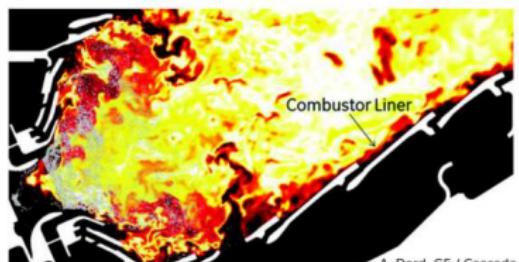


EIGENSPACE-BASED UNCERTAINTY CHARACTERIZATION IN ~~LARGE-EDDY~~ SIMULATION OF TURBULENT FLOW

Lluís Jofre¹, Stefan P. Domino² & Gianluca Iaccarino¹

¹Stanford University, ²Sandia National Laboratories

SIAM – Uncertainty Quantification
April 16, 2018


Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

HIGH-FIDELITY TURBULENT FLOW CALCULATIONS

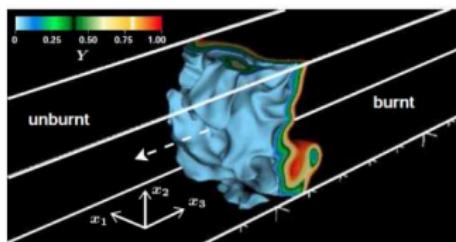
LARGE-EDDY SIMULATION

- RANS is the primary tool for modeling turbulence in engineering applications
- However, **LES** is becoming popular ... and this trend will continue to increase

Present-day example

LARGE-EDDY SIMULATIONS OF COMBUSTOR LINER FLOWS

Future: NASA CFD Vision 2030 Study


The use of CFD in the aerospace design process is severely limited by the inability to accurately and reliably predict turbulent flows with significant regions of separation. Advances in Reynolds-averaged Navier-Stokes (RANS) modeling alone are unlikely to overcome this deficiency, while the use of Large-eddy simulation (LES) methods will remain impractical for various important applications for the foreseeable future, barring any radical advances in algorithmic technology. Hybrid RANS-LES and wall-modeled LES offer the best prospects for overcoming this obstacle although significant modeling issues remain to be addressed here as well.

- Some of the reasons:
 - Provide information of transient turbulent flow structures
 - Tremendous growth in available computational power

CHALLENGING SGS STRESS MODELING

TURBULENT DEFLAGRATION EXAMPLE: O'BRIEN ET AL. 2014

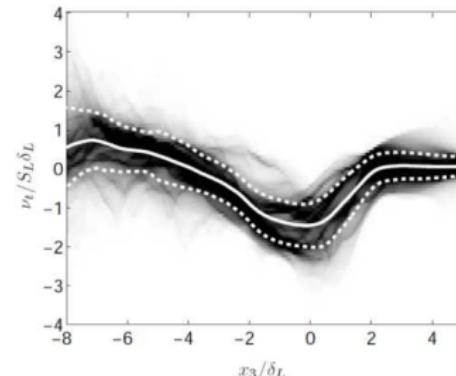
- Problem: deflagration propagating through forced turbulence

Sample snapshot from DNS

- Model: Boussinesq (eddy viscosity)

$$T_{ij} - \frac{2}{3} \bar{\rho} k_{SGS} \delta_{ij} = -2 \bar{\rho} \nu_t \left(\tilde{S}_{ij} - \frac{\tilde{\Delta}_v}{3} \delta_{ij} \right)$$

... contracting with \tilde{S}_{ij} yields


$$\nu_t = \frac{\epsilon_{SGS} + (2/3) \bar{\rho} k_{SGS} \tilde{\Delta}_v}{2 \bar{\rho} \left(|\tilde{S}|^2 - \tilde{\Delta}_v^2 / 3 \right)}$$

- Filtered kinetic energy equation

$$\frac{\partial \bar{\rho} k}{\partial t} + \frac{\partial}{\partial x_i} (\bar{\rho} \tilde{u}_i k) = \alpha_{\Pi} + \alpha_{SGS} + \alpha_v + \Pi - \epsilon_v - \epsilon_{SGS}$$

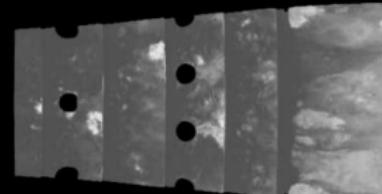
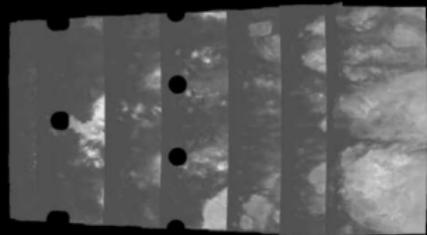
with $\epsilon_{SGS} = -\mathcal{T}_{ij} \tilde{S}_{ij}$

- Turbulent viscosity conditioned on x_3

PDF contours, mean & σ

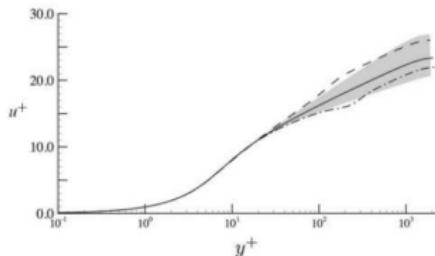
LES COMPLEX TURBULENT FLOW

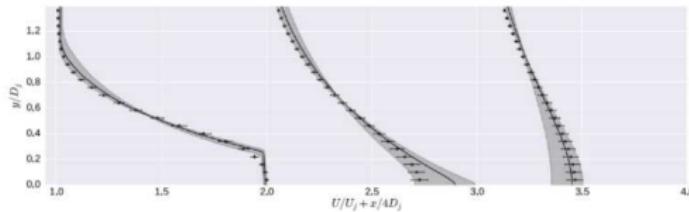
COMBUSTOR EXAMPLE: MASQUELET ET AL. 2017



Rich-Dome Aviation Gas Turbine: Temperature field

Combustion chamber

midplane


Intermittent, hot “bursts” on liners
caused by unsteady JICF wakes


STRUCTURAL UQ TURBULENCE MODELS

FRAMEWORK INTRODUCTION

- We propose a **framework** for the systematic estimation of **structural uncertainty**
 - Independent of the initial model form
 - Computationally efficient
 - Suitable to general LES solvers
- Feeds from methodology developed in RANS modeling
 - e.g., Emory et al. 2013, Gorlé & Iaccarino 2013, Mishra & Iaccarino 2017

Stream. velocity channel flow

Axial velocity radial profiles jet flow

- Requires revisiting mathematical derivation in LES, Jofre et al. 2018
 - Perturb decomposed SGS tensor within range of physically plausible bounds

LARGE-EDDY SIMULATION EQUATIONS

CLOSURE PROBLEM & NOTATION

- Filtered Navier-Stokes equations

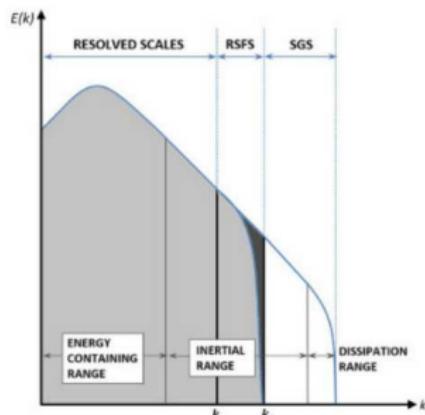
$$\frac{\partial \bar{u}_i}{\partial t} + \frac{\partial(\bar{u}_i \bar{u}_j)}{\partial x_j} = -\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_i} + \nu \frac{\partial^2 \bar{u}_i}{\partial x_j \partial x_j} - \frac{\partial \tau_{ij}}{\partial x_j}$$

$$\frac{\partial \bar{u}_i}{\partial x_i} = 0$$

with SGS tensor $\tau_{ij} = \bar{u}_i \bar{u}_j - \bar{u}_i \bar{u}_j$

$$\rightarrow \tau_{ij}^{SGS} \approx \tau_{ij}$$

- Mathematical notation


- $G_{ij} = \frac{\partial u_i}{\partial x_j}, \quad \phi = \bar{\phi} + \phi'$

- $S_{ij} = \frac{1}{2} (G_{ij} + G_{ji}), \quad \Omega_{ij} = \frac{1}{2} (G_{ij} - G_{ji})$

- $P_G = -G_{ii} = 0, \quad Q_G = -\frac{1}{2} G_{ij} G_{ji},$

$$R_G = -\frac{1}{3} G_{ij} G_{jk} G_{ki}$$

- Reduction modeling small scales

Resolved & modeled energy

NONLINEAR FILTERED ADVECTION TERM

TENSOR EIGENDECOMPOSITION

- $\overline{u_i u_j}$ decomposed into factors introducing the **anisotropy tensor**

$$\bar{a}_{ij} = \frac{\overline{u_i u_j}}{\overline{u_k u_k}} - \frac{1}{3} \delta_{ij} = \bar{v}_{in} \bar{\Lambda}_{nl} \bar{v}_{jl}$$

with eigenvalues ordered such that $\bar{\lambda}_1 \geq \bar{\lambda}_2 \geq \bar{\lambda}_3$

- Allows reformulating the tensor in the form $\overline{u_i u_j} = \overline{u_k u_k} \left(\bar{v}_{in} \bar{\Lambda}_{nl} \bar{v}_{jl} + \frac{1}{3} \delta_{ij} \right)$
 - **Magnitude** (trace): $\overline{u_k u_k}$
 - **Shape** (eigenvalues): $\bar{\Lambda}_{nl}$
 - **Orientation** (eigenvectors): \bar{v}_{in}
- Imposing **realizability conditions** bounds \bar{a}_{ij} as

$$\begin{aligned} -1/3 \leq \bar{a}_{\alpha\alpha} &\leq 2/3 \quad \text{for } \alpha \in \{1, 2, 3\} \\ -1/2 \leq \bar{a}_{\alpha\beta} &\leq 1/2 \quad \text{for } \alpha \neq \beta \end{aligned}$$

STRUCTURAL UQ FRAMEWORK

PERTURBATION APPROACH

- Strategy: **inject controlled perturbations** into τ_{ij}^{SGS} to assess impact on Qols
- Step 1: separate $\overline{u_i u_j}$ into resolved and modeled parts as

$$\overline{u_i u_j} = \overline{u_k u_k} \left(a_{ij}^{res} + a_{ij}^{SGS} + \frac{1}{3} \delta_{ij} \right), \quad a_{ij}^{SGS} = \frac{1}{\overline{u_k u_k}} \left(\tau_{ij}^{SGS} - \frac{\tau_{kk}^{SGS}}{3} \delta_{ij} \right) = v_{in}^{SGS} \Lambda_{nl}^{SGS} v_{jl}^{SGS}$$

- Step 2: define perturbations (indicated with *) as

$$\overline{u_i u_j}^* = \overline{u_i} \overline{u_j} + \tau_{ij}^{SGS*}$$

$$\text{with } \overline{u_k u_k}^* = \overline{u_k} \overline{u_k} + \tau_{kk}^{SGS*} \quad \text{and} \quad a_{ij}^{SGS*} = v_{in}^{SGS*} \Lambda_{nl}^{SGS*} v_{jl}^{SGS*}$$

- Thus, perturbations are applied to the subgrid scales and are specified in terms of

- Magnitude: $\tau_{kk}^{SGS*} = \tau_{kk}^{SGS} + \Delta \tau_{kk}^{SGS}$

Full details in **Jofre et al.**

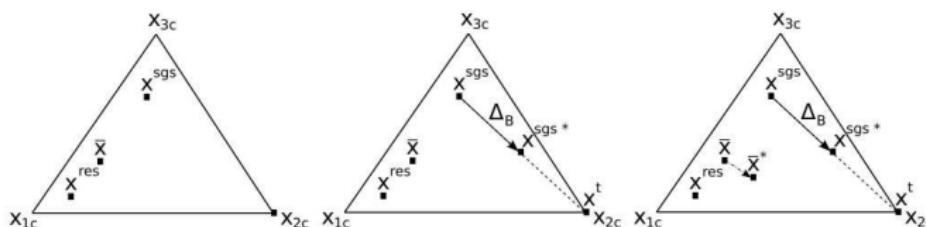
- Shape: diagonal matrix Λ_{nl}^{SGS*} of λ_l^*

Flow Turbul. Combust.,

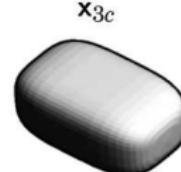
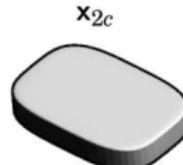
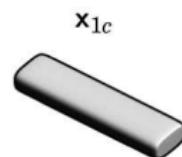
- Orientation: $v_{ij}^{SGS*} = q_{in} v_{nj}^{SGS}$

100(2):341-363, 2018

STRUCTURAL UQ FRAMEWORK

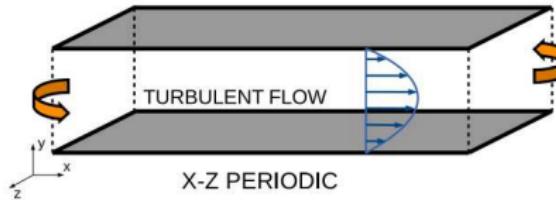

EXAMPLE: SGS ANISOTROPY PERTURBATION

- Different strategies can be defined for Λ_{nl}^{SGS*} based on $\lambda_l^{SGS*} = \mathbf{B}^{-1} \mathbf{x}^{SGS*}$




where $\mathbf{x} = \mathbf{B} \lambda_l = \mathbf{x}_{1c} (\lambda_1 - \lambda_2) + 2\mathbf{x}_{2c} (\lambda_2 - \lambda_3) + \mathbf{x}_{3c} (3\lambda_3 + 1)$

- We characterize uncertainty by direction $\mathbf{x}^t - \mathbf{x}^{SGS}$ and rel. distance $\Delta_B \in [0, 1]$

$$\mathbf{x}^{SGS*} = \mathbf{x}^{SGS} + \Delta_B (\mathbf{x}^t - \mathbf{x}^{SGS}) \quad \rightarrow \quad \lambda_l^{SGS*} = (1 - \Delta_B) \lambda_l^{SGS} + \Delta_B \lambda_l^t$$

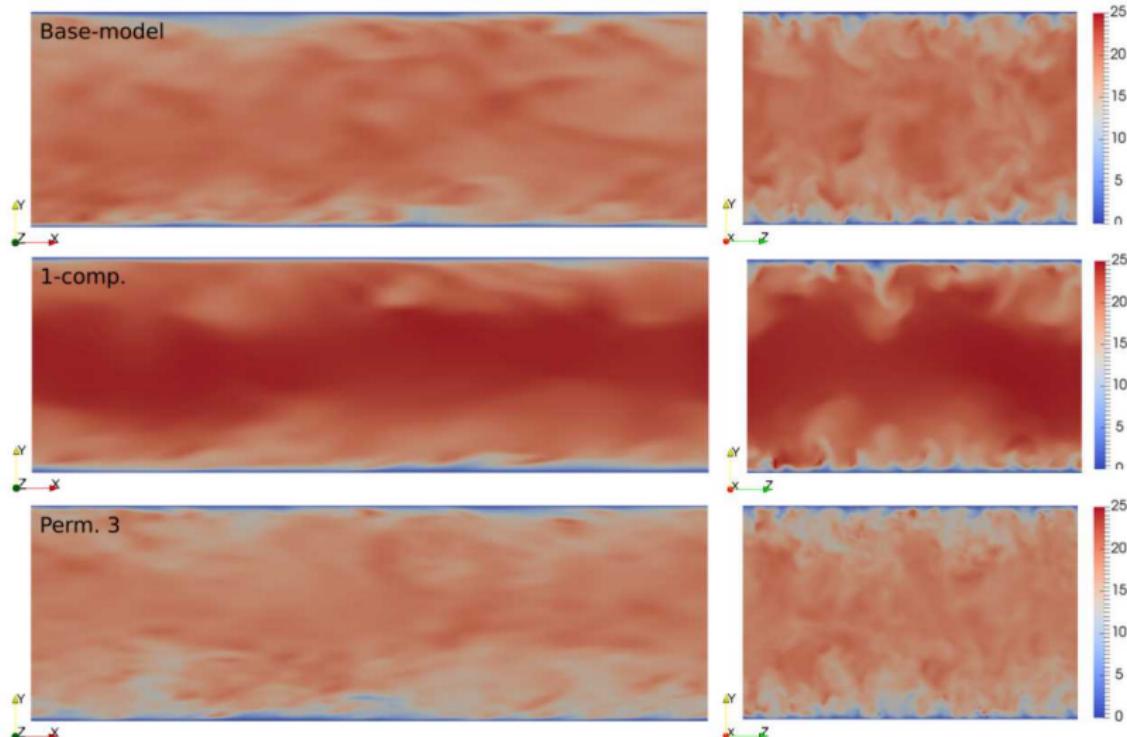

- Graphical representation

TURBULENT CHANNEL FLOW $Re_\tau = 395$

PROBLEM CONFIGURATION

- Investigate framework performance on LES of turbulent flow
- LES Channel flow $Re_\tau = 395$:
 - $\Delta x^+ = 38.8$, $\Delta z^+ = 12.9$, $\Delta y^+ = [0.5 - 15.1]$; size $64 \times 128 \times 96$

- Results:

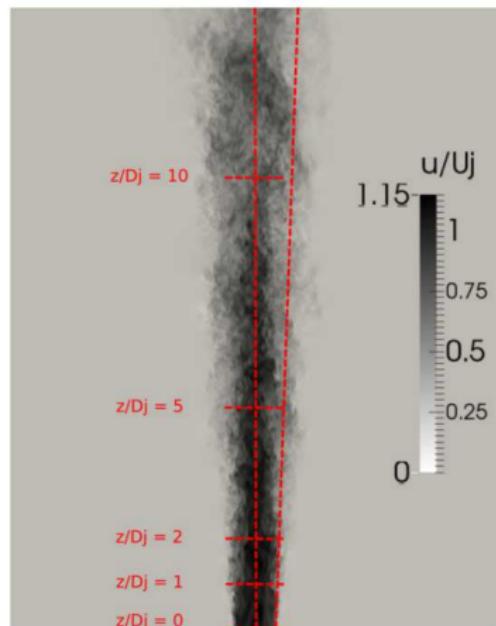

1. Sensitivity to individual homogeneous perturbations WALE¹ (base-model)
 - Magnitude: $\Delta \tau_{kk}^{sgs} < 0$ or $\Delta \tau_{kk}^{sgs} > 0$
 - Shape: 1-comp., 2-comp., or 3-comp.
 - Orientation: perm. 1, perm. 2, or perm. 3

¹F. Nicoud & F. Ducros. Flow Turbul. Comb. 62 (1999)

TURBULENT CHANNEL FLOW $Re_\tau = 395$

FLOW VISUALIZATION

- Streamwise instantaneous velocity u^+

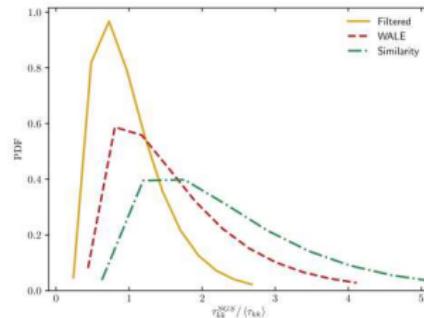

TURBULENT AXISYMMETRIC JET $Re_D = 21000$

PROBLEM CONFIGURATION

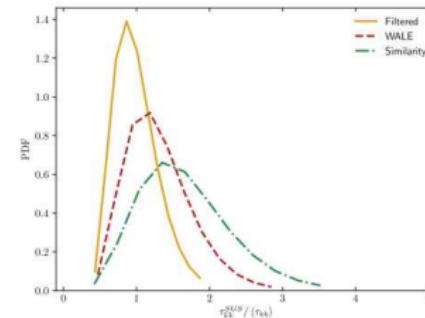
- Parameters jet $Re_D = 21000$:
 - Near-field exp. data Amielh et al. (1996)
 - $D_e/D_j = 10, L/D_j = 40, U_j/U_e = 13$

- Computational set-up:
 - Axisymmetric mesh $\approx 200M$ elements
 - $\Delta/\eta \sim 1$ at shear layers
 - 2nd-order, low-dissipation finite-volume
Nalu: low-Mach number flow solver²

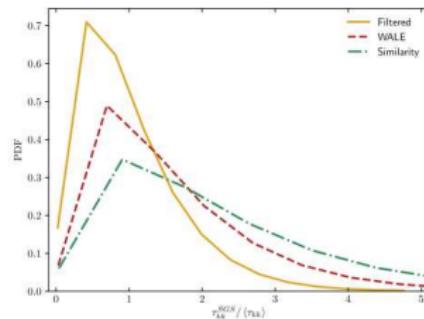
- Averaging & filtering operators:
 - Time & axisymmetric ensemble average
 - 2 temporal snapshots (at present)
 - Gaussian filter: $\bar{\phi} = \phi + \frac{\bar{\Delta}^2}{24} \nabla^2 \phi$

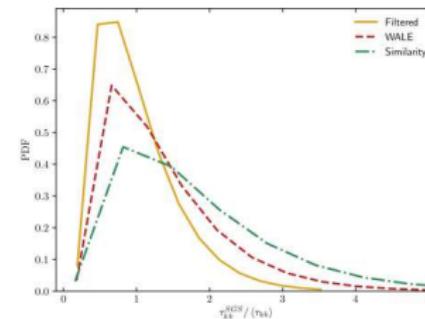


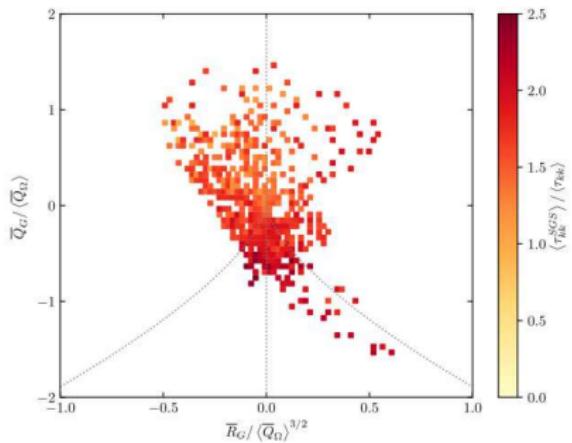
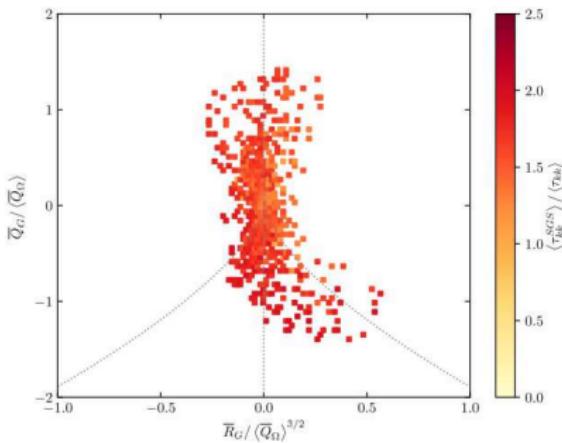
Jet centerline & $r/r_{1/2} = 1$ profile

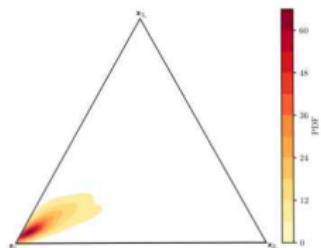
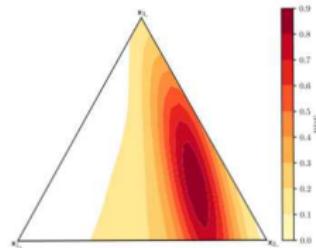
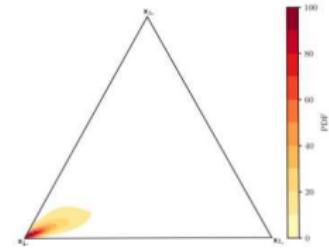
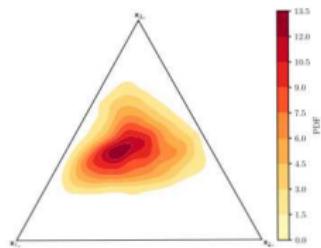

²S. P. Domino, Tech. Rep. SAND2015-3107W, SNL 2015

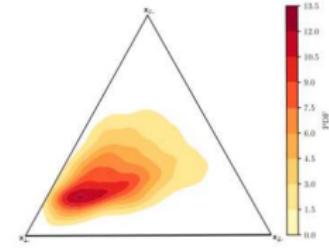
TURBULENT AXISYMMETRIC JET $Re_D = 21000$


PDF MODELED τ_{kk}^{SGS} BIAS ($\bar{\Delta}/\Delta = 4$)

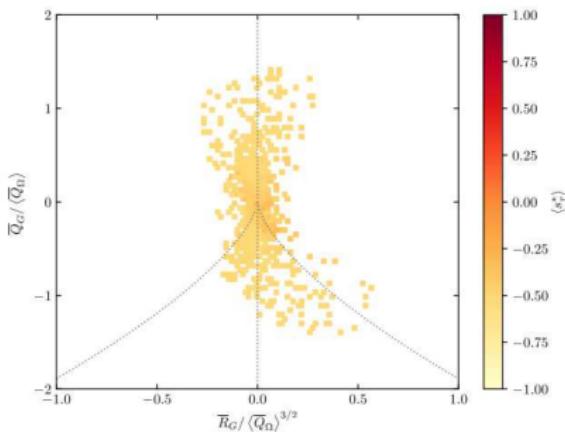

$$z/D_j = 1, \quad r/r_{1/2} = 0, \quad \langle \tau_{kk} \rangle / \tau_{kk}^{\text{ref}} = 1$$



$$z/D_j = 10, \quad r/r_{1/2} = 0, \quad \langle \tau_{kk} \rangle / \tau_{kk}^{\text{ref}} \approx 3$$

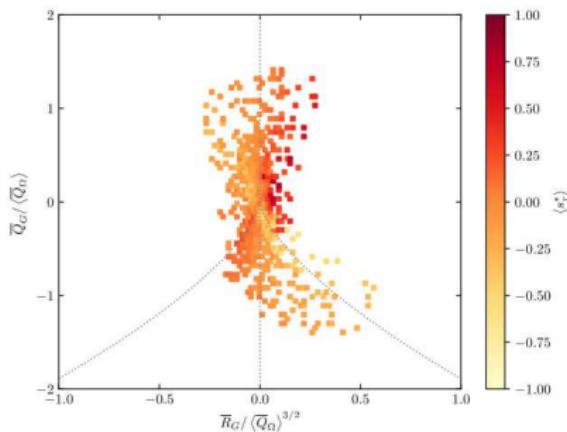







$$z/D_j = 1, \quad r/r_{1/2} = 1, \quad \langle \tau_{kk} \rangle / \tau_{kk}^{\text{ref}} \approx 10$$

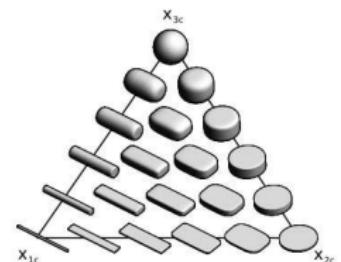

$$z/D_j = 10, \quad r/r_{1/2} = 1, \quad \langle \tau_{kk} \rangle / \tau_{kk}^{\text{ref}} \approx 3$$

TURBULENT AXISYMMETRIC JET $Re_D = 21000$ CONDITIONAL JPDF τ_{kk}^{SGS} BIAS ON R_G, Q_G ($\bar{\Delta}/\Delta = 4$)WALE, $z/D_j = 1$, $r/r_{1/2} = 0$ WALE, $z/D_j = 1$, $r/r_{1/2} = 1$


TURBULENT AXISYMMETRIC JET $Re_D = 21000$ PDF $\bar{\lambda}_l$ BIAS ($\bar{\Delta}/\Delta = 4$), $r/r_{1/2} = 1$ Filtered, $z/D_j = 1$ WALE, $z/D_j = 1$ Similarity, $z/D_j = 1$ Filtered, $z/D_j = 10$ WALE, $z/D_j = 10$ Similarity, $z/D_j = 10$

TURBULENT AXISYMMETRIC JET $Re_D = 21000$

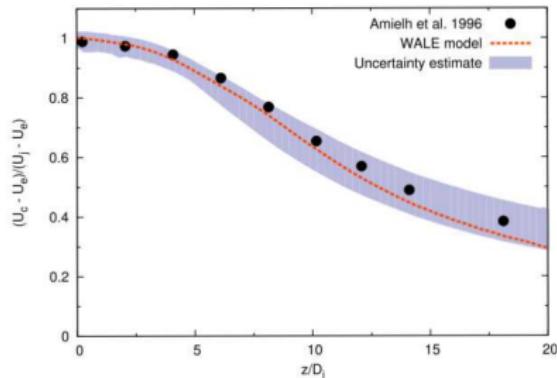
CONDITIONAL JPDF s^* BIAS ON R_G, Q_G ($\bar{\Delta}/\Delta = 4$)



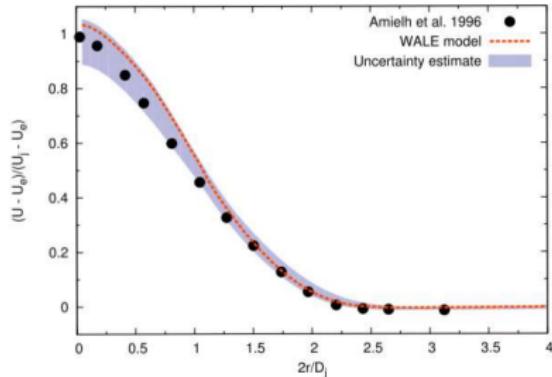
Filtered, $z/D_j = 1$, $r/r_{1/2} = 1$

WALE, $z/D_j = 1$, $r/r_{1/2} = 1$

- Parameter $s^* = -3\sqrt{6} \lambda_1 \lambda_2 \lambda_3 / (\lambda_1^2 + \lambda_2^2 + \lambda_3^2)^{3/2}$
 - $s = -1$ axisymmetric expansion
 - $s = 0$ two-component limit
 - $s = 1$ axisymmetric contraction



TURBULENT AXISYMMETRIC JET $Re_D = 21000$


UNCERTAINTY ESTIMATES: MAGNITUDE & ANISOTROPY PERTURBATIONS

● *A posteriori* LES uncertainty estimates:

- Axisymmetric mesh $\approx 3M$ elements ($64 \times$ coarser)
- WALE base-model + $\Delta\tau_{kk}^{SGS}$ & λ_l^{SGS*}

Mean axial velocity along jet axis

Mean axial velocity radial profile $z/D_j = 5$

CONCLUSIONS & FUTURE WORK

- Presented framework to estimate structural uncertainty in LES closures³
 - Independent of initial model form
 - Computationally efficient and suitable to general solvers
 - Uncertainty in terms of magnitude, shape & orientation
 - Physically reasonable bounds derived for each degree of freedom
- Performance tested by computing LES of canonical flows
 - Perturbation toward x1c laminarizes flow
 - Permutation 3 may increase turbulence through backscatter
 - Combined perturbations produce different variability
 - SGS tensor shape bias depends on flow topology
- Ongoing & future work
 - Development of strategies for inhomogeneous perturbations
 - Focus on combination of different perturbations
 - Test framework on complex flows, e.g., two-phase flow, combustion processes

³Jofre et al. A framework for characterizing structural uncertainty in large-eddy simulation closures. *Flow Turbulence Combust.* 100(2):341-363, 2018.

NONLINEAR FILTERED ADVECTION TERM

REALIZABILITY CONDITIONS

- In RANS, Reynolds stresses R_{ij} must be symmetric & positive semi-definite
 - Physical interpretation: kinetic energy is non-negative & real
 - Equivalent to the conditions of realizability⁴

$$R_{\alpha\alpha} \geq 0 \quad \text{for } \alpha \in \{1, 2, 3\}$$

$$R_{\alpha\beta}^2 \leq R_{\alpha\alpha} R_{\beta\beta} \quad \text{for } \alpha \neq \beta$$

$$\det(R_{ij}) \geq 0$$

- In LES context, should $\tau_{ij} = \overline{u_i u_j} - \overline{u_i} \overline{u_j}$ be realizable?
 - Generally assumed to be, but not a physical requirement \rightarrow modeling choice
 - In fact, the conditions are not satisfied for nonpositive filters ... implicit filtering?
 - We choose to impose $\overline{u_i u_j}$ realizable, viz. total filtered kinetic energy ≥ 0

$$\overline{u_\alpha u_\alpha} \geq 0 \quad \text{for } \alpha \in \{1, 2, 3\}$$

$$\overline{u_\alpha u_\beta}^2 \leq \overline{u_\alpha u_\alpha} \overline{u_\beta u_\beta} \quad \text{for } \alpha \neq \beta$$

$$\det(\overline{u_i u_j}) \geq 0$$

⁴The summation convention is adopted for Latin, but not for Greek indices

NONLINEAR FILTERED ADVECTION TERM

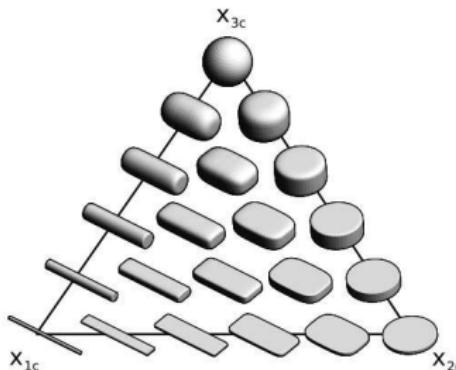
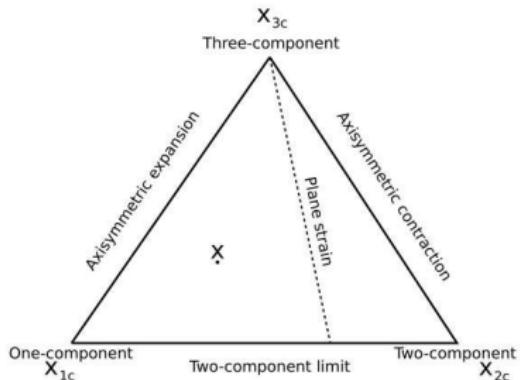
TENSOR EIGENDECOMPOSITION

- $\overline{u_i u_j}$ decomposed into factors introducing the **anisotropy tensor**

$$\bar{a}_{ij} = \frac{\overline{u_i u_j}}{\overline{u_k u_k}} - \frac{1}{3} \delta_{ij} = \bar{v}_{in} \bar{\Lambda}_{nl} \bar{v}_{jl}$$

with eigenvalues ordered such that $\bar{\lambda}_1 \geq \bar{\lambda}_2 \geq \bar{\lambda}_3$

- Allows reformulating the tensor in the form $\overline{u_i u_j} = \overline{u_k u_k} \left(\bar{v}_{in} \bar{\Lambda}_{nl} \bar{v}_{jl} + \frac{1}{3} \delta_{ij} \right)$
 - **Magnitude** (trace): $\overline{u_k u_k}$
 - **Shape** (eigenvalues): $\bar{\Lambda}_{nl}$
 - **Orientation** (eigenvectors): \bar{v}_{in}
- Imposing **realizability conditions** bounds \bar{a}_{ij} as

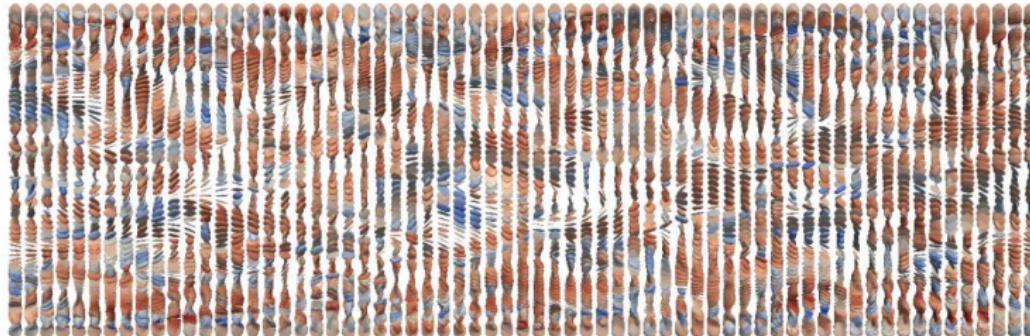


$$\begin{aligned} -1/3 \leq \bar{a}_{\alpha\alpha} &\leq 2/3 \quad \text{for } \alpha \in \{1, 2, 3\} \\ -1/2 \leq \bar{a}_{\alpha\beta} &\leq 1/2 \quad \text{for } \alpha \neq \beta \end{aligned}$$

NONLINEAR FILTERED ADVECTION TERM

BARYCENTRIC MAP

- Tensor anisotropy: **Barycentric map** (linear projection)

$$\mathbf{x} = \mathbf{x}_{1c} (\lambda_1 - \lambda_2) + 2\mathbf{x}_{2c} (\lambda_2 - \lambda_3) + \mathbf{x}_{3c} (3\lambda_3 + 1)$$



- Limiting states positive semi-definite second-order tensor:
 - One-component (rod-like): $2/3 = \lambda_1 > \lambda_2 = \lambda_3 = -1/3$
 - Two-component (disk-like): $1/6 = \lambda_1 = \lambda_2 > \lambda_3 = -1/3$
 - Three-component (spherical): $\lambda_1 = \lambda_2 = \lambda_3 = 0$

TENSOR EIGENDECOMPOSITION

SGS STRESS TENSOR EXAMPLE

- WALE (eddy-viscosity) model: $\tau_{ij}^{SGS} - \frac{\tau_{kk}}{3} \delta_{ij} = -2\nu_t \bar{S}_{ij}$
- LES channel flow $Re_\tau = 395$

Eigenspace-based representation of tensor τ_{ij}^{SGS}

STRUCTURAL UQ FRAMEWORK

PERTURBATION APPROACH

- Strategy: **inject controlled perturbations** into τ_{ij}^{SGS} to assess impact on QoIs
- Step 1: separate $\overline{u_i u_j}$ into resolved and modeled parts as

$$\overline{u_i u_j} = \overline{u_k u_k} \left(a_{ij}^{res} + a_{ij}^{SGS} + \frac{1}{3} \delta_{ij} \right), \quad a_{ij}^{SGS} = \frac{1}{\overline{u_k u_k}} \left(\tau_{ij}^{SGS} - \frac{\tau_{kk}^{SGS}}{3} \delta_{ij} \right) = v_{in}^{SGS} \Lambda_{nl}^{SGS} v_{jl}^{SGS}$$

- Step 2: define perturbations (indicated with *) as

$$\overline{u_i u_j}^* = \overline{u_i} \overline{u_j} + \tau_{ij}^{SGS*}$$

$$\text{with } \overline{u_k u_k}^* = \overline{u_k} \overline{u_k} + \tau_{kk}^{SGS*} \quad \text{and} \quad a_{ij}^{SGS*} = v_{in}^{SGS*} \Lambda_{nl}^{SGS*} v_{jl}^{SGS*}$$

- Thus, perturbations are applied to the subgrid scales and are specified in terms of
 - Magnitude: $\tau_{kk}^{SGS*} = \tau_{kk}^{SGS} + \Delta \tau_{kk}^{SGS}$
 - Shape: diagonal matrix Λ_{nl}^{SGS*} of λ_l^*
 - Orientation: $v_{ij}^{SGS*} = q_{in} v_{nj}^{SGS}$

STRUCTURAL UQ FRAMEWORK

SGS MAGNITUDE PERTURBATION

- Plausible lower and upper bounds for $\Delta\tau_{kk}^{SGS}$ based on $\overline{u_k u_k} = \overline{u_k} \overline{u_k} + \tau_{kk}^{SGS}$

- $\overline{u_k u_k} = \overline{u_k} \overline{u_k} + \tau_{kk}^{SGS} \geq 0$ due to the restriction that $\overline{u_i u_j}$ is realizable
- $\overline{u_k} \overline{u_k} = \overline{u_k u_k} - \tau_{kk}^{SGS} \geq 0$ by construction independently of the filter

- Interval of magnitude discrepancy results in

$$-\overline{u_k} \overline{u_k} - \tau_{kk}^{SGS} \leq \Delta\tau_{kk}^{SGS} \leq \overline{u_k u_k} - \tau_{kk}^{SGS}$$

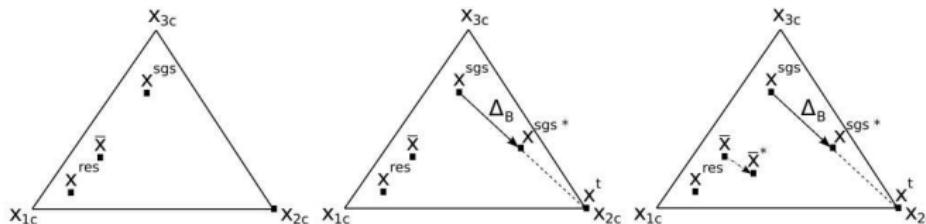
! τ_{kk}^{SGS} is not typically considered ... but models exist⁵

- Graphical representation

$$\Delta\tau_{kk}^{SGS} < 0$$

$$\Delta\tau_{kk}^{SGS} = 0$$

$$\Delta\tau_{kk}^{SGS} > 0$$


⁵e.g., Yoshizawa. Phys. Fluids 29 (1986), Moin et al. Phys. Fluids 3 (1991)

STRUCTURAL UQ FRAMEWORK

SGS ANISOTROPY PERTURBATION

- Different strategies can be defined for Λ_{nl}^{SGS*} based on $\lambda_l^{SGS*} = \mathbf{B}^{-1} \mathbf{x}^{SGS*}$
where $\mathbf{x} = \mathbf{B} \lambda_l = \mathbf{x}_{1c} (\lambda_1 - \lambda_2) + 2\mathbf{x}_{2c} (\lambda_2 - \lambda_3) + \mathbf{x}_{3c} (3\lambda_3 + 1)$
- We characterize uncertainty by direction $\mathbf{x}^t - \mathbf{x}^{SGS}$ and rel. distance $\Delta_B \in [0, 1]$

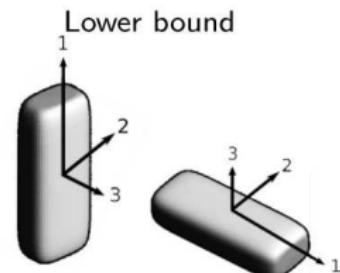
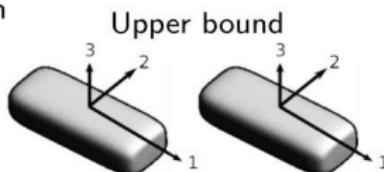
$$\mathbf{x}^{SGS*} = \mathbf{x}^{SGS} + \Delta_B (\mathbf{x}^t - \mathbf{x}^{SGS}) \quad \longrightarrow \quad \lambda_l^{SGS*} = (1 - \Delta_B) \lambda_l^{SGS} + \Delta_B \lambda_l^t$$

- Graphical representation

STRUCTURAL UQ FRAMEWORK

SGS ORIENTATION PERTURBATION

- Perturbations based on **energy transfer constraints** btw. resolved and SGS scales



$$\frac{\partial E_f}{\partial t} + \bar{u}_j \frac{\partial E_f}{\partial x_j} - \frac{\partial}{\partial x_i} \left[\bar{u}_j \left(2\nu \bar{S}_{ij} - \tau_{ij}^d - \frac{1}{\rho} \bar{p} \delta_{ij} \right) \right] = -\epsilon_f - \mathcal{P}_r$$

- Focus on $\mathcal{P}_r = -\tau_{ij}^d \bar{S}_{ij}$ since it involves **single-point information**

- Frobenius inner product \rightarrow depends on the alignment btw. tensors
- Lower and upper bounds given by⁶

$$\lambda_1 \gamma_3 + \lambda_2 \gamma_2 + \lambda_3 \gamma_1 \leq -\mathcal{P}_r \leq \lambda_1 \gamma_1 + \lambda_2 \gamma_2 + \lambda_3 \gamma_3$$

- Upper bound \rightarrow same basis of eigenvectors
- Lower bound \rightarrow permutation btw. eigenvectors 1 and 3
- Graphical representation

⁶Lasserre. IEEE Trans. Autom. Control 40 (1995)

SGS ORIENTATION PERTURBATION

FORWARD-SCATTER & BACKSCATTER

- Conservation filtered kinetic energy triply periodic domain

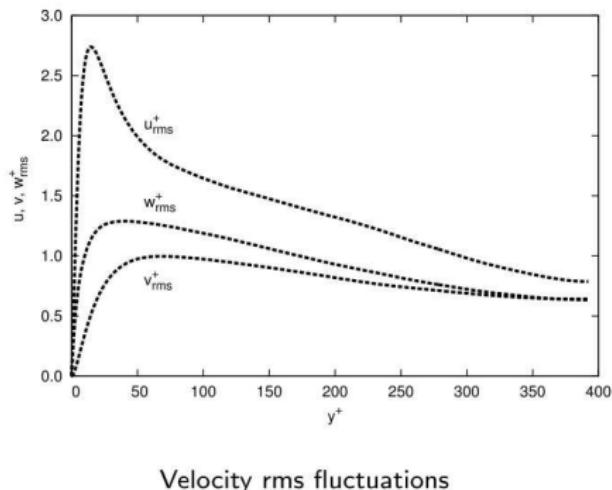
$$\frac{\partial E_f}{\partial t} + \bar{u}_j \frac{\partial E_f}{\partial x_j} - \frac{\partial}{\partial x_i} \left[\bar{u}_j \left(2\nu \bar{S}_{ij} - \tau_{ij}^d - \frac{1}{\rho} \bar{p} \delta_{ij} \right) \right] = -\epsilon_f - \mathcal{P}_r$$

- Consider $\tau_{ij}^d, \bar{S}_{ij}$ with same shape and orientation

$$\mathcal{P}_r = -\tau_{kk} \|\bar{S}_{ij}\| \left(\lambda_1^2 + \lambda_2^2 + \lambda_3^2 \right) \longrightarrow \mathcal{P}_r \leq 0$$

... setting $\tau_{kk} = -2\nu_t \|\bar{S}_{ij}\|$ (eddy viscosity) $\longrightarrow \mathcal{P}_r \geq 0$ (**forward-scatter**)

- Consider permutation of 1st & 3rd eigenvectors



$$\mathcal{P}_r = -\tau_{kk} \|\bar{S}_{ij}\| \left(\lambda_1^2 + 4\lambda_1\lambda_3 + \lambda_3^2 \right) \quad \text{with} \quad \lambda_1\lambda_3 \leq 0 \quad (\text{1}^{\text{st}} \text{ tensor invariant})$$

- if $|\lambda_1| / |\lambda_3| \sim 1 \longrightarrow \mathcal{P}_r \geq 0$; setting $\tau_{kk} = -2\nu_t \|\bar{S}_{ij}\| \longrightarrow \mathcal{P}_r \leq 0$ (**backscatter**)

BARYCENTRIC MAP

REYNOLDS STRESSES EXAMPLE

- Anisotropy Reynolds stresses
- DNS channel flow $Re_\tau = 395$

