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• Inverse Problems

o Least Squares Parameter Estimation

o Regularization

o Sparsity

• Statistical Inverse Problems

o Bayesian Inference

o Examples

o Regularization & Sparsity

• Markov chain Monte Carlo

o Metropolis-Hastings MCMC Algorithm

o Examples

• Approximate Bayesian Computation (ABC) Methods

• Model Selection, Validation, Averaging

• Closure
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Inverse Problem efinition

Inverse problem :
f (x; A) = y

Given x, y, solve for A

• x e Pd: independent coordinates, space, time, operating conditions

o A E En: model parameters - objects of inference

- Generally A(x) : S2 En, infinite dimensional

o f (): forward model

- e.g. polynomial fit model, PDE system, etc

o y e Rin: prediction observable, data

- Data: D = {(x1, y1), (x2, y2), , (xN,yN)}
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Challenges ith Inverse Problems

• Inverse problem solution is difficult

• f-1 often non-local, non-causal

• Inverse problems are typically ill-posed:

• No solution may match the data (existence)

la Many solutions may match the data (uniqueness)

• Dependence on initial guess on

o Ill-conditioning or lack of stability

- Small changes in y can lead to large changes in
- Sensitivity to noise

• Regularization
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Challenges wit - noise and ill-conditio ing
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Least-Squ

• Fit model f (); unknown parameters A; measurement y
• Forward Problem:

f (À) =
• Estimate A for best fit between f (À) and y :

Ant = f f (Y)
o Inverse problem - solve using least-squares regression

Arms = argna)i,n(lly f

i.e. minimize the x2:

X =
2 (CAA) Y)2 

2
k=1 ak

o Uncertainty estimation, e.g. with Support Planes method
o X2 value decays with parameter variation away from optimum
o Vary one parameter at a time away from Arms, refit, estimate

stdv based on X2 decay below specified threshold
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Issues with Least Squares (LS) Parameter Estimation

• Choice of optimal number of fit parameters (p)

o x2 decreases with increased p
• Danger of overfitting

• No general means for handling nuisance parameters

• Other uncertain parameters in the problem
o Not objects of inference

• LS best fit is the Maximum Likelihood Estimate (MLE)
assuming Gaussian noise in the data

o What about non-Gaussian noise?

fa LS Estimation of Uncertainty in inferred parameter values
relies on assumed linearity of the model in the parameters

• Uncertainty estimate does not provide general probabilistic
characterization of parameters
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Regularization for D
Solution

LS Reg Spaise

terministic Invers Problem

o Regularization allows enforcement of select constraints on the
inverse problem solution

• Smoothness
• Positivity, ...

o Example: Tikhonov-type regularization:

= argmin f (À') + + al

o How to choose regularization form, L, a ?

- Somewhat arbitrary

• Regularization introduces bias, destroys consistency

o What about uncertainty/confidence intervals in ?

LA' 22)
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e c oice of nor

• The use of the L2-norm

I IY - g(x, 6)1

J (0)1

2
2 yi — g(xi, 0))2

2
2

i=1

1 M

k=1

is not the only option for regression fitting or regularization

o Fitting:

• Model-data misfit, Likelihood function
• Reflect known data noise structure; Gaussian, Poisson, etc
co The modelers choice of metric for measuring misfit "distance

between data and model predictions

• Regularization

• Optimization regularization term
• Subjective choices; Prior information
• Previous measurement
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norm fitt

o The £1-norm is of particular interest

— g(x, 0)111 = 
N
-
1 E g(xi, 0)1

11J(0)111 = —E wool
k=1

o The £1-norm is useful because it automatically identifies sparsity in
the model, when

• there is underlying sparsity
• the model is linear in the parameters
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Sparsity

• A sparse model is one that provides reliable predictions with only small
number of its parameters being non-zero

• Physical models: usually sparse in prediction of smooth observables

• Consider e.g. a chemical model for a hydrocarbon fuel

o thousands of reactions thousands of parameters

• Not all these parameters are important for smooth quantities of interest

- e.g laminar flame burning speed SL

• Full dimensionality for a chemical model with N reactions

S L = f ((A, n, E)i, •-• , (A, n, E) N) , N 104 (Hydrocarbon fuel)

Intrinsic dimensionality

S L = g ((A, n, E)1, • • • , (A, n, E)K) , K — 10 (important reactions)

• For linear models, £1-norm constrained £2 fitting allows identification of
the underlying sparse structure of the model
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Sparse regression

Model:
K-1

y = f(x) E ck (X)

k=0

with x E Pn, klik max order p, and K = (p + n)! p! In!

• N samples (x 1, yl) , (x N, N)
• Estimate K terms co, , s.t.

min 1Z

where y E PN , c e PK, Ath = wk(xi), A E [RNxR-

With N << K under-determined

• Need some form of regularization
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egu anzati• - ompressive Sensing (

• f2-norm - Tikhonov regularization; Ridge regression:

min {ly + Mc

o frnorm - Compressive Sensing; LASSO; basis pursuit

min {MY AcH + MOO

min {Mu — AcID

min {Hi}

discovery of sparse signals

subject to ch < c

subject to — AcE < E
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Statistical Inverse

Motivation

• Empirical data D generally provides noisy measurements of y

o Best fit A is uncertain

o Seeking a single best-fit answer contributes to ill-conditioning

Recasting as a statistical inverse problem improves conditioning

o Solve for a set of solutions, rather than a best fit answer

• Statistical formulation

- Use statistical methods to estimate confidence intervals on
A

* Formulation as a Bayesian inverse problem - Bayesian inference

- Use probability to describe degree of belief about A
- Discrepancy between model and data represented using

statistical models
- Build a data model mapping A to D
- Solve for p(A1D)
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Bayes form la for Parameter Inference

• Data Model (fit model with noise)

• Introduce random variable (field) c(w) to model data misfit

= f(A, c)

o Bayes Formula:

p(A, y) = p(Aly)p(y) = p(YR)P(A)

Likelihood Prior

P(0) P(A)
p(Aly)

Posterior

p(y)

Evidence

o Prior: knowledge of prior to data

o Likelihood: forward model and measurement noise

• Posterior: combines information from prior and data

• Evidence: normalizing constant for present context

SNL Najrn Bayes 16 / 76
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Advantages of Bayesian Methods

o Formal means of logical inference and machine learning

o Means of incorporation of prior knowledge/measurements and
heterogeneous data

o Full probabilistic description of uncertain parameters

o General means of handling nuisance parameters through
marginalization

o Means of identification of optimal model complexity

o Ockham's razor
o Only as much complexity as is required by the physics, and no

more
o Avoid fitting to noise

SNL Najrn Bayes 17 /76
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The Prior

o Prior p(A) comes from
o Physical constraints, prior data, Prior knowledge

o The prior can be uninformative

• It can be chosen to impose regularization

o Unknown aspects of the prior can be added to the rest of the
parameters as hyperparameters

Examples:

• U(1, 5) - Uniform distribution between 1 and 5

• N(it, a2)

- Normal distribution with mean it and standard deviation a
- a) hyper/nuisance parameters to be inferred from data

Note:

• The prior can be crucial when there is little information in the data

• When there is sufficient information in the data, the data can
overrule the prior

SNL Najrn Bayes 18/ 76
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•• of the ikelihood p(yl À)

o Where does probability enter the mapping y in p (y IA)?

o Through a presumed error model:

o Example:

o Model:

=

• Data: y
• Error between data and model prediction: 6

y = f(A) +6

o Model this error as a random variable

o Example

o Error is due to instrument measurement noise
• Instrument has Gaussian errors, with no bias

c ̂  N(O,Q2)
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Construction of the Likelihood 13(M -confd

For any given A, this implies

ylA, N(f (A), cr2)

or

.73(0, a) =  exp (Y —2fa(2A))2 

Given N measurements (yi, , mv), and presuming independent
identically distributed (iid) noise

= f(A) + Ei
Ei — N(0, 0-2)

L(A) = 141, • • • = 0")

i=1

SNL Nair, Bayes 20 / 76
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Construction of the Likelihood 13(M -confd

It is useful to use the log-Likelihood

ln 
1

L(A) = 
2 
N1n a

2 
— 

 
ln(27r) —

2
i=1

Frequently, signal noise amplitude is not constant
e.g. 0- varies with signal amplitude
then

N N

lnL(A) =
1 
2 
E ln o-F — 2 ln(27r) — E
i=1 i=1

— f (A)] 2

C/

yi f ( A)1 2
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statinv MCMC ABC Model Closure Bayes Ex BRS

Construction of the Likelihood p(y1 -confd

Recall that the weighted least-squares data mis-fit is given by

2
X =

a=

and the best-fit estimate of is

r  — f(A)l 2

[

Arms = argmin(x2 (A))

Minimizing X2 is equivalent to maximizing the likelihood
Maximum Likelihood Estimate (MLE):

A MLE — Arms

Exploration of the likelihood provides for a more general examination of
quality of fit than X2

SNL Najrn Bayes 22 / 76



Inv statinv MCMC ABC Model Closure

Likelihood Modeli

o This is frequently the core modeling challenge

• Error model: a statistical model for the discrepancy between
the forward model and the data

• composition of the error model with the forward model

o Error model composed of discrepancy between

- data and the truth - (data error)
- model prediction and the truth - (model error)

• Mean bias and correlated/uncorrelated noise structure

o Hierarchical Bayes modeling, and dependence trees

p(0,01D) =1)(0 , D)p(OLD)

• Choice of observable - constraint on Quantity of Interest?

SNL Najrn Bayes 23 / 76
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Experimental Dat

o Empirical data error model structure can be informed based on
knowledge of the experimental apparatus

o Both bias and noise models are typically available from instrument
calibration

o Noise PDF structure

• A counting instrument would exhibit Poisson noise
o A measurement combining many noise sources would exhibit

Gaussian noise

o Noise correlation structure

- Point measurement
- Field measurement

SNL Najrn Bayes 24 / 76
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Posterior

p(Aly) a p(y1)4(A)

Continuing the above iid Gaussian likelihood example, consider also an iid
Gaussian prior on with

N (m, s2)

p(A) =  
1 

exp 
( (À — 

)-V27 s 282 
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Posterior contd

Then the posterior is

p(Aly) e-HY-f(A)11

and the log posterior is

lnp(Aly) = f(A)1 11A — ml l+ CA

Thus, the maximum a-posteriori (MAP) estimate of A is equivalent to the
solution of the regularized least-squares problem

argmin(
A

— + 11À — mil)

The prior plays the role of a regularizer

SNL Najrn Bayes 26 / 76
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example

Consider the fitting of a straight line

yr„ = ax b

to data D = {(xi, yi), i = 1, , N}.
Consider an (improper) uninformative prior

7(a, b) = Const

providing no prior information on (a, b).
Assume iid additive unbiased Gaussian noise in y with a given constant
noise variance o-2, thus the data model is:

y = ax + b + E, E N(0, o-2)

with no noise in the independent variable x.
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Presuming known, we have the likelihood,

L(a, = p(Dla,b) = p(yi b)
i=i

where
1 (yi — axi — b)2

p(yi = 
V271- a 

exp 
2a2

and, per Bayes formula, the posterior density p(a, blD) is

p(Dla, b)71- (a, b)
p(a,blD) = p(D) a p(Dla, b)ir (a, b)
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ine itting exam le - contd

The posterior on (a, b) is the two-dimensional Multivariate Normal (MVN)
distribution

p(a,b D) OC 
(270.2 )-NI2

N
(270_2)-N/2 exp (_

j=1

exp 
(yi axi b)2

j=1 2a2

)i — axi — b)2

20-2

Linear model, Gaussian noise, a-given, and a Gaussian or
constant-uninformative prior.
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Line fitting exam e - contd

or, with

Y = ••• YNY
= (a, b)T

-xl 1-

G = 
x2 1

_XN

we have

•

p(01D) oc (27ro-2)—N/2 exp 2c1,2 (y G0)T (y — GO))
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Line fitting exam le - contd
Bayes Ex BRS

Further, with the observations covariance matrix given by

0_2 0 0 0 -
0 0_2 0 0

robs — 0 0 a2 0 E ENxN

0 0 ...

we have

p(8D) OC (27)—N /2 robs —1/2 exp 2 (y WTI 0-1L(y — GB))

which is valid for any covariance matrix Fobs, not just the above special
case.

SNL Najrn Bayes 31/ 76
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Maximum Likelih.od

The Maximum Likelihood Estimate (MLE) of 0 is

°MLE argmax L (0)

argmjn(y — GO)Tras(y — GO)

(GT1 obs ,t;sy

This is also the generalized least squares estimate.

Given the above Const prior, this is also the maximum a posteriori (MAP)
estimate in this case.
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Line fittin
Low data

121
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e More data more accurate parameter estimates
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Line fittin
Medium

1. I

- 2

2. 5
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• on p(a, bD)

1 1. 5 2

N = 200

• More data more accurate parameter estimates

• Higher noise amplitude higher uncertainty

2. 5 3
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I- II
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Line fittin
Medium

example - Effect
ata noise: cr = 0.5
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o Posterior correlation structure depends on subjective details of the
experiment

3
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Line fitting - Effect of data realization on p(a, blD)
Medium data noise: cr = 0.5

1.i
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- 5
O. 5 1. 5 2 2. 5

1 .

- 2
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5
3 0 5 1. 5

o Posterior depends on specific measured data set

o Two data sets, each with N = 20

2 2. 5 3
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Line fitting example - prior vs. data-siz
20 data points
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Line fitting example - prior vs. data-siz
80 data points

Constant uninformative prior
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Gaussian prior
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Line fitting
200 data p

xample - prior vs. data-siz
ints
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Line fitting exam
2000 data point

le - prior vs. data-size
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Bayesian inference illustration: noise uncertaintyT
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• data: y = 2x2 — 3x + 5 + c
4.5

• c N(0, a-2), a = 0.1, 0.5,1.01 6/

Fit model y = ax2 + bx + c
5.5

Marginal posterior density p(a, c):
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Illustration: Data ran

2

2 2 3

• data: y = 2x2 - 3x + 5 + c

• E .7V(0, 0.04)

o ranges: x E {[-2, 0], [-1,1], [0, 2]}

o Fit model y = ax2 + bx c

Marginal posterior density p(b, c):
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Bayesian illustra 111 / • A. 41. • • I posterior

-as 0.5

• data: y = 2x2 — 3x + 5 + c

• E Aro, 1)
• 3 different random seeds

• Fit model y = ax2 + bx + c

Marginal posterior density p(b, c):

1 5
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Bayesian R

o Bayes formula
p(c D) p(Dlc)7(c)

o Bayesian regression: prior as a regularizer, e.g.

• Log Likelihood <=> y —
• Log Prior <=>

o Laplace sparsity priors 7r(ck =

o LASSO (Tibshirani 1996) ... formally:

min {1 y — Ac + Allelli}

Solution — the posterior mode of c in the Bayesian model

y N (Ac, N),

o Bayesian LASSO (Park & Casella 2008)

C —
1 
CHCIN2(1

5141_ Najrn Bayes 45/76



Inv statinv MCMC ABC Model Closure es F. BRS

Bayesian Compressive Sensing (BCS)

• BCS(Ji 2008; Babacan 2010)— hierarchical priors:

• Gaussian priors N(0, 01) on the ck
• Gamma priors on the 01

Laplace sparsity priors on the ck

• Evidence maximization establishes ML estimates of the uk

• many of which are found 0 ck 0
o iteratively include terms that lead to the largest increase in the

evidence

o iterative BCS (iBCS) (Sargsyan 2012):

• adaptive iterative order growth
o BCS on order-p Legendre-Uniform PC
o repeat with order-p + 1 terms added to surviving p-th order
terms

SNL Najrn Bayes 46/76
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CS and BCS

Corner-peak Genz function

o f (x) = (1 + Ein aix,)-(n+i); ai a vi2

O Legendre-Uniform PC, 10th-order/5d; 5th-order/10d

0.1

:I 0.01

.4"
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0.0001
100 200 300 400

Number of measurements
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0.01
100

.--.Bayesian CS
minimization

200 300 400
Number of measurements

10d

500
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CS and BCS

Oscillatory Genz function

• f (x) = cos(27r + En i a•x•)- a• cx 1/i2; r = 0i= 
• Legendre-Uniform PC, 10th-order/5d; (5, 6)th-order/10d

0.1

X 0.01

0.001

100 200 300 400
Number of measurements
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500

O

0.01
00

BCS 5th order

•• CS 5th order

•—• BCS 6th order

200 300 400
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10d

500
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Oscillator function BCS number of t rms
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ei norm fi ting - Robustness to outlirs
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• • Data

— Gaussian likelihood

— Laplace likelihood

.0 —0.5 0.0
Might

0.5 1 0

o Using .(1-norm fitting, or Laplace likelihood, provides significant
robustness to outliers

o The frnorm effectively minimizes the number of significant error
terms

0 Neglects occasional outlier with large error
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Exploring the Pos
Alg MCMCEr.

erior - MCMC

• Given any sample A, the un-normalized posterior probability can be
easily computed

p(Aly) a .1)(y A)p(A)

o Explore posterior w/ Markov Chain Monte Carlo (MCMC)

- Metropolis-Hastings algorithm:

• Random walk with proposal PDF & rejection rules

- Computationally intensive, (9(105) samples
- Each sample: evaluation of the forward model

co Surrogate models

• Evaluate moments/marginals from the MCMC statistics
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Metropolis-Hastings MCMC sampling o density ir(x)

Algorithm:

o Given a starting point x0 and proposal density p(yl.

o Draw a proposed sample y from proposal density

o Calculate acceptance ratio

• Put

a(x„, y) = min {1,

y,
Xrt-F1 x„, with probability 1 — ce(x7i, y)

(y)q(x nly) 
71-(x n)q(ylx„)

with probability a(xn, y)

Note:

• If q(ylx„) a 7(y) then a = 1

• q does not have to be symmetric.

• 71 need be evaluated only up to a multiplicative constant
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Adaptive Metrop

o Idea: learn a better proposal q(y x) from past samples.

fa Learn an appropriate proposal scale.
• Learn an appropriate proposal orientation and anisotropy; this

is essential in problems with strong correlation in 7F

o Adaptive Metropolis scheme of [Haario et al. 2001]:

• Covariance matrix at step n

Cm* = SdCOV (x0, , xm) + sdad

where E > 0, d is the dimension of the state, and sd = 2.42/d
(scaling rule-of-thumb).

o Proposals are Gaussians centered at xn.
fa Use fixed covariance C0 for the first no steps, then use C.
o Chain is not Markov.
• Nonetheless, one can prove that the chain converges to 7

o Other adaptive MCMC ideas have been developed
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Line fitting exa
Alg MCMCEx

ple - MCMC - (a, b, ln ) samples

2-

- 1-

_ 2_

20 40 60 80 10( 200 400 600 800 100(

• Initial transient "Burn-in" period, 100 steps

• Problem and initial condition dependent
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Line fitting exa
Alg MCMCEx

ple - MCMC - (a, b, ln ) samples

0 140044144414/4000410094404%*
In

b

C-0/

2000 4000 6000 8000 10001

o Visual inspection reveals "good mixing'

o No significant long-term correlation or periodicity
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Line fitting example - MCMC - accepta ce probability

ill
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1 1
fi
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O. '

0
0 200 400 .00 800 100(

• An average acceptance probability of — 0.2 is "good"

• A typical compromise between accepting most samples

• not moving much, strong correlation

and rejecting most samples

o moving too far off, wasted CPU time in rejections
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Line fitting xample - MCMC - posterio density

50

- 1 00

- 150

- 200 200 400 600 800 100(

• Chain finds high posterior density (HPD) region

• stays there generating many random samples
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MCMC practicaliti

Effective use of MCMC still requires some (problem-specific) experience.
Some useful rules of thumb:

• Adaptive schemes are not a panacea.

• Whenever possible, parameterize the problem in order to minimize
posterior correlations.

• What to do, if anything, about ''burn-in?"

• Visual inspection of chain components is often the first and best
convergence diagnostic.

• Also look at:

- autocorrelation plots
- multivariate potential scale reduction factor (MPSRF,
Gelman & Brooks)

- and other diagnostics.

• Optimal acceptance rates? Maybe ... —0.2

- But in practice it's best to explore chain diagnostics
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Chemical Rate Para
Alg MCMCEx

eter Estimation example

Synthetic ignition data generated using a detailed model+noise

o Ignition using GRImech3.0
methane-air chemistry

• Ignition time versus Initial
Temperature

• Multiplicative noise error
model

• 11 data points:

Td yGRI (Tio) (1 + aci)

N(0, 1)
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Fitting with a simple chemical model

o Fit a global single-step
irreversible chemical model

CH4 + 202 —> CO2 + 2H20

9=1 = [CH4][02]kf

k f = A exp(—EIR°T)

• Infer 3-D parameter vector
(ln A, ln E, ln a)

• Good mixing with adaptive
MCMC when start at MLE

36 

34-

32

30-

28 

2000 4000 6000 8000 10001
Chai n St ep
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MarginTrteriors on ln A and ln E

30 32 34
I IA

ln A = 32.15 ± 3 0.61

15

10

5

0
10. 6 10.7 10.8

I rE

ln E = 10.73 ± 3 x 0.032

10.
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Bayesian Inference Posterior and Nominal Prediction

O

32 33 34

Marginal joint posterior on
(ln A, ln E) exhibits strong
correlation

35
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Nominal fit model is consistent
with the true model
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Approximate Bay:sian Computation (ABC)

• Data model: y = f (x , A) + cd, cd N(0, o-2) and a a)

• Full Likelihood: L(a) = p(D a) = p(y d

o Often, the likelihood cannot be formulated or is too costly to
compute, e.g.

L(a) := L* (a) Z (a) where Z(a) is unknown

L(a) I L* (a, u)du where u is high dimensional

Resolution:

o Bypass computation of Likelihood

o Generate replicate data samples z from the data model

• Employ a pseudo-likelihood based on a kernel density that enforces
select constraints on the predictions z

o Constraint employs some distance measure between y d and z

SNL Najrn Bayes 63 / 76



ABC Likelihood

With p(S) being a metric of the statistic S , use the kernel function as an
ABC likelihood:

LABC (a) = c E K (P(8))

where € controls the severity of the consistency control

Example, enforce the mean data prediction

= E(y) = Py

with z = z(a), and

P(S) := iz (0) [tYd

Propose the Gaussian kernel density:

L €(a) = exp
1 ( (I-Lz (a) — tlyd )2 )

EV27 2E2
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• No model of a physical system is strictly true

• The probability of a model being strictly true is zero

co Given limited information, some models may be relied upon for
describing the system

Let NC = {M1, M2, ...} be the set of all models

o p(Mk is the probability that MA is the model behind the available
information

• Model Plausibility

• Parameter estimation from data is conditioned on the model

p(91D, Mk) = 
p(D18, M k)7r(O Mk) 

P(D1Mk)
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Evidence (marginal likelihood) for Mk:

p(DIMk) = f p(Dle, Mk)71-(01111k)de

Bayes Factor Bii:

Bij 13(DIMi) 
p(AMj)

Plausibility of Mk:

1)(DiMk) r(MkIM) p(MkID, M) =
Es 1)(DIMs)7(Ms1M)

Posterior odds:
M) B 7r(M2lM) 

p(MilD, M) " 71-(M jIM)

k = 1, ...

SNL
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o Consider Fitting with data from a truth model

y, = x3 + x2 — 6

o Gaussian iid additive noise model with fixed variance s

o Bayesian regression with a Gaussian Likelihood, iid and given s

o Consider a set of Legendre Polynomial expansion models, order 1-10

Ym = k(x)
k=0

o Uniform priors [—D, D] on all coefficients
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Too much model complexity leads t• overfitting
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Too much odel complexity leads tc ove:
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uLi•1[•I•[=1[K• •1C= =1:[• • overfitting

—3.5

—4.0

—4.5

—5.0

—5.5

—6.0

—6.5 
—1.0

Order = 3

— Fitted model

• • Noisy data

- - - True function

—0.5 0.0 0.5 1.0

SNL Najrn Bayes 68/76



uLi•1[•I•[=1[K• •1C= =1:[• • overfitting
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Too much model complexity leads t. overfitting
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Too much model complexity leads t overfitting
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Too much model complexity leads t. overfitting
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Too much model complexity leads t overfitting
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Too much model complexity leads t overfitting
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Too much model complexity leads t. overfitting
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Evidence nd alidation Error

Log Evidence:

ln p(D1Mk)

9
2 3 4 5 6 8

2.5

3.0

3.5 W

o

:0

—4.5

0 
5.0

Order

o Validation error - f2 error for a random set of1000 points
- Minimal at 3rd-order

o Log evidence: sum of two scores, balances complexity & fit
Muto & Beck 2008

- Peaks at 3rd order
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Evidence - Discrimination among Models

▪ N = 11

- N = 31

▪ N = 51

•—• N = 101

3 4 5 6 7
Order

10

g 6

0
2 3 4

.•.•

.•. .•.• .•. .
. . .

- Data variance = 0.1

- Data variance = 0.01

•—• Data variance = 0.001

5 6
Order

7 8 9 10

o Discrimination among models is more clear-cut with higher amount
of data D and/or less data noise
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Prediction

Consider that a model

Yin = f(xl A)

was fitted according to

y = f (x, À) + E, E  ̂N(0, (72),

providing:

co The posterior p(A, aID)

o The marginal posterior p(AID)

Define:

o Pushed forward posterior (PFP) distribution : p(yrnIx, D)

• Posterior predictive (PP) distribution : p(ylx, D)
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Pushed forward posterior (PFP)

o PFP distribution p(y„, D)

o Push-forward of the marginal posterior measure on through
f (x. À)

• PFP random process

Yr„(x, = f (x, A(co))

p(yn,lx, D)

• The PFP provides the uncertain prediction by the calibrated model

- Forward UO
- Mean prediction E[Yrn]
- Predictive variance V [Yin]
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Posterior P edictive (PP)

Posterior Predictive distribution p(ylx, D)

o With a (A, a),

p(ylx, D) = I p(ylx, a, D)p(a(D)da

PP random process

YPP(x,w) = Ea [Y(x, co)]

p(ylx, D)

provides the marginal prediction of the data. Where

Y (x , w) = f (x, A) + E(w, a)

is the PP data predictor

Posterior predictive check - evaluate distance between the PP and
the actual/empirical distribution of the data
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a ation

o Validity is a statement of model utility for predicting a given
observable under given conditions

• Inspection of model utility requires accounting for uncertainty

• Statistical tool-chest for model validation

- Cross-validation
- Bayes Factor
- Model Plausibility
- Posterior Odds
- Posterior predictive:

p(b1D, Mk) = jp(b10,114)091D,Mode
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• When multiple models are acceptable, and no model is a clear
winner, model averaging can be used to provide a prediction of
interest

• If prediction errors among models are uncorrelated, then averaging is
expected to reduce prediction errors

• Not likely if models are dependent, or if they have comparable
large bias errors in a given observable of interest

o Bayesian Model Averaging

where

*OLD, NC) = P(0
k=1

D, 11/1013(1141D,

= {Ml, MAT}
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osu re

o Inverse problems are ubiquitous in science and engineering

o Where possible, employing the Bayesian framework provides for
more robust, reliable and informed solutions

o Bayesian inversion facilitates subsequent prediction with uncertainty

o Bayesian model selection strategies are relevant to the identification
of parsimonious models that explain empirical data
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