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Inverse Problem Definition

Inverse problem:
fl@;A) =y
Given z, y, solve for \

e z € R%: independent coordinates, space, time, operating conditions

@ )\ € R"™: model parameters - objects of inference
- Generally A(z) : Q — R, infinite dimensional

@ f(): forward model
- e.g. polynomial fit model, PDE system, etc

@ y € R™: prediction observable, data
- Data: D = {<$17y1)7 <x27y2)7 —_— (xNv yN)}

SNL Najm Bayes 4/76



Challenges with Inverse Problems

@ Inverse problem solution is difficult
@ f~! often non-local, non-causal

@ Inverse problems are typically ill-posed:
@ No solution may match the data (existence)

@ Many solutions may match the data (uniqueness)
@ Dependence on initial guess on A

@ |ll-conditioning or lack of stability

- Small changes in y can lead to large changes in A
- Sensitivity to noise

@ Regularization
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Parameter Estimation and Inverse Problems
Aster, Borchers, and Thurber
Academic Press, 2004, 2012
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Least-Squares Parameter Estimation

@ Fit model f(); unknown parameters A; measurement y
@ Forward Problem:

fN) =y
@ Estimate ) for best fit between f(\) and y:
e = ()
@ Inverse problem - solve using least-squares regression

)‘rms = argmAin(| |y - f<)\)||)

i.e. minimize the y2: »
2
2 _ N~ ((FN) —y)
=), o2
k=1 k
@ Uncertainty estimation, e.g. with Support Planes method
@ 2 value decays with parameter variation away from optimum

@ Vary one parameter at a time away from A, ., refit, estimate
stdv based on x? decay below specified threshold

Najm Bayes
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Issues with Least Squares (LS) Parameter Estimation

@ Choice of optimal number of fit parameters (p)
o \? decreases with increased p
@ Danger of overfitting
@ No general means for handling nuisance parameters
@ Other uncertain parameters in the problem
@ Not objects of inference

@ LS best fit is the Maximum Likelihood Estimate (MLE)
assuming Gaussian noise in the data

@ What about non-Gaussian noise?

@ LS Estimation of Uncertainty in inferred parameter values
relies on assumed linearity of the model in the parameters

@ Uncertainty estimate does not provide general probabilistic
characterization of parameters

Najm Bayes
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LS Reg

Regularization for Deterministic Inverse Problem

Solution

@ Regularization allows enforcement of select constraints on the
inverse problem solution

@ Smoothness
@ Positivity, ...

@ Example: Tikhonov-type regularization:
A = argmin (|f(V) =yl + ol LX'I3)

@ How to choose regularization form, L, o ?

- Somewhat arbitrary
@ Regularization introduces bias, destroys consistency
@ What about uncertainty/confidence intervals in A ?
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The choice of norm

@ The use of the L2-norm

1 N
1 17\/}

1703 = MZ(J(@;))Q
k=1

is not the only option for regression fitting or regularization
o Fitting:
@ Model-data misfit, Likelihood function
@ Reflect known data noise structure; Gaussian, Poisson, etc
@ The modelers choice of metric for measuring misfit “distance”
between data and model predictions
@ Regularization
@ Optimization regularization term
@ Subjective choices; Prior information
@ Previous measurement
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Inv

¢, norm fitting

@ The ¢,-norm is of particular interest

1 N
ly—g@. o)l = 5l — 90
i=1
1 M
@l = 373216

@ The ¢,-norm is useful because it automatically identifies sparsity in
the model, when

o there is underlying sparsity
@ the modelis linear in the parameters
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Sparsity

@ A sparse model is one that provides reliable predictions with only small
number of its parameters being non-zero

@ Physical models: usually sparse in prediction of smooth observables
@ Consider e.g. a chemical model for a hydrocarbon fuel
@ thousands of reactions = thousands of parameters
@ Not all these parameters are important for smooth quantities of interest
- e.g. laminar flame burning speed S},
@ Full dimensionality for a chemical model with NV reactions

S; =f((A,n,E)y,~,(A,n,E)y), N~ 10*(Hydrocarbon fuel)
Intrinsic dimensionality
S, =9g(A,n,E)y,,(An,E)g), K ~ 10 (important reactions)

@ For linear models, ¢, -norm constrained /, fitting allows identification of
the underlying sparse structure of the model
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Sparse regression

Model:

with z € R, ¥, max order p,and K = (p + n)!/p!/n!

° Nsamples (xlvyl)w-- ) <$N7yN>
@ Estimate K terms ¢, ..., cx_1, St

min ||y — Acl[3
wherey € RN, c e RX, A, = ¥, (z,), A € RVK

With N << K = under-determined
@ Need some form of regularization
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Regularization - Compressive Sensing (CS)

@ /,-norm — Tikhonov regularization; Ridge regression:
min {|ly — Ac|3 + [c[3}
@ ¢ -norm — Compressive Sensing; LASSO; basis pursuit

min {|ly — Ac|3 + [, }
min {|y — Ac|3} subjectto|c|; <e
min {|c[;} subject to |y — Ac|3 < e

= discovery of sparse signals \i‘} K
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Statistical Inverse Problem

Motivation
@ Empirical data D generally provides noisy measurements of y
@ Best fit A is uncertain
@ Seeking a single best-fit answer contributes to ill-conditioning

Recasting as a statistical inverse problem improves conditioning
@ Solve for a set of solutions, rather than a best fit answer
@ Statistical formulation
- Use statistical methods to estimate confidence intervals on
A
@ Formulation as a Bayesian inverse problem - Bayesian inference

- Use probability to describe degree of belief about A

- Discrepancy between model and data represented using
statistical models

- Build a data model mapping A to D

- Solve for p(A|D)
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Bayes formula for Parameter Inference

@ Data Model (fit model with noise)
@ Introduce random variable (field) ¢(w) to model data misfit

y:f()‘>6)

Bayes Formula:
p(Ahy) = pAly)p(y) = p(y[A)p(A)

Likelihood Prior

T p(ylA)  p(N)

Posterior

p(y)

Evidence
Prior: knowledge of A prior to data
Likelihood: forward model and measurement noise
Posterior: combines information from prior and data
Evidence: normalizing constant for present context
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Advantages of Bayesian Methods

@ Formal means of logical inference and machine learning

@ Means of incorporation of prior knowledge/measurements and
heterogeneous data

@ Full probabilistic description of uncertain parameters

@ General means of handling nuisance parameters through
marginalization

@ Means of identification of optimal model complexity

@ Ockham’s razor

@ Only as much complexity as is required by the physics, and no
more

@ Avoid fitting to noise

Najm Bayes
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The Prior

@ Prior p(\) comes from
@ Physical constraints, prior data, Prior knowledge

@ The prior can be uninformative

@ It can be chosen to impose regularization

@ Unknown aspects of the prior can be added to the rest of the

parameters as hyperparameters
Examples:

@ X ~ U(1,5) - Uniform distribution between 1and 5

@ A\~ N(u,0?)
- Normal distribution with mean . and standard deviation o
- (u, o) hyper/nuisance parameters to be inferred from data

Note:
@ The prior can be crucial when there is little information in the data

@ When there is sufficient information in the data, the data can
overrule the prior

Najm Bayes
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Construction of the Likelihood p(y|)\)

@ Where does probability enter the mapping A — yin p(y|A)?
@ Through a presumed error model:
@ Example:
@ Model:
Ym = F(X)
e Data: y
@ Error between data and model prediction: e

y = f(A)+e

@ Model this error as a random variable
@ Example

@ Error is due to instrument measurement noise
@ Instrument has Gaussian errors, with no bias

¢ ~ N(0,0?)

SNL Najm Bayes 19/76
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Construction of the Likelihood p(y|\) - contd

For any given ), this implies

y|)‘70 o~ N(f(/\)’ 02)

exp (_ (y — f(A))2>

202

or

1

Given N measurements (y, ... , ¥ ), and presuming independent
identically distributed (iid) noise

yi = fMN+e
e, ~ N(0,02%)
N

?

L(A):p(yl,...,yNI)\,o‘) = Hp(yil)‘va)

SNL Najm Bayes 20/76
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Construction of the Likelihood p(y|\) - contd

It is useful to use the log-Likelihood

2
InL(\) = —%Nlnaz’ = gln(%r) _ % f: [Lf@)}

Frequently, signal noise amplitude is not constant
e.g. o varies with signal amplitude
then

SNL Najm Bayes AVE(
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Construction of the Likelihood p(y|\) - contd

Recall that the weighted least-squares data mis-fit is given by

e-g [y

=1 -

and the best-fit estimate of )\ is
Aeus = argmin((V))

Minimizing x? is equivalent to maximizing the likelihood
Maximum Likelihood Estimate (MLE):

)‘MLE = )‘rms

Exploration of the likelihood provides for a more general examination of
quality of fit than >

Najm Bayes
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Likelihood Modeling

@ This is frequently the core modeling challenge

@ Error model: a statistical model for the discrepancy between
the forward model and the data
@ composition of the error model with the forward model

@ Error model composed of discrepancy between

- data and the truth - (data error)
- model prediction and the truth - (model error)

@ Mean bias and correlated/uncorrelated noise structure
@ Hierarchical Bayes modeling, and dependence trees

p(9,0|D) = p(¢|6, D)p(0|D)

@ Choice of observable - constraint on Quantity of Interest?

SNL Najm Bayes 23/76
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Experimental Data

@ Empirical data error model structure can be informed based on
knowledge of the experimental apparatus

@ Both bias and noise models are typically available from instrument
calibration

@ Noise PDF structure

@ A counting instrument would exhibit Poisson noise
@ A measurement combining many noise sources would exhibit
Gaussian noise

@ Noise correlation structure

- Point measurement
- Field measurement

SNL Najm Bayes 24/76
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Posterior

P(Aly) o< p(y[Mp(A)

Continuing the above iid Gaussian likelihood example, consider also an iid
Gaussian prior on \ with

A~ N(m,s?)
p(A) = \/21—7” exp (—%)

Najm Bayes
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Posterior contd

Then the posterior is
p(Aly) oy, e Nly=fIl g=lIA=m]|
and the log posterior is
Inp(Aly) = —[ly =SV = lIA =ml| + C,

Thus, the maximum a-posteriori (MAP) estimate of )\ is equivalent to the
solution of the regularized least-squares problem

argmin(||y — fFA)[| +[|A —ml])

The prior plays the role of a regularizer

Najm Bayes 26/76
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Line fitting example

Consider the fitting of a straight line

Ym = ax +b

todata D = {(x;,y;), i=1,...,N}.
Consider an (improper) uninformative prior

m(a,b) = Const
providing no prior information on (a, b).
Assume iid additive unbiased Gaussian noise in y with a given constant
noise variance o2, thus the data model is:

y=ax+b+e, e~ N(0,0?)

with no noise in the independent variable x.
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Line fitting example

Presuming o known, we have the likelihood,

N
L(aa b) = p(D|a7 b) = Hp(yila’v b)
i=1

where

1 y; —ax; —b)?
p(y;la, b) = Tor g P (*%)

and, per Bayes formula, the posterior density p(a, b| D) is

p(a,blD) = mewmﬁb)w(a’b)

SNL Najm Bayes 28/76
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Line fitting example - contd

The posterior on (a, b) is the two-dimensional Multivariate Normal (MVN)

distribution
. b)?
D 2 N/2 — ax;
p(a,b|D) o< (2mo? | Iexp( —202
N 2
2\—N/2 _ (y; —ax; —b)
x (2mo?) exp ( ;:1 =

Linear model, Gaussian noise, o-given, and a Gaussian or
constant-uninformative prior.
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Line fitting example - contd

or, with
v = (Wyn)”
0 = (a,b)7
r, 1
¢ = | !
ry 1
we have

POID) o (2r0?) N exp (=5 (y— G)T(y—Go) )

SNL Najm Bayes 30/76
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Line fitting example - contd

Further, with the observations covariance matrix given by

o 0O 0 .. O
0 o2 0 .. 0
Fe=10 0 o2 0| € RVXN

0 0 0 . o
we have
1
POID) o (2m) NAT 2 exp 5y~ GO Tk (y— Go))

which is valid for any covariance matrix T' ., not just the above special
case.
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Maximum Likelihood

The Maximum Likelihood Estimate (MLE) of 0 is

QMLE = argmgx L(G)
= argmgin(y —GOIT L (y— G)

obs

= (GTTG) GG

This is also the generalized least squares estimate.

Given the above Const prior, this is also the maximum a posteriori (MAP)
estimate in this case.
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Line fitting example - Effect of data size on p(a, b| D)

Low data noise: 0 = 0.25

128 T T 160

. T i
[ B T Y BT RS B XY
.
w
o o b w0 oo N

0.5 1 1.5 2 2.5 3-0.5 1 1.5 2 2.5 3

N =20 N =200

@ More data = more accurate parameter estimates
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Line fitting example - Effect of data size on p(a, b| D)

Medium data noise: 0 = 0.5

1.8 186
=) -2
2.5 4 2.5 B
-3 -3 L -
3.5 3.5
-4 b N R -
4.5 4.5
-5 : L -5 i i
0.5 1 1.8 2 2.5 3 0.5 1 1.5 2 2.5 3
N =20 N =200

@ More data => more accurate parameter estimates
@ Higher noise amplitude = higher uncertainty
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Line fitting example - Effect of data size on p(a, b| D)

High data noise: 0 = 1.0

0.8 T T 118
2 G 2
2.5 Q%E 4 2.5 .
? SN i .
3.5 Tty 3.5
4 ; i il
4.5 4.5
_5 L Il _5 i i
0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3
N =20 N =200

@ More data => more accurate parameter estimates
@ Higher noise amplitude = higher uncertainty
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Line fitting example - Effect of da a range on p(a, b| D)

Medium data noise: 0 = 0.5

1.8 1.8
=) -2
2.5 - 1425 &
-3 -3
3.5 3.5
il 4 -4 b i
4.5 4.5
-5 : -5 :
0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3
x € [—2,0] x €10,2]

@ Posterior correlation structure depends on subjective details of the
experiment
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Line fitting - Effect of data realization on p(a, b| D)

Medium data noise: 0 = 0.5

1.8 1.8
=) -2
2.5 4 2.5 &
-3 -3
3.5 3.5
-4 b N R -
4.5 4.5
-5 . -5 +
0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.8 3

@ Posterior depends on specific measured data set
@ Two data sets, each with V = 20
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Line fitting example - prior vs. da

statinv
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Line fitting example - prior vs. da

statinv

80 data points

1
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1
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Line fitting example - prior vs. da

statinv

200 data points

1
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1
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Line fitting example - prior vs. da

statinv

2000 data points

1
0 0.5
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Bayesian inference illustration: noise? = uncertainty

14 6
10 5 L
! . 1 -0.5 0 0‘.5 1 15 5
plac)
6 [ 1]
@ data: Yy = 21172 —3x+5+e€ 4.5 %m 0 05 1 15 2 25
@ ¢~ N(0,02%), 0 ={0.1,0.5,1.0} -
@ Fitmodely = az? +bx +¢ of
Marginal posterior density p(a, c): st 3
45
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llustration: Data range = correlation structure

plb.c)

@ data:y =222 —3x+5+¢ aspo
@ € N(O, 004) 45 -4 35 ]‘(h_c—? 25 2
@ ranges: z € {[-2,0],[—1,1],[0,2]} saf '

e Fitmodely = ax? + bx + ¢ ol

Marginal posterior density p(b, c¢): s F
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Bayesian illustration: Data realization = posterior

p(b.c)

o data:y =222 —3x+5+¢ ; ‘ |
@ ¢~ N(O, 1) 45 4 35 3 25
o 3 different random seeds ‘ ‘

e Fitmodely = az? + bx + ¢ ss

Marginal posterior density p(b, ¢): I
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Bayesian Regression

@ Bayes formula
p(c|D) « p(Dle)(c)

@ Bayesian regression: prior as a regularizer, e.g.

@ LogLikelihood & |y — Ac|3
@ Log Prior < |c|b

@ Laplace sparsity priors 7(c|a) = 5=e I/
@ LASSO (Tibshirani 1996) ... formally:

min {[ly — Ac|3 + Ale], }

Solution ~ the posterior mode of ¢ in the Bayesian model
Y~ N(AcIy), e lenlla
A 20

@ Bayesian LASSO (Park & Casella 2008)

Najm Bayes 45/76
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Bayesian Compressive Sensing (BCS)

@ BCS (ji 2008; Babacan 2010)— hierarchical priors:
@ Gaussian priors N (0, 07) on the ¢,
e Gamma priors on the o7
= Laplace sparsity priors on the ¢;,
@ Evidence maximization establishes ML estimates of the o,
@ many of whichare found~ 0 = ¢, ~0
e iteratively include terms that lead to the largest increase in the
evidence
o iterative BCS (iBCS) (sargsyan 2012):
@ adaptive iterative order growth
@ BCS on order-p Legendre-Uniform PC

e repeat with order-p + 1 terms added to surviving p-th order
terms
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CS and BCS

Corner-peak Genz function
o flz)=(1+X7 am) ™Y a1/
@ Legendre-Uniform PC, 10*"-order/5d; 5!*-order/10d

0.1

5 5
= 001 =}
5 S 0.1
’_}N _}Fl

0.001

0.0001 745 200 300 400 500 0.01— 300 300 700 300
Number of measurements Numberof measiitements N
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CS and BCS

Oscillatory Genz function
o f(z) =cos(2rr+ X" a;); a;x1/i% r=0
@ Legendre-Uniform PC, 10*"-order/5d; (5, 6)!"-order/10d

1
th

*—BCS S5 order

0.1 s 5" order

“—~BCS 6" order
5 3 0l N
{001 L )5

0.001
100 200 300 400 500 0015 200 300 300 500
Number of measurements Number of measurements
48/76
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10000 _ o ___so8__ _ _ _ _ _  @p=006

| opscinon) e ________]

£ 1000} ;

— = ]

(D) N ]

SR | ! | |

© [ % i | | )

5 100f : ' ' i ]

S i ' . : g E

g i 1
= i "

Z. 1 + dim=5, ord=10 1

10k dim=10, ord=5 :

E dim=10, ord=6|

o 100 200 300 400 500 600

Number of measurements

SNL Najm Bayes 49/76



statinv Ex BRS

¢, norm fitting - Robustness to outliers

54
< o7t — Gaussian (1,) e e Data
= 4.5 I
~ — Gaussian likelihood
a 40f| — Laplace likelihood
E 0.5
] 3.5
B o4 -
=

E = 39 o /
g 0.3 2.5
©
% 0.2} 2.0
e
Q
M 0 1.5
a

0. i I

“8 =3 52 L J 1 2 3 =1.0 —0.5 0.0 0.5 1.0
Discrepancy, e Yright

@ Using ¢, -norm fitting, or Laplace likelihood, provides significant
robustness to outliers

@ The ¢, -norm effectively minimizes the number of significant error
terms

@ Neglects occasional outlier with large error
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Exploring the Posterior - MCMC

@ Given any sample ), the un-normalized posterior probability can be
easily computed

P(Aly) o< p(y|A)p(A)
@ Explore posterior w/ Markov Chain Monte Carlo (MCMC)
- Metropolis-Hastings algorithm:
@ Random walk with proposal PDF & rejection rules

- Computationally intensive, ©(10°) samples
- Each sample: evaluation of the forward model

@ Surrogate models

o Evaluate moments/marginals from the MCMC statistics
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McMC Alg

Metropolis-Hastings MCMC sampling of density 7(x)

Algorithm:
e Given a starting point z;, and proposal density p(y|z,,)
@ Draw a proposed sample y from proposal density
@ Calculate acceptance ratio
: m(y)q(z,|y) }
o(r,,y) =minq 1, ————=
() =min {1, TS
@ Put
_ [y, with probability a(z,,,y)
Tnt1 =) z . with probability 1 — a(z,,,y)

n?’
Note:

o Ifg(y|z,) x w(y) thena =1

@ ¢does not have to be symmetric.

o 7 need be evaluated only up to a multiplicative constant
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Adaptive Metropolis

@ Idea: learn a better proposal ¢(y|z) from past samples.
@ Learn an appropriate proposal scale.
@ Learn an appropriate proposal orientation and anisotropy; this
is essential in problems with strong correlation in 7
@ Adaptive Metropolis scheme of [Haario et al. 2001]:
@ Covariance matrix at step n
Cr = 5,C0v (zg, ..., x,) + s4€l,
where € > 0, d is the dimension of the state, and s, = 2.4 /d
(scaling rule-of-thumb).
@ Proposals are Gaussians centered at z,.
@ Use fixed covariance C|, for the first n,, steps, then use C:.
@ Chain is not Markov.
@ Nonetheless, one can prove that the chain converges to

@ Other adaptive MCMC ideas have been developed
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Line fitting example - MCMC - (a, b, In o) samples

_ i | ) | i | 1 | N
20 40 60 80 10C © 200 400 600 800 100(

@ Initial transient “Burn-in" period, ~ 100 steps

@ Problem and initial condition dependent
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Line fitting example - MCMC - (a, b, In o) samples

_ L ! L 1 L | L 1 L
0 2000 4000 6000 8000 1000!

@ Visual inspection reveals “good mixing”
@ No significant long-term correlation or periodicity
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Line fitting example - MCMC - acceptance probability

LA

o 20 40 60 80  10C

@ An average acceptance probability of ~ 0.2 is “good”
@ A typical compromise between accepting most samples
@ not moving much, strong correlation
and rejecting most samples
@ moving too far off, wasted CPU time in rejections
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MCMC

Alg  MCMCEx

Line fitting example - MCMC - posterior density

-soz

-100 -1006
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@ Chain finds high posterior density (HPD) region
@ stays there generating many random samples
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MCMC practicalities

Effective use of MCMC still requires some (problem-specific) experience.
Some useful rules of thumb:
@ Adaptive schemes are not a panacea.

@ Whenever possible, parameterize the problem in order to minimize
posterior correlations.

@ What to do, if anything, about “burn-in?”

@ Visual inspection of chain components is often the first and best
convergence diagnostic.

@ Also look at:

- autocorrelation plots

- multivariate potential scale reduction factor (MPSRF,
Gelman & Brooks)

- and other diagnostics.

@ Optimal acceptance rates? Maybe ... ~0.2
- Butin practice it's best to explore chain diagnostics
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Chemical Rate Parameter Estimation example

Synthetic ignition data generated using a detailed model+noise

@ Ignition using GRImech3.0
methane-air chemistry

@ Ignition time versus Initial
Temperature

@ Multiplicative noise error Rknyisg

Ignition time (sec)

model 0E E
@ 11 data points:
= TSTP) (14 06)
€ ~ ‘Z\/'(O7 1) 0.017‘ ) | ) | ) E
1000 1100 1200 130C

Initial Temperature (K)
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Fitting with a simple chemical model

@ Fit a global single-step
irreversible chemical model

CH, 4+ 204, — CO, + 2H,0
R = [CH4][02]kf
k; = Aexp(—E/R°T)

@ Infer 3-D parameter vector i
(InA,InE,Ino) e
@ Good mixing with adaptive

_.:-’ . | . | L 1 . ! L
MCMC when start at MLE 2000 4000 6000 8000 1000
Chain Step
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Marginal Posteriors onIn A and In £/

0 15
0. 6 —
10- 4
o4 . )
57 -
0.2 .
A E—7 —%% 107 108 10
' |E
InA=32.154+3 x 0.61 InE =10.73 + 3 x 0.032
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Bayesian Inference Posterior and Nominal Prediction

¥ T
3 “\ 3
o F . —GRl 1
[ . GRl [==CRl +noi se .
g I “ Fit Model 1
c | GRI +noi se
(o]
= 0F E
= F ;
(o]
0. 0ff; ‘ ; ‘ , g
1000 1100 1200 130(
Initial Tenperature (K)
Marginal joint posterior on
(InA,InE) exhibits strong Nominal fit model is consistent
correlation with the true model
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ABC

Approximate Bayesian Computation (ABC)

@ Data model: y = f(x,\) + €4, €q ~ N(0,0%) anda= (), 0)
@ Full Likelihood: L(a) = p(D]ar) = p(yq4|c)

@ Often, the likelihood cannot be formulated or is too costly to

compute, e.g.
L(a) = L*(a)Z(a) where Z(«)is unknown
L(a) := /L*(a,u)du where u is high dimensional
Resolution:

@ Bypass computation of Likelihood
@ Generate replicate data samples z from the data model

@ Employ a pseudo-likelihood based on a kernel density that enforces
select constraints on the predictions =
@ Constraint employs some distance measure between y, and z
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ABC Likelihood

With p(8) being a metric of the statistic &, use the kernel function as an
ABC likelihood:
p(S)

Lapc(a) = EK <—>

€ €

where € controls the severity of the consistency control

Example, enforce the mean data prediction

S(y) =E(y) = py
with z = z(«), and
p(S8) = p () — py,
Propose the Gaussian kernel density:

LE(Q) - exp (_ ([LZ(OZ) - :uyd) )

2¢2
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Model UQ

@ No model of a physical system is strictly true
@ The probability of a model being strictly true is zero
@ Given limited information, some models may be relied upon for
describing the system
Let M = {M;, M,, ...} be the set of all models
@ p(M,|I) is the probability that 1/, is the model behind the available
information
@ Model Plausibility
@ Parameter estimation from data is conditioned on the model
p(D|0, M, )7 (6| My)

PO === Ding)
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Bayesian Model Comparison

Evidence (marginal likelihood) for M, :
p(DIM) = [ p(DIO, My)(610, )0

Bayes Factor B, ;:

B — p(D“\/[i)

ks p(D|Mj)

Plausibility of M/
p(D|My) m(M,,| M)

PIMUD M) = B ye e ¥l

Posterior odds:
P(MI:|D7M) W(]V[HM)

p(M;|D,30) ~ 7 (M, [0)
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Marginal Likelihood example

@ Consider Fitting with data from a truth model
y, =23 +22—6

@ Gaussian iid additive noise model with fixed variance s
@ Bayesian regression with a Gaussian Likelihood, iid and given s
o Consider a set of Legendre Polynomial expansion models, order 1-10

P
Ym = Z crPr(T)
k=0

@ Uniform priors [—D, D] on all coefficients
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Too much model complexity leads to overfitting

Order =1
-3.5
— Fitted model
—4.0| ¢ e Noisy data »
--- True function ‘ s
—-4.5
-5.0
-5.5
-6.0
-6.5

~T.0 —05 0.0 0.5 1.0
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Too much model complexity leads to overfitting 7

Order =2
-3.5
— Fitted model
—-4.0r| o e Noisy data [
--- True function /
—4.5
—5.0}
—5.5
—-6.0
—6.5

1.0 05 0.0 0.5 1.0
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Too much model complexity leads to overfitting

Order = 3

—3.5p—

— Fitted model
—4.0r| o e Noisy data

=== True function
—4.5}
—5.01
—5.5}
—-6.0}
e E— 0.0 05 10
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Too much model complexity leads to overfitting

Order = 4
—3.5—
— Fitted model
—4.0r| o e Noisy data
=== True function
—4.5} =
—-5.0
—5.5}
—-6.0
—6.5— : : : i
—1.0 —0.5 0.0 0.5 1.0
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Too much model complexity leads to overfitting

Order =5

—3.5p—

— Fitted model
—4.0r| o e Noisy data

=== True function
—4.5}
—5.01
—5.5}
—-6.0}
e E— 0.0 05 10
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Too much model complexity leads to overfitting

Order =6

—3.5p—

— Fitted model
—4.0F| « e Noisy data

=== True function
—4.5}
—5.01
—5.5}
—-6.0}
e E— 0.0 05 10
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Too much model complexity leads to overfitting

Order=7
—3.5—
— Fitted model
—4.0r| o e Noisy data :
--- True function A
—4.5}
-5.0-
-5.5t
-6.0f
—6.5— ‘ : : 5
-1.0 -0.5 0.0 0.5 1.0
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Too much model complexity leads to overfitting

Order = 8
—3.5—
— Fitted model
—4.0r| o e Noisy data :
--- True function &
—4.5 =
-5.0-
-5.5t
-6.0f
—6.5— ‘ : : 5
-1.0 -0.5 0.0 0.5 1.0

SNL Najm Bayes 68/76



Too much model complexity leads to overfitting

Order=9
—3.5—
— Fitted model
—4.0r| o e Noisy data :
--- True function A
—4.5 = v
-5.0-
-5.5t
-6.0f
—6.5— ‘ : : 5
-1.0 -0.5 0.0 0.5 1.0
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Too much model complexity leads to overfitting

Order =10
—3.5— :
— Fitted model l
—4.0F e o NOisy data [ SRRERRNRRRARRE
--- True function 4
—4.51 ——
-5.0}
—5.5
-6.0}
I 0.5 0.0 0.5 10
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Evidence and Validation Error

—1 -25
2 /\\
-3.0
—30}
_ R
. g 49 -350
Log Evidence: g s
< —sqt ©
@ 3
]
In p(D[Mj,) g e A
|
_1d ;
/ -45
/ e
- T35 4 5 6 7 5100
Order
@ Validation error - ¢, error for a random set of 1000 points
- Minimal at 3rd-order
@ Log evidence: sum of two scores, balances complexity &fit |, .. -

- Peaks at 3rd order
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Model

Evidence - Discrimination among Models

1
0] e o SIS SO
h\ =2
—
~100)
g g -a
c c
(7 [
o o
S -20 S
L~ &
g g =
= 3
~300)
— N=11 <
—400) — N=31 ~— Data variance = 0.1
e— N=51 = Data variance = 0.01
— N=101 ~— Data variance = 0.001
T2 5 4 5 6 7 8§ 9§ 10 4 5 6 7 & § 10
Order Order

@ Discrimination among models is more clear-cut with higher amount

of data D and/or less data noise
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Model
Prediction

Consider that a model
y’n], = f(aj7 A)

was fitted according to
y=f(z,\)+e €~ ]\7(0.‘02)7

providing:
@ The posterior p(A, o|D)
@ The marginal posterior p(\|D)
Define:
@ Pushed forward posterior (PFP) distribution : p(y,,|z, D)
@ Posterior predictive (PP) distribution : p(y|z, D)
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Model

Pushed forward posterior (PFP)

@ PFP distribution p(y,, |z, D)

@ Push-forward of the marginal posterior measure on A through

[, A)

@ PFP random process

}/m(wi) = f(l‘, /\(w))

~ P(Ymlz, D)
@ The PFP provides the uncertain prediction by the calibrated model
- Forward UQ
- Mean prediction E[Y,,]

- Predictive variance V]Y,,,]
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Model

Posterior Predictive (PP)

Posterior Predictive distribution p(y|z, D)
e Witha = (), 0),

p(ylz, D) = / p(ylz, &, D)p(a|D)dex

PP random process
YPP(z,w) = Eu[Y(z,w)]
~ plylz, D)
provides the marginal prediction of the data. Where
Y(z,w) = f(x, ) + €(w,0)

is the PP data predictor

@ Posterior predictive check - evaluate distance between the PP and
the actual/empirical distribution of the data
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Validation

o Validity is a statement of model utility for predicting a given
observable under given conditions

@ Inspection of model utility requires accounting for uncertainty
@ Statistical tool-chest for model validation

Cross-validation
Bayes Factor

Model Plausibility
Posterior Odds
Posterior predictive:

p(DID, M) = / p(D]6, M,)p(8]D, My)do
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Model Averaging

@ When multiple models are acceptable, and no model is a clear
winner, model averaging can be used to provide a prediction of
interest

o If prediction errors among models are uncorrelated, then averaging is
expected to reduce prediction errors

@ Not likely if models are dependent, or if they have comparable
large bias errors in a given observable of interest

@ Bayesian Model Averaging

=

p(¢|D, M) =" p(¢|D, My,)p(My| D, M)

k=1

where
M ={M,,..., My}
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Closure
Closure

@ Inverse problems are ubiquitous in science and engineering

@ Where possible, employing the Bayesian framework provides for
more robust, reliable and informed solutions

@ Bayesian inversion facilitates subsequent prediction with uncertainty

@ Bayesian model selection strategies are relevant to the identification
of parsimonious models that explain empirical data
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