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Introducing a control scheme for capacitively coupled QDHQs w
WISCONSIN

* (Given two capacitively coupled
guantum dot “hybrid™ qubits
(QDHQs), we propose an
entanglement gate which only
requires adiabatic control of
detunings

* We show that these entanglement
gates are robust under charge noise
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Quantum dot “hybrid” qubit has a tunable V)
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Quantum dot “hybrid” qubit has a tunable W
gubit dipole
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Changes in detuning vyield a tunable effective @
coupling  quoit1 | Qubit 2
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Similar to S-T qubits: M. D. Shulman et al., Science 336 (6078), 202-205 (2012).




Adiabatic changes yield only Z1, Z2, and ZZ @
(entangling) gates WISCONSIN

An adiabatic process will only affect the phases of a state (in the
adiabatic basis):
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Operating a controlled-Z gate in capacitively @

coupled QDHQ system WISCONSIN
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We consider the effect of quasistatic charge noise on @

two-qubit gate fidelities WISCONSIN
* Low-frequency charge noise will dominate the noise spectrum. /
/2

* This leads to dephasing (of Z1, Z2, and ZZ) fy 0
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A numerical search for optimal pulse seqguence leads

UNIVERSITY OF WISCONSIN-MADISON

to favorable gate fidelities Infidelity for ge = 5 peV
. To opfimi | 300 . . . . 1.0
ptimize pulse
seguence, we 10.75
consider all possible 250 >
“entangling points” in —~ 0'5%
detuning space s 00 2
= =
» For each “entangling & 150 -
point,” we optimize .| NO0.2
over moving time 1004 = 0.15
and waiting time. - "
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For chosen parameters gate achieves 90% fidelity @
at ~4 peV charge noise, 99% at ~1 peV WHERNLIN

* Introduce guasistatic noise on both 107
detunings, taken from gaussian -
distribution with some o. %

2 107
<

e (Calculate resulting average process
fidelity A. Gilchrist, N. K. Langtford,
and M. A. Nielsen, arXiv:quant-ph/

0408063. 10 1 2 3 4 5
_ of charge noise (ueV)
F p— TI' (X’LdeCLlXj;ea,l> ’ g :
«  Achieve 90% fidelity at o = 4 peV, 99% J = TopeV
atox~1peV AY = 333uev A =28.8peV
| AV =302uev AP = 26.1ueV
D. R. Ward et al. npj Quant. Inf. 2, Egl% — 52ueV E?} — 45.eV

16032 (2016)
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The proposed coupling scheme:

* Allows for static, non-equal gubit frequencies: in the
simulations here, w = (52 ueV)/h, ws = (45 ueV)/m

 Compatible with pre-existing single-qubit control schemes:
lowering detuning on only one qubit does not turn on coupling

* Only requires adiabatic control of detunings: induces Zi, 2>,
and ZZ gates

* Relatively robust under charge noise: 90% fidelity at ~4 ueV
charge noise, 99% at ~1 ueV
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Thank you!
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Additional slides




Small g and AEgr lead to drop in fidelity

0
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Search algorithm steps (v
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Optimizing single qubit dispersion )
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Ramp times as a function of Akgr W)
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Capacitive coupling in two charge qubits @
leads to a static coupling WISCONSIN

One qubit

What is the coupling
term between 2
H =610, + Aj0, capacitively-coupled

charge qubits?

2 —  Iwoqubits
€10, QI+ No, Q[+
ol Q o, +Nol R o,+

go.,® o,

Li, H.-O., et al. Nature Comm. 6, 7681 (2015).
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Changes in detuning yield a tunable effective @
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Qubit 1 Qubit 2
By changing detuning, we can
change the rate of entanglement, as
in S-T qubits M. D. Shulman et al.,
Science 336 (6078), 202-205
(2012).
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For chosen parameters gate achieves 90% ftidelity
at ~4ueV charge noise, 99% at ~1 ueV
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To minimize interaction with electric field in QDHQ, go to @
large detuning WISCONSIN
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To operate QDHQ), go to detuning where longitudinal field is @
Zero WISCONSIN
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Goal: find order of magnitude of any potential WISC?NS'N
two-qubit operation
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