xi) + (\mathbf{u}(\xi) \cdot \nabla) \mathbf{u}(\xi) + \nabla p(\xi) + \nu_2 T(\xi) \mathbf{g} = 0$$

$$\frac{\partial T(\xi)}{\partial t} - \nu_3 \Delta T(\xi) + \mathbf{u}(\xi) \cdot \nabla T(\xi) = 0$$

a.s., and $\nabla \cdot \mathbf{u}(\xi) = 0$, in $\Omega \times [0, \tau^{\text{final}}]$, with BCs

$\mathbf{u} = \mathbf{u}_0(\xi, t)$ and $T = T_0(\xi, t)$ on $\Gamma_{in} \times [0, \tau^{\text{final}}]$, etc., and heat-flux control $z(t) = z$ satisfying

$$\frac{\partial T(\xi)}{\partial \mathbf{n}} = h(z - T(\xi)) \quad \text{on } \Gamma_h \text{ and } \Gamma_c.$$

- Uncertainty in the velocity field and temperature at the inlet.
- A thermal fluid system with time-dependent temperature control.

Challenges

- **Function-space** optimization of **PDEs with random inputs**.
- **Large-scale** numerical optimization.
- **Large-dimensional** spaces of **uncertain** parameters.
- **Risk functions**: mathematics, computational cost, usefulness.
- **Nonsmooth** objective functions and constraints.
- **Time consistency** for optimal control of dynamical systems.

Challenges

- **Function-space** optimization of **PDEs with random inputs**.
- **Large-scale** numerical optimization.
- **Large-dimensional** spaces of **uncertain** parameters.
- **Risk functions**: mathematics, computational cost, usefulness.
- **Nonsmooth** objective functions and constraints.
- **Time consistency** for optimal control of dynamical systems.

★ **Identify a computational core and discuss algorithms ...**

Challenges

- **Function-space optimization of PDEs with random inputs.**
- **Large-scale** numerical optimization.
- **Large-dimensional** spaces of **uncertain** parameters.
- **Risk functions:** mathematics, computational cost, usefulness.
- **Nonsmooth** objective functions and constraints.
- **Time consistency** for optimal control of dynamical systems.

- ★ **Identify a computational core and discuss algorithms ... for nonlinear nonconvex constraints and objective functions.**

Motivation

Optimization formulations

From expectation to risk and back

Inexact trust-region algorithms

Software

Numerical results

Full space and Reduced space

$$\min_{u \in U, z \in Z} \{ \mathcal{R}(J_F(u, z; \xi)) + \wp(z) \}$$

subject to $c(u, z; \xi) = 0$ a.s.

$$\min_{z \in Z} \{ \mathcal{R}(J_R(S(z; \xi), \xi)) + \wp(z) \}$$

a.s.:

almost surely

Probability Space:

$(\Omega, \mathcal{F}, \mathbb{P})$ where $\mathcal{F} \subseteq 2^\Omega$ and $\mathbb{P} : \mathcal{F} \rightarrow [0, 1]$

Uncertain Inputs:

$\xi : \Omega \rightarrow \Xi$ where $\Xi := \xi(\Omega) \subseteq \mathbb{R}^m$

Random Variable Space:

\mathcal{X} is a space of random variables

Deterministic State Space:

U is a Hilbert space

Control Space:

Z is a Hilbert space (**deterministic**)

Numerical Surrogate:

$\mathcal{R} : \mathcal{X} \rightarrow \mathbb{R} \cup \{\infty\}$

Uncertain Objectives:

$J_R : U \times \Xi \rightarrow \mathcal{X}$; $J_F : U \times Z \times \Xi \rightarrow \mathcal{X}$

Random Field PDE Solution:

$S : Z \times \Xi \rightarrow U$ with $c(S(z), z; \xi) = 0$ a.s.

Control Penalty:

$\wp : Z \rightarrow \mathbb{R} \cup \{\infty\}$

Motivation

Optimization formulations

From expectation to risk and back

Inexact trust-region algorithms

Software

Numerical results

Modeling Risk

What is risk?

...

In our optimization problems, $J_R(S(z; \xi), \xi)$ and $J_F(u, z; \xi)$ are **risks**!

We **cannot** directly minimize J_R and J_F . Range space: random variables!

We must **quantify**, i.e., **scalarize risk**.

- **Risk-Neutral Stochastic Programming:** Minimize *on average*

$$\mathcal{R}(X) = \mathbb{E}[X].$$

- **Risk-Averse Stochastic Programming:** Model *risk preference*

$$\mathcal{R}(X) = \mathbb{E}[X] + c\mathbb{E}[(X - \mathbb{E}[X])_+^p]^{1/p}.$$

- **Probabilistic Optimization:** Minimize the *probability of loss*

$$\mathcal{R}(X) = \mathbb{P}(X > \tau).$$

- **Stochastic Orders:** Model risk preference with a *benchmark* Y

$$\mathbb{P}(X \leq x) \leq \mathbb{P}(Y \leq x) \quad \forall x \in \mathbb{R}.$$

Measuring Risk

Optimized Certainty Equivalents (Ben Tal & Teboulle, 2007, Math. Fin.)

$$\mathcal{R}(X) = \inf_{t \in \mathbb{R}} \{t + \mathbb{E}[\nu(X - t)]\}$$

where $\nu : \mathbb{R} \rightarrow \mathbb{R}$ is a convex **regret** function that satisfies

$$\nu(0) = 0, \quad \nu(x) > x \quad \forall x \neq 0.$$

A functional $\mathcal{H} : \mathcal{X} \rightarrow \mathbb{R} \cup \{\infty\}$ is a **coherent** measure of risk if

- **Subadditivity:** $\mathcal{H}(X + X') \leq \mathcal{H}(X) + \mathcal{H}(X')$.
- **Monotonicity:** $X \geq X'$ a.e. $\implies \mathcal{H}(X) \geq \mathcal{H}(X')$.
- **Translation Equivariance:** $\mathcal{H}(X + t) = \mathcal{H}(X) + t, \quad \forall t \in \mathbb{R}$.
- **Positive Homogeneity:** $\mathcal{H}(tX) = t\mathcal{H}(X), \quad \forall t > 0$.

Properties: \mathcal{R} is convex and translation equivariant.

\mathcal{R} is **positive homogeneous** $\iff \nu$ is piecewise linear with kink at 0

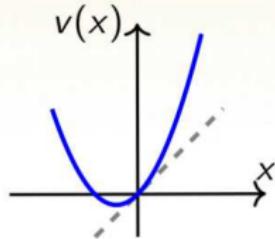
\mathcal{R} is **monotonic** $\iff \nu$ is nondecreasing

Risk Measure Examples

Mean-Plus-Variance: **Not monotonic**

$$\mathcal{R}(X) = \mathbb{E}[X] + c\mathbb{E}[|X - \mathbb{E}[X]|^2]$$

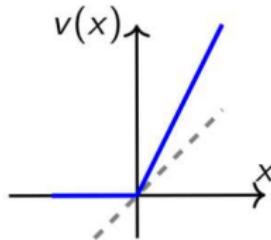
$$v(x) = x + cx^2$$



Conditional value-at-risk: **Coherent, not diff'ble**

$$\mathcal{R}(X) = \inf_{t \in \mathbb{R}} \left\{ t + \frac{1}{1-\beta} \mathbb{E}[(X - t)_+] \right\}$$

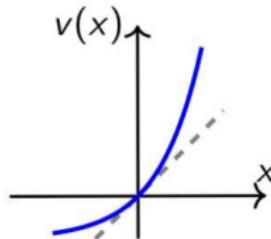
$$v(x) = \frac{1}{1-\beta} (x)_+$$



Entropic Risk: **Not coherent, derivative not Lipschitz**

$$\mathcal{R}(X) = c^{-1} \log \mathbb{E}[\exp(cX)]$$

$$v(x) = (\exp(cx) - 1)/c$$

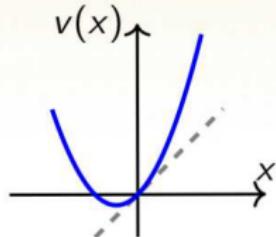


Risk Measure Examples

Mean-Plus-Variance: **Not monotonic**

$$\mathcal{R}(X) = \mathbb{E}[X] + c\mathbb{E}[|X - \mathbb{E}[X]|^2]$$

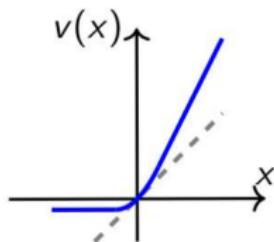
$$v(x) = x + cx^2$$



Smoothed CVaR: **Not positive homogeneous**

$$\mathcal{R}(X) = \inf_{t \in \mathbb{R}} \{t + \mathbb{E}[v(X - t)]\}$$

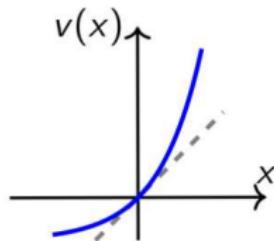
$$v(x) = \begin{cases} -\frac{\varepsilon}{2} & \text{if } x \leq -\varepsilon \\ \frac{1}{2\varepsilon}x^2 + x & \text{if } x \in (-\varepsilon, \frac{\varepsilon\beta}{1-\beta}) \\ \frac{1}{1-\beta} \left(x - \frac{\varepsilon\beta^2}{2(1-\beta)} \right) & \text{if } x \geq \frac{\varepsilon\beta}{1-\beta} \end{cases}$$



Entropic Risk: **Not coherent, derivative not Lipschitz**

$$\mathcal{R}(X) = c^{-1} \log \mathbb{E}[\exp(cX)]$$

$$v(x) = (\exp(cx) - 1)/c$$



Minimizing Expectation

Minimizing Expectation

... is at the core of minimizing many useful risk measures.

Minimizing Expectation

- ... is at the core of minimizing many useful risk measures.
- ... and key for minimizing smooth approximations of nonsmooth risk measures.

Minimizing Expectation

- ... is at the core of minimizing many useful risk measures.
- ... and key for minimizing smooth approximations of nonsmooth risk measures.
- ... and so for scalable computations we consider:

$$\min_{u \in U, z \in Z} \{ \mathbb{E}(J_F(u, z; \xi)) + \wp(z) \}$$

subject to $c(u, z; \xi) = 0$ a.s.

$$\min_{z \in Z} \{ \mathbb{E}(J_R(S(z; \xi), \xi)) + \wp(z) \}$$

Minimizing Expectation

- ... is at the core of minimizing many useful risk measures.
- ... and key for minimizing smooth approximations of nonsmooth risk measures.
- ... and so for scalable computations we consider:

$$\min_{u \in U, z \in Z} \{ \mathbb{E}(J_F(u, z; \xi)) + \wp(z) \}$$

subject to $c(u, z; \xi) = 0$ a.s.

$$\min_{z \in Z} \{ \mathbb{E}(J_R(S(z; \xi), \xi)) + \wp(z) \}$$

- ... and generalize to solving smooth NLPs:

$$\min_{x \in X := \{U \times Z \times \Xi\}} J(x)$$

subject to $c(x) = 0$

$$\min_{z \in Z} \mathcal{J}(z)$$

UNCONSTRAINED
MINIMIZATION

CONSTRAINED MINIMIZATION

Motivation

Optimization formulations

From expectation to risk and back

Inexact trust-region algorithms

Software

Numerical results

Trust Regions for Unconstrained NLPs

Given: z_0 , $m_0(s) \approx \mathcal{J}(z_0 + s)$, $\mathcal{J}_0 \approx \mathcal{J}$, $\Delta_0 \geq 0$, and $\text{gtol} > 0$.

While $\|\nabla m_k(s)\|_2 > \text{gtol}$

- ➊ **Model Update:** Choose a new $m_k(s) \approx \mathcal{J}(z_k + s)$. \leftarrow **Adaptivity**
- ➋ **Step Computation:** Approximate a solution, s_k , to the subproblem

$$\min_{s \in Z} m_k(s) \quad \text{subject to} \quad \|s\|_2 \leq \Delta_k.$$

- ➌ **Objective Update:** Choose a new $\mathcal{J}_k(z) \approx \mathcal{J}(z)$. \leftarrow **Adaptivity**
- ➍ **Step Acceptance:** Compute

$$\rho_k = \frac{\mathcal{J}_k(z_k) - \mathcal{J}_k(z_k + s_k)}{m_k(0) - m_k(s_k)}.$$

If $\rho_k \geq \eta \in (0, 1)$, then $z_{k+1} = z_k + s_k$ else $z_{k+1} = z_k$.

- ➎ **Trust Region Update:** Choose a new trust region radius, Δ_{k+1} .

EndWhile

Inexact Gradients and Objective Functions

Kouri, Heinkenschloss, Ridzal, van Bloemen Waanders, 2014, SISC

Inexact Gradients

There exists $c > 0$ independent of k such that

$$\|\nabla m_k(0) - \nabla \mathcal{J}(z_k)\|_Z \leq c \min\{\|\nabla m_k(0)\|_Z, \Delta_k\}$$

(Carter 1989, Heinkenschloss and Vicente 2001).

Inexact Objective Functions

There exists $K > 0$, $\omega \in (0, 1)$, and $\theta_r(z, s) \rightarrow 0$ as $r \rightarrow 0$ such that

$$\begin{aligned} |(\mathcal{J}(z_k) - \mathcal{J}(z_k + s_k)) - (\mathcal{J}_k(z_k) - \mathcal{J}_k(z_k + s_k))| &\leq K \theta_{r_k}(z_k, s_k) \\ \theta_{r_k}(z_k, s_k)^\omega &\leq \eta \min \{(m_k(0) - m_k(s_k)), r_k\}. \end{aligned}$$

Here, $\eta > 0$ is tied to algorithmic parameters and $\lim_{k \rightarrow \infty} r_k = 0$.

(Carter 1989, Ziems and Ulbrich 2013).

Inexact Gradients and Objective Functions

Kouri, Heinkenschloss, Ridzal, van Bloemen Waanders, 2014, SISC

Inexact Gradients

There exists $c > 0$ independent of k such that

$$\|\nabla m_k(0) - \nabla \mathcal{J}(z_k)\|_Z \leq c \min\{\|\nabla m_k(0)\|_Z, \Delta_k\}$$

(Carter 1989, Heinkenschloss and Vicente 2001).

Inexact Objective Functions

There exists $K > 0$, $\omega \in (0, 1)$, and $\theta_r(z, s) \rightarrow 0$ as $r \rightarrow 0$ such that

$$\begin{aligned} |(\mathcal{J}(z_k) - \mathcal{J}(z_k + s_k)) - (\mathcal{J}_k(z_k) - \mathcal{J}_k(z_k + s_k))| &\leq K \theta_{r_k}(z_k, s_k) \\ \theta_{r_k}(z_k, s_k)^\omega &\leq \eta \min \{(m_k(0) - m_k(s_k)), r_k\}. \end{aligned}$$

Here, $\eta > 0$ is tied to algorithmic parameters and $\lim_{k \rightarrow \infty} r_k = 0$.

(Carter 1989, Ziems and Ulbrich 2013).

- **Cannot** compute $\mathcal{J}(z_k)$ and $\nabla \mathcal{J}(z_k)$.

Inexact Gradients and Objective Functions

Kouri, Heinkenschloss, Ridzal, van Bloemen Waanders, 2014, SISC

Inexact Gradients

There exists $c > 0$ independent of k such that

$$\|\nabla m_k(0) - \nabla \mathcal{J}(z_k)\|_Z \leq c \min\{\|\nabla m_k(0)\|_Z, \Delta_k\}$$

(Carter 1989, Heinkenschloss and Vicente 2001).

Inexact Objective Functions

There exists $K > 0$, $\omega \in (0, 1)$, and $\theta_r(z, s) \rightarrow 0$ as $r \rightarrow 0$ such that

$$\begin{aligned} |(\mathcal{J}(z_k) - \mathcal{J}(z_k + s_k)) - (\mathcal{J}_k(z_k) - \mathcal{J}_k(z_k + s_k))| &\leq K \theta_{r_k}(z_k, s_k) \\ \theta_{r_k}(z_k, s_k)^\omega &\leq \eta \min \{(m_k(0) - m_k(s_k)), r_k\}. \end{aligned}$$

Here, $\eta > 0$ is tied to algorithmic parameters and $\lim_{k \rightarrow \infty} r_k = 0$.

(Carter 1989, Ziems and Ulbrich 2013).

- **Cannot** compute $\mathcal{J}(z_k)$ and $\nabla \mathcal{J}(z_k)$.
- Control errors using **dimension-adaptive sparse grids**, by estimating them on a forward neighborhood of a current index set.

Adaptive sparse grids for the gradient

- Admissible index set $\mathcal{I}_k^g \subset \mathbb{N}^m$ and quadrature approximation of $\mathcal{J}(z) = \mathbb{E}[J_R(z; \xi)]$, i.e., $\mathcal{J}_{\mathcal{I}_k^g}(z) = \sum_{\mathbf{i} \in \mathcal{I}_k^g} (\delta_1^{i_1} \otimes \cdots \otimes \delta_m^{i_m}) [J_R(z; \xi)]$.
- $\left\| \sum_{\mathbf{i} \notin \mathcal{I}_k^g} (\delta_1^{i_1} \otimes \cdots \otimes \delta_m^{i_m}) [\nabla J_R(z; \xi)] \right\|_Z \leq c \min \left\{ \|\nabla \mathcal{J}_{\mathcal{I}_k^g}(z_k)\|_Z, \Delta_k \right\}$

Initialization: Set $\mathbf{i} = (1, \dots, 1)$, $\mathcal{A} = \{\mathbf{i}\}$, $\mathcal{O} = \emptyset$, $\mathbf{g}_i = (\delta_1^{i_1} \otimes \cdots \otimes \delta_m^{i_m}) [\nabla J_R(z_k; \xi)]$ and $\beta = \beta_i = \|\mathbf{g}_i\|_Z$, $\mathbf{g} = \mathbf{g}_i$, and $\text{TOL} = c \min\{\|\mathbf{g}\|_Z, \Delta_k\}$.

While $\beta > \text{TOL}$

- 1 Select $\mathbf{i} \in \mathcal{A}$ corresponding to the largest β_i
- 2 Set $\mathcal{A} \leftarrow \mathcal{A} \setminus \{\mathbf{i}\}$ and $\mathcal{O} \leftarrow \mathcal{O} \cup \{\mathbf{i}\}$
- 3 Update the error indicator $\beta \leftarrow \beta - \beta_i$
- 4 For $\ell = 1, \dots, m$
 - 1 Set $\mathbf{j} = \mathbf{i} + \mathbf{e}_\ell$
 - 2 If $\mathcal{O} \cup \{\mathbf{j}\}$ is admissible
 - 1 Set $\mathcal{A} \leftarrow \mathcal{A} \cup \{\mathbf{j}\}$
 - 2 Set $\mathbf{g}_j = (\delta_1^{j_1} \otimes \cdots \otimes \delta_m^{j_m}) [\nabla J_R(z_k; \xi)]$
 - 3 Set $\beta_j = \|\mathbf{g}_j\|_Z$
 - 4 Update the gradient approximation $\mathbf{g} \leftarrow \mathbf{g} + \mathbf{g}_j$
 - 5 Update the error indicator $\beta \leftarrow \beta + \beta_j$
 - 6 Update the stopping tolerance $\text{TOL} = c \min\{\|\mathbf{g}\|_Z, \Delta_k\}$
- 3 EndIf
- 5 EndFor

EndWhile

Set $\mathcal{I}_k^g = \mathcal{A} \cup \mathcal{O}$ and $\nabla m_k(0) = \mathbf{g}$.

Adaptive sparse grids for the objective

- $\left| \sum_{\mathbf{i} \notin \mathcal{I}_k^o} (\delta_1^{i_1} \otimes \cdots \otimes \delta_m^{i_m}) [J_R(z_k + s_k; \xi) - J_R(z_k; \xi)] \right| = \theta_k$

Initialization: Set $\mathbf{i} = (1, \dots, 1)$, $\mathcal{A} = \{\mathbf{i}\}$, $\mathcal{O} = \emptyset$, $\text{TOL} = (\eta \min\{\text{pred}_k, r_k\})^{1/\omega}$, $\tilde{\theta}_k = \vartheta_{\mathbf{i}} = (\delta_1^{i_1} \otimes \cdots \otimes \delta_M^{i_M}) [J_R(z_k + s_k; \xi) - J_R(z_k; \xi)]$ and $\text{cred}_k = \vartheta_{\mathbf{i}}$.

While $|\tilde{\theta}_k| > \text{TOL}$

- 1 Select $\mathbf{i} \in \mathcal{A}$ corresponding to the largest $|\vartheta_{\mathbf{i}}|$
- 2 Set $\mathcal{A} \leftarrow \mathcal{A} \setminus \{\mathbf{i}\}$ and $\mathcal{O} \leftarrow \mathcal{O} \cup \{\mathbf{i}\}$
- 3 Update the error indicator $\tilde{\theta}_k \leftarrow \tilde{\theta}_k - \vartheta_{\mathbf{i}}$
- 4 For $\ell = 1, \dots, m$
 - 1 Set $\mathbf{j} = \mathbf{i} + \mathbf{e}_{\ell}$
 - 2 If $\mathcal{O} \cup \{\mathbf{j}\}$ is admissible
 - 1 Set $\mathcal{A} \leftarrow \mathcal{A} \cup \{\mathbf{j}\}$
 - 2 Set $\vartheta_{\mathbf{j}} = (\delta_1^{j_1} \otimes \cdots \otimes \delta_m^{j_m}) [J_R(z_k + s_k; \xi) - J_R(z_k; \xi)]$
 - 3 Update the computed reduction $\text{cred}_k \leftarrow \text{cred}_k + \vartheta_{\mathbf{j}}$
 - 4 Update the error indicator $\tilde{\theta}_k \leftarrow \tilde{\theta}_k + \vartheta_{\mathbf{j}}$
 - 3 EndIf
- 5 EndFor

EndWhile

Return $\mathcal{I}_k^o = \mathcal{A} \cup \mathcal{O}$ and cred_k .

Trust Regions for Constrained NLPs

Solve equality-constrained optimization problem:

$$\min_{x \in X} J(x) \quad \text{subject to} \quad c(x) = 0$$

Define Lagrangian functional $L : X \times C \rightarrow \mathbb{R}$:

$$L(x, \lambda) = J(x) + \langle \lambda, c(x) \rangle_C$$

If *regular* point x_* is a local solution of the NLP, then there exists a $\lambda_* \in C$ satisfying the *first-order necessary optimality conditions*:

$$\begin{aligned} \nabla_x J(x_*) + c_x(x_*)^* \lambda_* &= 0 \\ c(x_*) &= 0 \end{aligned}$$

Solve a sequence of *nonconvex quadratic trust-region* subproblems:

$$\begin{aligned} \min_{s \in X} \quad & \frac{1}{2} \langle \nabla_{xx} L(x_k, \lambda_k) s, s \rangle_X + \langle \nabla_x L(x_k, \lambda_k), s \rangle_X + L(x_k, \lambda_k) \\ \text{s.t.} \quad & c_x(x_k) s + c(x_k) = 0, \quad \|s\|_X \leq \Delta_k \end{aligned}$$

Possible incompatibility of constraints: *composite-step approach*.

Composite-step Approach for the Solution of the Trust-region Subproblem

- **Trust-region step:**

$$s_k = n_k + t_k$$

- **Quasi-normal step n_k :**

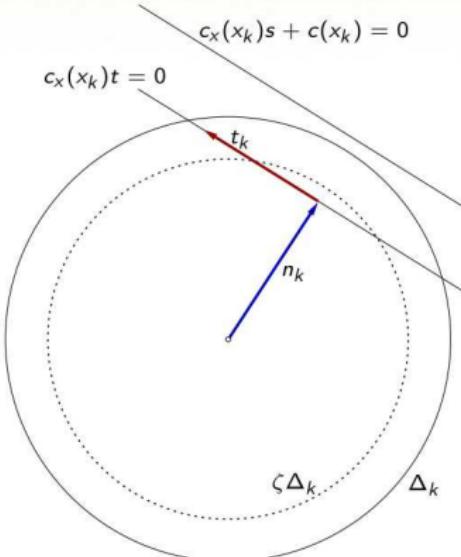
reduces linear infeasibility

$$\begin{aligned} \min_{n \in X} \quad & \|c_x(x_k)n + c(x_k)\|_C^2 \\ \text{s.t.} \quad & \|n\|_X \leq \zeta \Delta_k \end{aligned}$$

- **Tangential step t_k :**

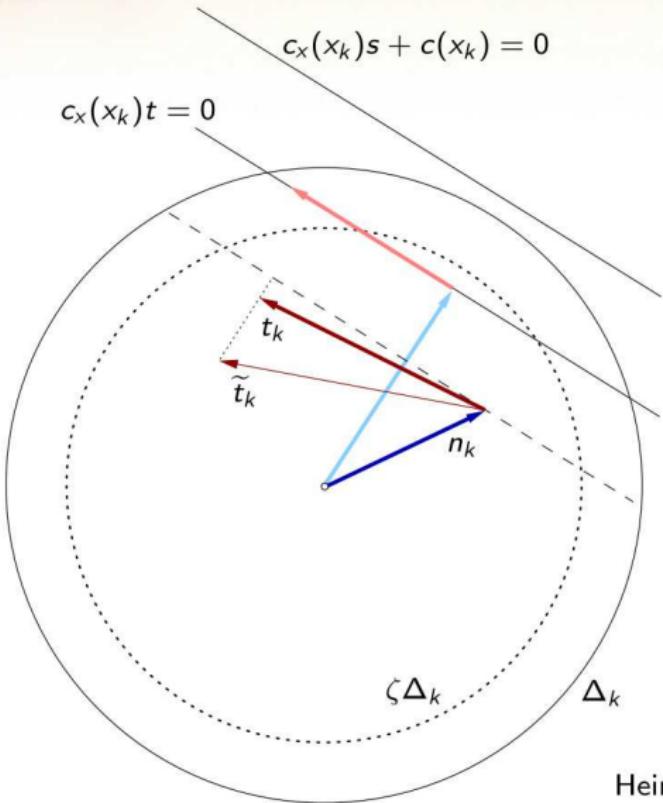
improves optimality while staying in the null space of the linearized constraints

$$\begin{aligned} \min_{t \in X} \quad & \frac{1}{2} \langle \nabla_{xx} L(x_k, \lambda_k)(t + n_k), t + n_k \rangle_X + \langle \nabla_x L(x_k, \lambda_k), t + n_k \rangle_X + L(x_k, \lambda_k) \\ \text{s.t.} \quad & c_x(x_k)t = 0, \quad \|t + n_k\|_X \leq \Delta_k \end{aligned}$$



Omojokun (1989), Byrd, Hribar, Nocedal (1997), Dennis, El-Alem, Maciel (1997)

Matrix-free Composite-step Algorithm

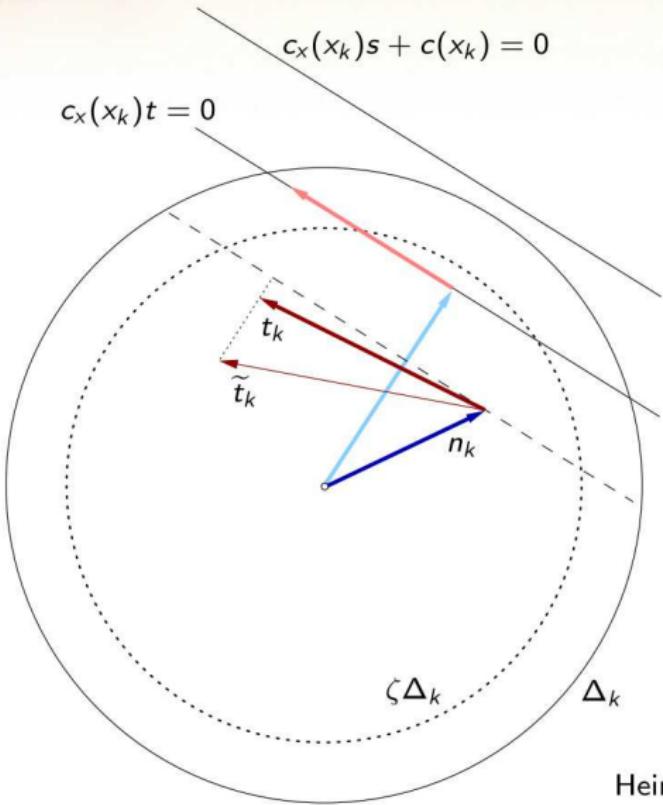


Composite step: $s_k = n_k + t_k$

- 1 Compute quasi-normal step n_k using **Powell's dogleg method**, satisfying inexactness conditions.
- 2 Solve tangential subproblem for \tilde{t}_k with **projected Steihaug-Toint CG**, satisfying inexactness conditions.
- 3 Restore linearized feasibility, yielding tangential step t_k .
- 4 Update Lagrange multipliers λ_{k+1} .
- 5 Evaluate progress.

Heinkenschloss, Ridzal, *SIAM J. Opt.* (2014)

Matrix-free Composite-step Algorithm



Composite step: $s_k = n_k + t_k$

- ① Compute quasi-normal step n_k using **Powell's dogleg method**, satisfying inexactness conditions.
- ② Solve tangential subproblem for \tilde{t}_k with **projected Steihaug-Toint CG**, satisfying inexactness conditions.
- ③ Restore linearized feasibility, yielding tangential step t_k .
- ④ Update Lagrange multipliers λ_{k+1} .
- ⑤ Evaluate progress.

Inexactness is interpreted in the context of linear systems, and their iterative solution.

Heinkenschloss, Ridzal, *SIAM J. Opt.* (2014)

Linear Systems

... are all augmented constraint systems

$$\begin{pmatrix} I & c_x(x_k)^* \\ c_x(x_k) & 0 \end{pmatrix} \begin{pmatrix} y^1 \\ y^2 \end{pmatrix} = \begin{pmatrix} b^1 \\ b^2 \end{pmatrix} + \begin{pmatrix} e^1 \\ e^2 \end{pmatrix}$$

- The size of $(e^1 \ e^2)$ is governed by various model reduction conditions, i.e., the progress of the optimization algorithm:

$$\|e^1\|_X + \|e^2\|_C \leq \text{func}(\|b^1\|_X, \|b^2\|_C, \|y^1\|_X, \Delta_k, \xi)$$

- Preconditioning** for $X = U \times Z$ with $c_x(x_k) = C_x = [C_u \ C_z]$:

$$\begin{pmatrix} I_U & 0 & C_u^* \\ 0 & I_Z & C_z^* \\ C_u & C_z & 0 \end{pmatrix} \rightarrow \mathcal{P} = \begin{pmatrix} I_U & 0 & 0 \\ 0 & I_Z & 0 \\ 0 & 0 & C_u^{-*} C_u^{-1} \end{pmatrix}$$

Semi-discretization for the Expected Value

- We approximate $\mathbb{E}[X] = \int_{\Xi} \rho(\xi)X(\xi)d\xi$ with the quadrature \mathbb{E}_Q ,

$$\mathbb{E}_Q[X] = \sum_{k=1}^Q w_k X(\xi_k), \text{ with points } \{\xi_1, \dots, \xi_Q\}, \text{ weights } \{w_1, \dots, w_Q\}.$$

- Our semi-discrete optimization problem is

$$\underset{u_1, \dots, u_Q \in U, z \in Z}{\text{minimize}} \sum_{k=1}^Q w_k J_F(u_k, z) \quad \text{subject to} \quad c(u_k, z; \xi_k) = 0, \quad k = 1, \dots, Q$$

- Family of possible Lagrangians $L_Q : U^Q \times Z \times U^Q \rightarrow \mathbb{R} \cup \{\infty\}$,

$$L(u_1, \dots, u_Q, z, \lambda_1, \dots, \lambda_Q) = \sum_{k=1}^Q w_k J_F(u_k, z) + \sum_{k=1}^Q v_k \langle \lambda_k, c(u_k, z; \xi_k) \rangle_c,$$

governed by the choice of weights $\{v_k\}_{k=1}^Q$. Two choices are:

- $v_k = 1, k = 1, \dots, Q$, for a “finite-dimensional” view; and
- $v_k = w_k, k = 1, \dots, Q$, for an “infinite-dimensional” view.

Augmented System for Minimizing Expectation

$$\left(\begin{array}{cccccc}
 I_U & 0 & \dots & 0 & 0 & v_1(C_u^1)^* & 0 & \dots & 0 \\
 0 & I_U & \dots & 0 & 0 & 0 & v_2(C_u^2)^* & \dots & 0 \\
 \vdots & \vdots & \ddots & 0 & \vdots & \vdots & \vdots & \ddots & 0 \\
 0 & 0 & \dots & I_U & 0 & 0 & 0 & \dots & v_Q(C_u^Q)^* \\
 0 & 0 & \dots & 0 & I_Z & v_1(C_z^1)^* & v_2(C_z^2)^* & \dots & v_Q(C_z^Q)^* \\
 v_1 C_u^1 & 0 & \dots & 0 & v_1 C_z^1 & 0 & 0 & \dots & 0 \\
 0 & v_2 C_u^2 & \dots & 0 & v_2 C_z^2 & 0 & 0 & \dots & 0 \\
 \vdots & \vdots & \ddots & 0 & \vdots & \vdots & \vdots & \ddots & 0 \\
 0 & 0 & \dots & v_Q C_u^Q & v_Q C_z^Q & 0 & 0 & \dots & 0
 \end{array} \right)$$

Augmented System for Minimizing Expectation

$$\left(\begin{array}{cccccc}
 I_U & 0 & \dots & 0 & 0 & v_1(C_u^1)^* & 0 & \dots & 0 \\
 0 & I_U & \dots & 0 & 0 & 0 & v_2(C_u^2)^* & \dots & 0 \\
 \vdots & \vdots & \ddots & 0 & \vdots & \vdots & \vdots & \ddots & 0 \\
 0 & 0 & \dots & I_U & 0 & 0 & 0 & \dots & v_Q(C_u^Q)^* \\
 0 & 0 & \dots & 0 & I_Z & v_1(C_z^1)^* & v_2(C_z^2)^* & \dots & v_Q(C_z^Q)^* \\
 v_1 C_u^1 & 0 & \dots & 0 & v_1 C_z^1 & 0 & 0 & \dots & 0 \\
 0 & v_2 C_u^2 & \dots & 0 & v_2 C_z^2 & 0 & 0 & \dots & 0 \\
 \vdots & \vdots & \ddots & 0 & \vdots & \vdots & \vdots & \ddots & 0 \\
 0 & 0 & \dots & v_Q C_u^Q & v_Q C_z^Q & 0 & 0 & \dots & 0
 \end{array} \right)$$

- Applying the preconditioner \mathcal{P} to this system is scalable, due to the parallelization in block-diagonal operators C_u and $(C_u)^*$.
- Inverses of each C_u^i and $(C_u^i)^*$ are applied *very* inexactly.

Motivation

Optimization formulations

From expectation to risk and back

Inexact trust-region algorithms

Software

Numerical results

Rapid Optimization Library

- Trilinos package for **matrix-free nonlinear optimization**: unconstrained, equality-constrained, inequality-constrained, line searches, trust regions, ...

Rapid Optimization Library

- Trilinos package for **matrix-free nonlinear optimization**: unconstrained, equality-constrained, inequality-constrained, line searches, trust regions, ...
- Adjoint interface for **simulation-based optimization** – **SimOpt**.

Rapid Optimization Library

- Trilinos package for **matrix-free nonlinear optimization**: unconstrained, equality-constrained, inequality-constrained, line searches, trust regions, ...
- Adjoint interface for **simulation-based optimization** – **SimOpt**.
- Built from ground-up for **optimization under uncertainty**:
 - **Risk modeling** based on various concepts: risk neutrality, risk aversion, buffered probability, stochastic orders.
 - Utilities for **statistical estimation**; concept of **risk quadrangle**.
 - **Bring-your-own sampler**, in addition to the default Monte Carlo.
 - Interface to **Dakota** for sparse grids.

Rapid Optimization Library

- Trilinos package for **matrix-free nonlinear optimization**: unconstrained, equality-constrained, inequality-constrained, line searches, trust regions, ...
- Adjoint interface for **simulation-based optimization** – **SimOpt**.
- Built from ground-up for **optimization under uncertainty**:
 - **Risk modeling** based on various concepts: risk neutrality, risk aversion, buffered probability, stochastic orders.
 - Utilities for **statistical estimation**; concept of **risk quadrangle**.
 - **Bring-your-own sampler**, in addition to the default Monte Carlo.
 - Interface to **Dakota** for sparse grids.
- **If you have a (parametrized) deterministic optimization ready, turning it into stochastic optimization amounts to flipping a few switches in the ROL options file.**

Motivation

Optimization formulations

From expectation to risk and back

Inexact trust-region algorithms

Software

Numerical results

Optimizing CVD Reactors under Uncertainty

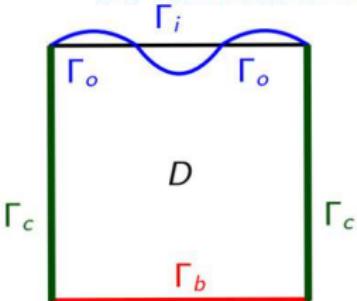
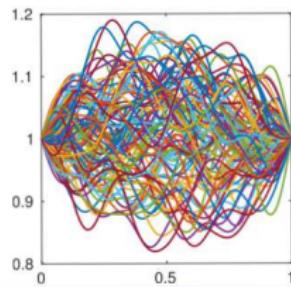
$$\min_{z \in Z} \frac{1}{2} \mathbb{E} \left[\int_D (\nabla \times u(z)) \, dx \right] + \frac{\gamma}{2} \int_{\Gamma_c} |z|^2 \, dx$$

where $S(z) = (u(z), p(z), T(z))$ solves the Boussinesq flow equations,

$$\begin{aligned} -\nu(\xi) \nabla^2 u + (u \cdot \nabla) u + \nabla p + \eta(\xi) T g &= 0, & \text{in } D, \text{ a.s.,} \\ \nabla \cdot u &= 0, & \text{in } D, \text{ a.s.,} \\ -\kappa(\xi) \Delta T + u \cdot \nabla T &= 0, & \text{in } D, \text{ a.s.,} \\ u - u_i &= 0, & T = 0, & \text{on } \Gamma_i, \text{ a.s.,} \\ u - u_o &= 0, & \kappa(\xi) \frac{\partial T}{\partial n} &= 0, & \text{on } \Gamma_o, \text{ a.s.,} \\ u &= 0, & T &= T_b(\xi), & \text{on } \Gamma_b, \text{ a.s.,} \\ u &= 0, & \kappa(\xi) \frac{\partial T}{\partial n} + h(\xi)(z - T) &= 0, & \text{on } \Gamma_c, \text{ a.s.,} \end{aligned}$$

where $\Gamma_i = [1/3, 2/3] \times \{1\}$, $\Gamma_o = ([0, 1/3] \cup [2/3, 1]) \times \{1\}$, $\Gamma_b = [0, 1] \times \{0\}$ and $\Gamma_c = \{0, 1\} \times [0, 1]$. The inflow and outflow velocities, u_i and u_o are deterministic while the coefficients ν , η , κ , h and T_b are uncertain.

Comput. domain D .



Scenarios of T_b (Brownian bridge-like).

Optimizing CVD Reactors under Uncertainty

- Uncertain variables:

$$\nu = \frac{1}{\text{Re}} = \frac{100}{1 + 0.01\xi_{N+1}}, \quad \eta = \frac{\text{Gr}}{\text{Re}^2} = 0.72 \frac{1 + 0.01\xi_{N+1}}{1 + 0.01\xi_{N+2}},$$

$$\text{and} \quad \kappa = \frac{1}{\text{Re} \text{Pr}} = 10^5 \frac{1 + 0.01\xi_{N+3}}{(1 + 0.01\xi_{N+1})^2}$$

where Re is the Reynolds number, Gr is the Grashof number and Pr is the Prandtl number.

- The offset N is the total number of random variables associated with T_b and h . The uncertainty in T_b is modeled by the expansion

$$T_b(x, \xi) = 1 + 0.025 \sum_{k=1}^{n_b} \xi_k \frac{\sqrt{2} \sin(\pi kx)}{\pi k}.$$

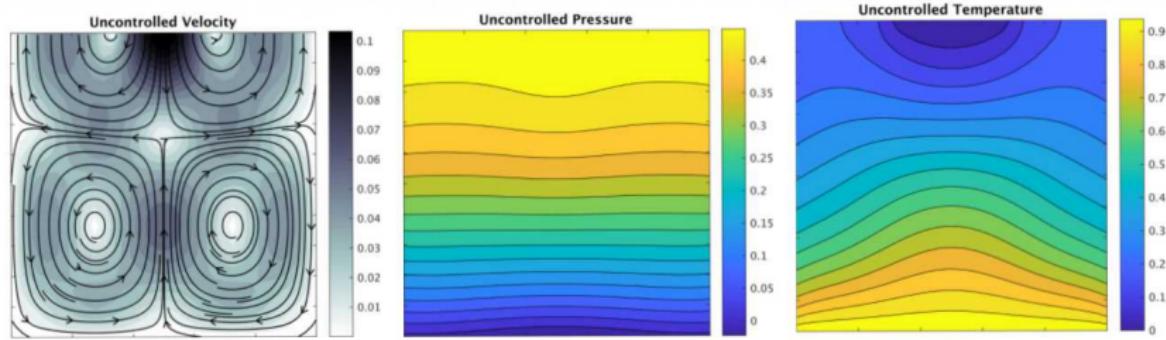
The coefficient h has a similar expansion for $x = 0$ and for $x = 1$ with n_ℓ and n_r terms respectively. All ξ_k are uniformly distributed on $[-1, 1]$.

- The curves on the top of the computational domain schematic are the inflow and outflow profiles of the velocity, given by

$$u(x) = \begin{cases} 2 \left(\frac{1}{3} - x\right) x & \text{if } 0 \leq x \leq \frac{1}{3} \\ -4 \left(x - \frac{1}{3}\right) \left(\frac{2}{3} - x\right) & \text{if } \frac{1}{3} < x < \frac{2}{3} \\ 2 \left(x - \frac{2}{3}\right) (1 - x) & \text{if } \frac{2}{3} \leq x \leq 1 \end{cases}.$$

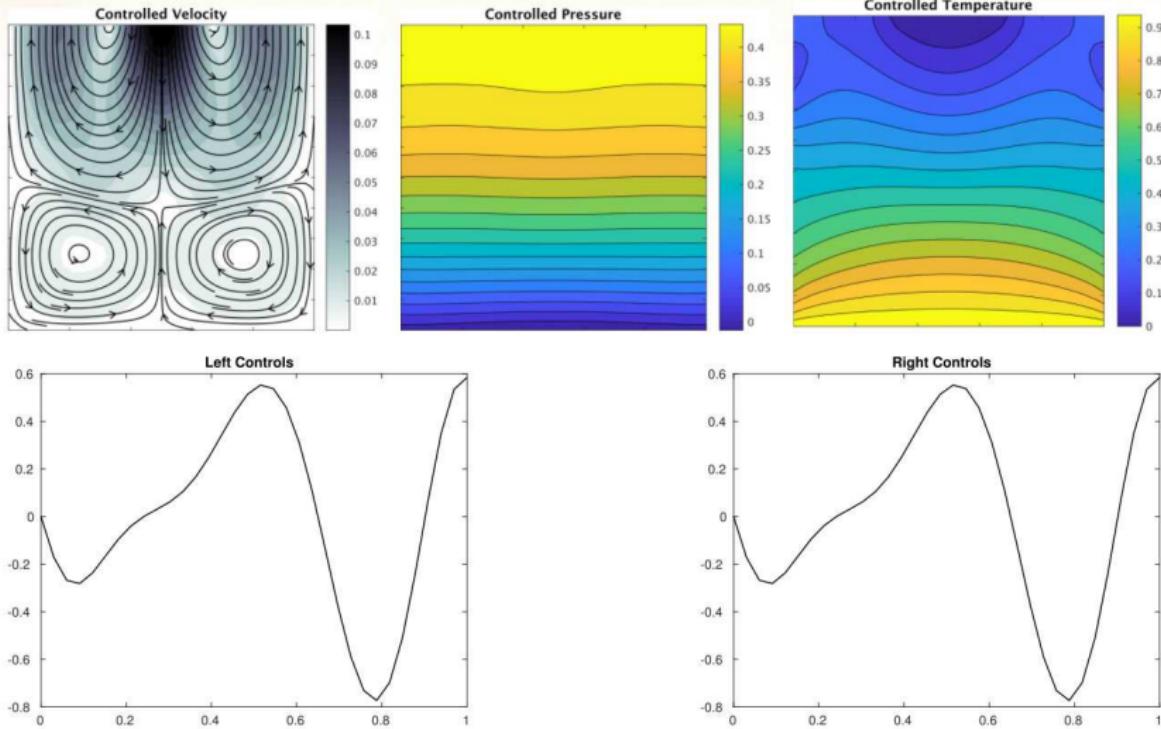
Uncontrolled State

Expected values of the uncontrolled velocity field (left), pressure (middle) and temperature (right):



- Finite elements on a uniform mesh of 33×33 quadrilaterals.
- For the velocity and pressure, Q2-Q1 Taylor-Hood finite element pair; for the temperature, Q2 finite element.
- Sparse grids built on one-dimensional Clenshaw-Curtis quadrature.
- Maximum sparse grid: level-3 isotropic Clenshaw-Curtis, $Q = 2245$ points.
- Implemented in ROL, PDE-OPT Application Development Kit.

Reduced Space: Sparse-grid Adaptivity



Optimal controls along the left vertical side wall (left image) and the right vertical side wall (right image) of the problem domain D .

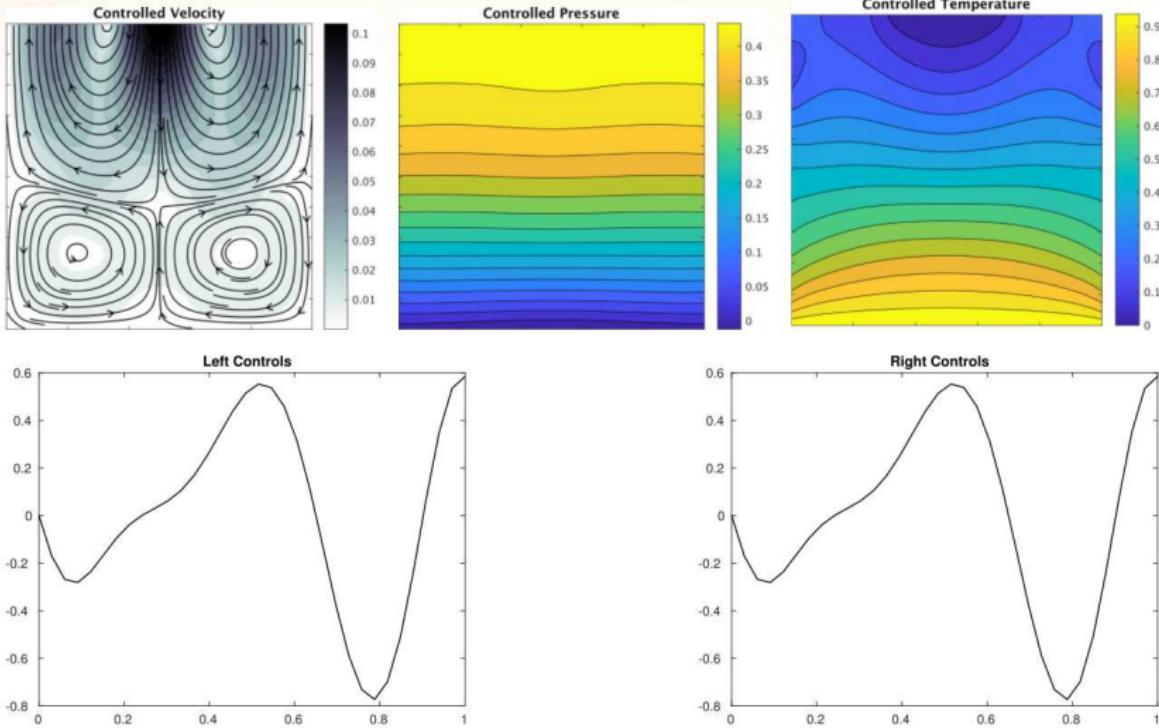
Reduced Space: Sparse-grid Adaptivity

iter	$\mathcal{J}_k(z_k)$	$\ \nabla m_k(0)\ _z$	$\ s_k\ _z$	Δ_k	cg	accept	obj	grad
0	0.07457916	5.063×10^{-2}	—	10.000	—	—	1	3
1	0.07469930	5.063×10^{-2}	10.000	1.445	1	0	3	3
2	0.07469930	5.063×10^{-2}	1.445	0.361	1	0	3	3
3	0.05636707	4.875×10^{-2}	0.361	0.903	1	1	3	3
4	0.05636707	4.875×10^{-2}	0.903	0.226	1	0	3	3
5	0.04757099	2.059×10^{-2}	0.226	0.226	1	1	3	3
6	0.04680338	1.143×10^{-2}	0.226	0.226	2	1	103	117
7	0.04611002	3.468×10^{-3}	0.226	0.564	2	1	139	195
8	0.04511802	3.255×10^{-3}	0.564	1.411	2	1	117	233
9	0.04494516	1.085×10^{-3}	1.411	3.527	3	1	229	579
10	0.04499733	2.331×10^{-4}	2.838	8.818	6	1	579	949
11	0.04499338	6.211×10^{-5}	0.967	22.045	7	1	2245	1219
12	0.04499329	1.002×10^{-6}	0.127	55.113	8	1	2245	2245
13	0.04499327	7.034×10^{-9}	0.072	137.784	11	1	2245	2245

Iteration history for reduced-space adaptive sparse-grid approach.

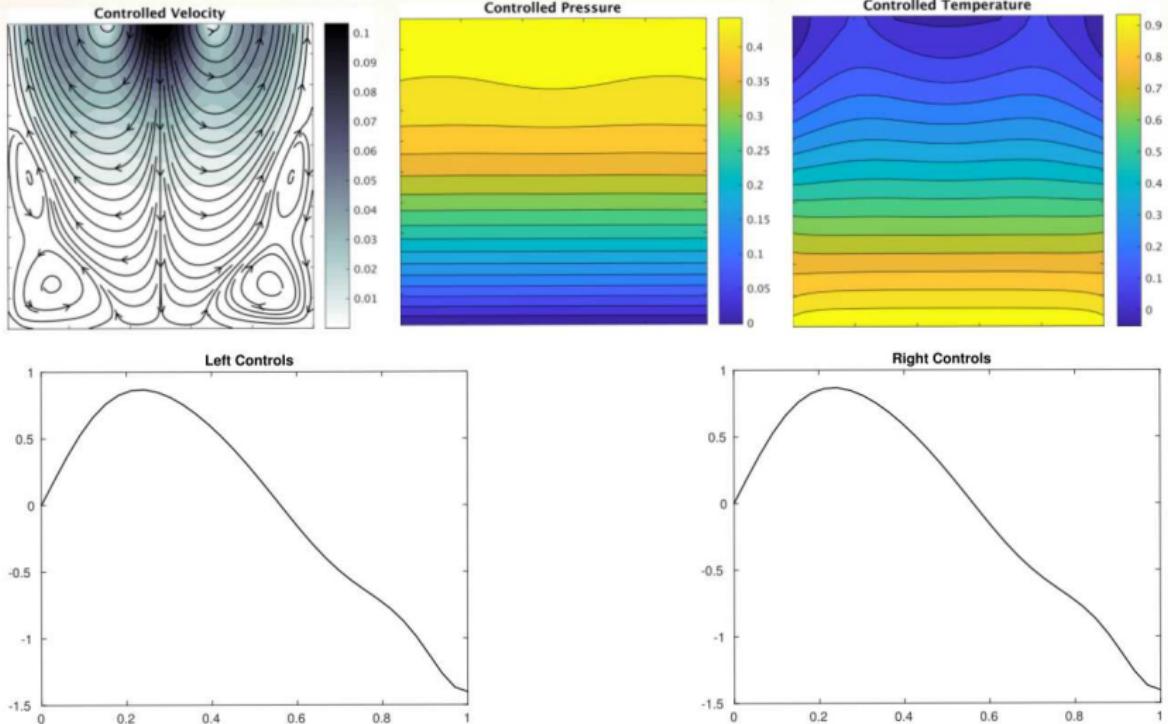
- Sequential solution, direct linear solver, single computational core.

Reduced Space: Sparse-grid Adaptivity



Optimal controls along the left vertical side wall (left image) and the right vertical side wall (right image) of the problem domain D .

Full Space: Inexact Linear Solvers



Optimal controls along the left vertical side wall (left image) and the right vertical side wall (right image) of the problem domain D .

Full Space: Inexact Linear Solvers

- F-GMRES used to solve augmented systems; $\text{tol} = 10^{-6}$.
- F-GMRES used to solve “inner” linearized forward and adjoint solves, C_u^{-1} and C_u^{-*} in the \mathcal{P} preconditioner; $\text{tol} = 10^{-4}$.
- Non-overlapping additive Schwarz domain decomposition used to precondition inner solves: 4 subdomains, horizontal strips.
- Infinite-dimensional view of Lagrangian, $v_k = w_k$.
- Full fixed level-3 Clenshaw-Curtis sparse grid.

Full Space: Inexact Linear Solvers

- F-GMRES used to solve augmented systems; $\text{tol} = 10^{-6}$.
- F-GMRES used to solve “inner” linearized forward and adjoint solves, C_u^{-1} and C_u^{-*} in the \mathcal{P} preconditioner; $\text{tol} = 10^{-4}$.
- Non-overlapping additive Schwarz domain decomposition used to precondition inner solves: 4 subdomains, horizontal strips.
- Infinite-dimensional view of Lagrangian, $v_k = w_k$.
- Full fixed level-3 Clenshaw-Curtis sparse grid.
- Serrano cluster at Sandia Labs; 80 dual-socket nodes, used 36 cores per core, i.e., 2880 cores total.
- Cores partitioned into 720 groups, for quadrature, with 4 cores each dedicated to iterative linear solver.
- **Hierarchical parallelism enabled through ROL.**

Full Space: Inexact Linear Solvers

iter	$J(x_k)$	$\ c(x_k)\ _C$	$\ \nabla L(x_k, \lambda_k)\ _x$	Δ_k	pcg	accept	ls calls	ls iters
0	0.07484675	7.820623×10^{-15}	8.377793×10^{-3}	1.00×10^4	—	—	—	—
1	0.05533699	1.661657×10^{-2}	3.641571×10^{-4}	1.00×10^4	11	1	16	597
2	0.03588474	3.052458×10^{-3}	9.338262×10^{-5}	1.00×10^4	13	1	33	1292
3	0.03515891	1.017679×10^{-4}	7.117806×10^{-5}	1.00×10^4	20	1	56	2303
4	0.03480817	1.444319×10^{-4}	2.439603×10^{-5}	1.00×10^4	15	1	75	3108
5	0.03480817	1.444319×10^{-4}	2.439321×10^{-5}	4.08×10^0	20	0	98	4157
6	0.03465050	2.237452×10^{-6}	4.364539×10^{-6}	3.03×10^1	2	1	104	4438
7	0.03464773	2.716452×10^{-7}	1.042585×10^{-7}	3.03×10^1	8	1	116	4989

Iteration history for full-space approach with iterative augmented system solves.

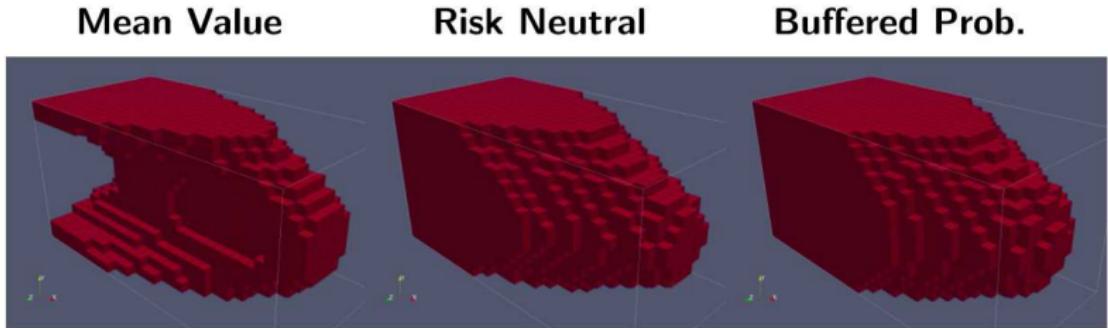
- About 43 F-GMRES iterations per solve; encouraging, considering that the size of the state space is more than 30 million, and that a fairly tight tolerance was used (10^{-6}).
- Many improvements are possible.

Conclusions

- **Expectation minimization** is an important **computational core** for optimization under uncertainty with a variety of risk models.
- Reduced-space trust-region methods enable adaptive sampling.
- Full-space trust-region methods enable large-scale iterative solvers.

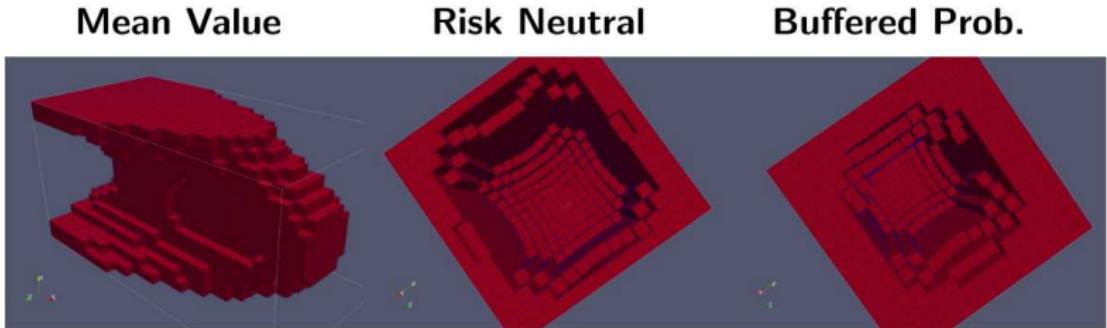
Conclusions

- **Expectation minimization** is an important **computational core** for optimization under uncertainty with a variety of risk models.
- Reduced-space trust-region methods enable adaptive sampling.
- Full-space trust-region methods enable large-scale iterative solvers.
- Working on deploying these algorithms in structural optimization:



Conclusions

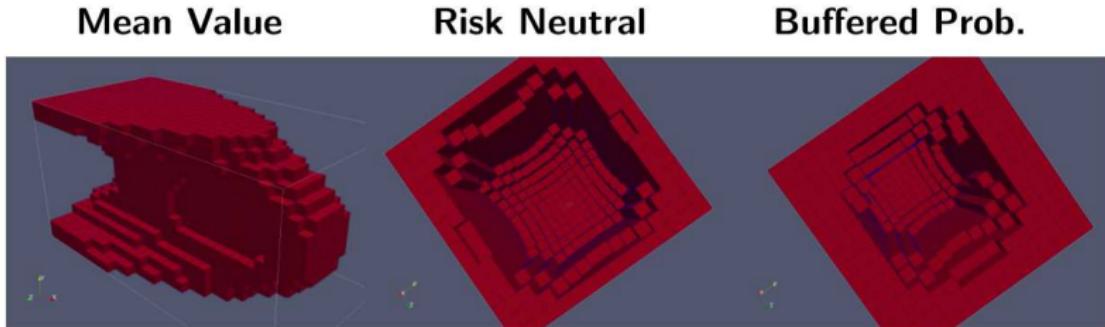
- **Expectation minimization** is an important **computational core** for optimization under uncertainty with a variety of risk models.
- Reduced-space trust-region methods enable adaptive sampling.
- Full-space trust-region methods enable large-scale iterative solvers.
- Working on deploying these algorithms in structural optimization:



Topology changes from beam to thin shell to thick shell!

Conclusions

- **Expectation minimization** is an important **computational core** for optimization under uncertainty with a variety of risk models.
- Reduced-space trust-region methods enable adaptive sampling.
- Full-space trust-region methods enable large-scale iterative solvers.
- Working on deploying these algorithms in structural optimization:



Topology changes from beam to thin shell to thick shell!

- For a deep dive, see Drew Kouri's Minitutorial MT8,
Thursday, April 19, 2:30pm-4:30pm, Grand Ballroom G.