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Introducing a control scheme for capacitively coupled QDHQs 
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• Given two capacitively coupled 
quantum dot “hybrid” qubits 
(QDHQs), we propose an 
entanglement gate which only 
requires adiabatic control of 
detunings  

• We show that these entanglement 
gates are robust under charge noise 
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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qubit dipole
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This
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and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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Adiabatic changes yield only Z1, Z2, and ZZ 
(entangling) gates
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Operating a controlled-Z gate in capacitively 
coupled QDHQ system
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We consider the effect of quasistatic charge noise on 
two-qubit gate fidelities
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• Low-frequency charge noise will dominate the noise spectrum. 

• This leads to dephasing (of Z1, Z2, and ZZ)
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A numerical search for optimal pulse sequence leads 
to favorable gate fidelities
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• To optimize pulse 
sequence, we 
consider all possible 
“entangling points” in 
detuning space 

• For each “entangling 
point,” we optimize 
over moving time 
and waiting time.
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For chosen parameters gate achieves 90% fidelity 
at ~4 μeV charge noise, 99% at ~1 μeV
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• Introduce quasistatic noise on both 
detunings, taken from gaussian 
distribution with some σ. 

• Calculate resulting average process 
fidelity A. Gilchrist,  N. K.  Langford, 
and  M. A.  Nielsen,  arXiv:quant-ph/
0408063. 

• Achieve 90% fidelity at σ ≈ 4 μeV, 99% 
at σ ≈ 1 μeV
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†
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D. R. Ward et al. npj Quant. Inf. 2, 
16032 (2016)
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Summary
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The proposed coupling scheme: 

• Allows for static, non-equal qubit frequencies: in the 
simulations here, ω1 = (52 μeV)/ћ, ω2 = (45 μeV)/ћ 

• Compatible with pre-existing single-qubit control schemes: 
lowering detuning on only one qubit does not turn on coupling 

• Only requires adiabatic control of detunings: induces Z1, Z2, 
and ZZ gates 

• Relatively robust under charge noise: 90% fidelity at ~4 μeV 
charge noise, 99% at ~1 μeV



Thank you!
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Additional slides
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Small g and ΔEST lead to drop in fidelity
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Search algorithm steps
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Optimizing single qubit dispersion
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Ramp times as a function of ΔEST
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Capacitive coupling in two charge qubits 
leads to a static coupling
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Changes in detuning yield a tunable effective 
coupling

19

Coupling strength

• By changing detuning, we can 
change the rate of entanglement, as 
in S-T qubits M. D. Shulman et al., 
Science 336 (6078), 202-205 
(2012).

reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This
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and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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reservior is in between the energies of |0〉 and |1〉, and we use
qubit state-dependent tunnelling to project states |0〉 and |1〉 to
the (1,2) and (1,1) charge states, respectively. Waiting at point M
for ∼10 μs also resets the qubit to state |0〉, by tunnelling an
electron from the reservoir, if needed. Thus, the qubit state
population following the microwave burst is measured by
monitoring the current IQPC (QPC, quantum point contact) through
the charge-sensing quantum point contact (Figure 1a). Details of
the measurement procedure and probability normalisation are in
Supplementary Information S1.

MATERIALS AND METHODS
The details of the Si/SiGe double quantum dot device are presented in
refs 28 and 29. We work in the region of the charge stability diagram
where the valence electron occupation of the double dot is (1,1) or (1,2), as
confirmed by magnetospectroscopy measurements.29,30 All manipulation
sequences, including the microwave bursts, are generated by a Tektronix
70002A arbitrary waveform generator and are added to the dot-defining
DC voltage through a bias tee (Picosecond Pulselabs 5546-107) before
being applied to gate R. We map the states |0〉 and |1〉 to the (1,2) and (1,1)
charge occupation states, respectively, leading to conductance changes
through the quantum point contact. We measure with a lock-in amplifier
(EG&G model 7265, Oak Ridge, TN, USA) the difference in conductance
with and without the applied microwave burst. When converting time
averaged conductance differences to the reported probabilities, tunnelling
between the (1,2) and (1,1) charge states during the measurement phase is
taken into account using the measured times for tunnelling out of
(ToC200 ns) and into (TiC2.1 μs) the dot. Supplementary Information S1
presents the details of the measurement technique and the probability
normalisation.

RESULTS
We perform microwave spectroscopy of the qubit intrinsic
frequency—the energy difference δE in Figure 1d—by applying
the voltage pulse shown in the inset to Figure 1e. The colour plot
in that figure shows the resulting probability of measuring state
|1〉 after applying this pulse to initial state |0〉. The measured
resonance and qubit energy dispersion agrees well with the green
dashed curve, which is the calculated energy level diagram with
Hamiltonian parameters measured in our previous study.18 As is
clear from the colour plot in Figure 1e, the linewidth of the
resonant peak narrows significantly at ε4200 μeV, becoming
much narrower than the resonance in the charge qubit regime
(ε≈ 0).31 This linewidth narrowing corresponds to an increase in the
inhomogeneous dephasing time, and it is this range in detuning
that corresponds to the hybrid qubit regime. The two states in the
right quantum dot that are separated by δE most likely correspond
to two combinations of the z-valleys, which are weakly mixed by
the step in potential at the quantum well interface.32

Applying microwave bursts to gate R in the hybrid qubit regime
yields Rabi oscillations, as shown in Figures 1f–i. The Rabi
frequency increases as a function of increasing microwave
amplitude Vac (measured at the arbitrary waveform generator),
resulting in Rabi frequencies as high as 100 MHz. Figure 1j shows
the power dependence of the qubit oscillations, revealing an
oscillation frequency that is linear in the applied amplitude, as
expected for Rabi oscillations. The speed of the X axis rotation
demonstrated here is comparable to electrically manipulated spin
rotations in InSb and InAs, which rely on strong spin-orbit
coupling of the host material;33,34 here we achieve fast rotations
solely through electric field coupling to the qubit states. This

Figure 1. Microwave-driven coherent manipulation and readout of a hybrid qubit in a Si/SiGe double quantum dot device. (a) SEM image
and schematic labelling of a device lithographically identical to the one used in the experiment. (b) Charge stability diagram near the
(1,1)–(2,1)–(1,2) charge transition, showing the gate voltages used for microwave manipulation (O) and measurement (M). For clarity, a linear
background slope was removed from the raw charge-sensing data. (c) Schematic description of the qubit initialisation, manipulation, readout
and reset processes. (d) Energy E as a function of detuning ε for the qubit states, calculated with Hamiltonian parameters measured in ref. 18
(e) Inset: probability P1 of the state to be |1〉 at the end of the driving sequence shown as a function of ε and the excitation frequency f of the
microwaves applied to gate R. In the main panel, the dashed green curve is the energy difference between the ground state and the lowest
energy excited state, as determined in ref. 18. (f–j) Coherent Rabi oscillation measurements. (f) P1 as a function of the voltage VL and the
microwave pulse duration tb with f= 11.52 GHz and excitation amplitude Vac= 400mV. (g) Linecut of P1 near VL=− 392mV, showing ≈110MHz
Rabi oscillations. The red solid curve is a fit to an exponentially damped sine wave with best fit parameter TRabi= 33 ns. (h, i) Rabi oscillation
data with microwave amplitude 300mV (h) and 200mV (i). (j) Rabi oscillation frequency fRabi as a function of Vac with fixed f= 11.52 GHz. The
good agreement of a linear fit (red line) to the data is strong evidence that the measured oscillations are indeed Rabi oscillations, with the
Rabi frequency proportional to the driving amplitude.
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