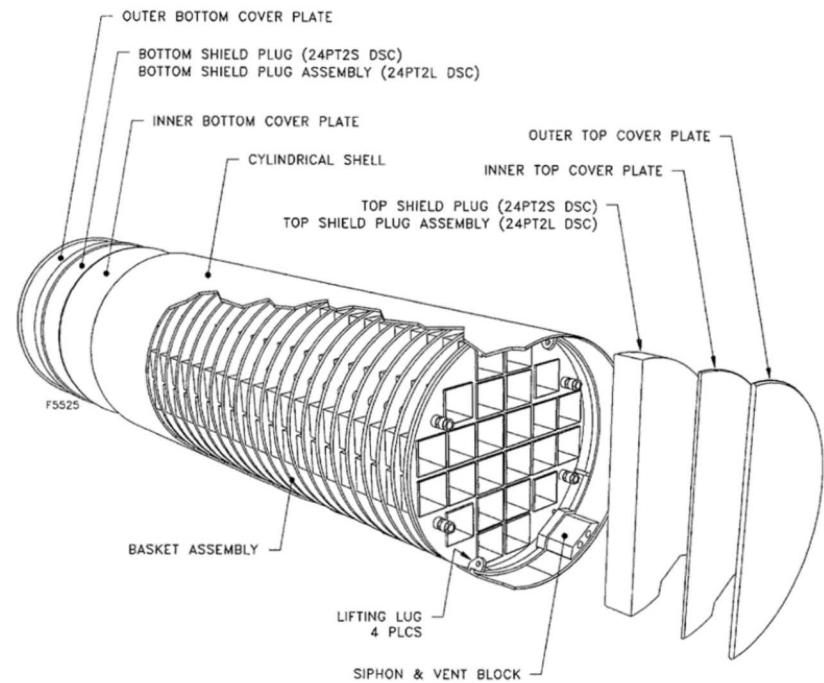


Dual-Purpose Spent Fuel Canister Cement Fillers Program

E. Hardin and P. Brady
Sandia National Laboratories

UNM Civil Engineering Department
April 20, 2018

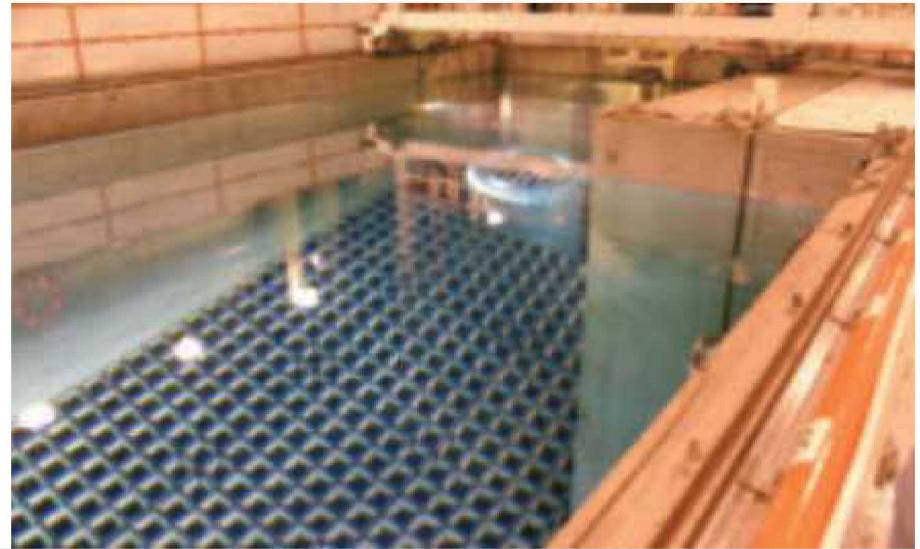
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2018-0625 PE. Approved for Unclassified, Unlimited Release.



Outline

- Dual-Purpose Canister Background
- DPC Disposability Issues
- History of Dry Particle Filler Demos
- Filler Attributes (liquid emplacement)
- Cement Slurry Fillers
 - Background
 - Selected Cement Types
 - Technical Questions
 - Testing Strategy
 - Workplan

Top view of MPC-68 shell and basket (Greene et al. 2013).

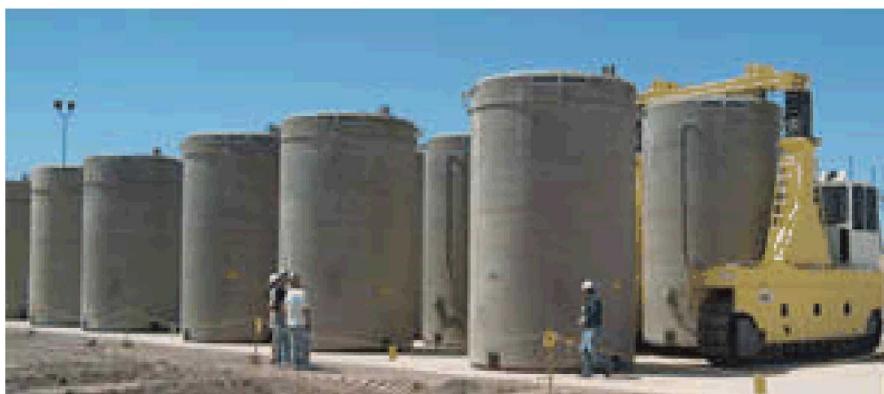


NUHOMS® 24-PT2 basket, shell, and lids (Greene et al. 2013)

Two basic types of DPC baskets: tube/plate and eggcrate

U.S. Spent Fuel Inventory

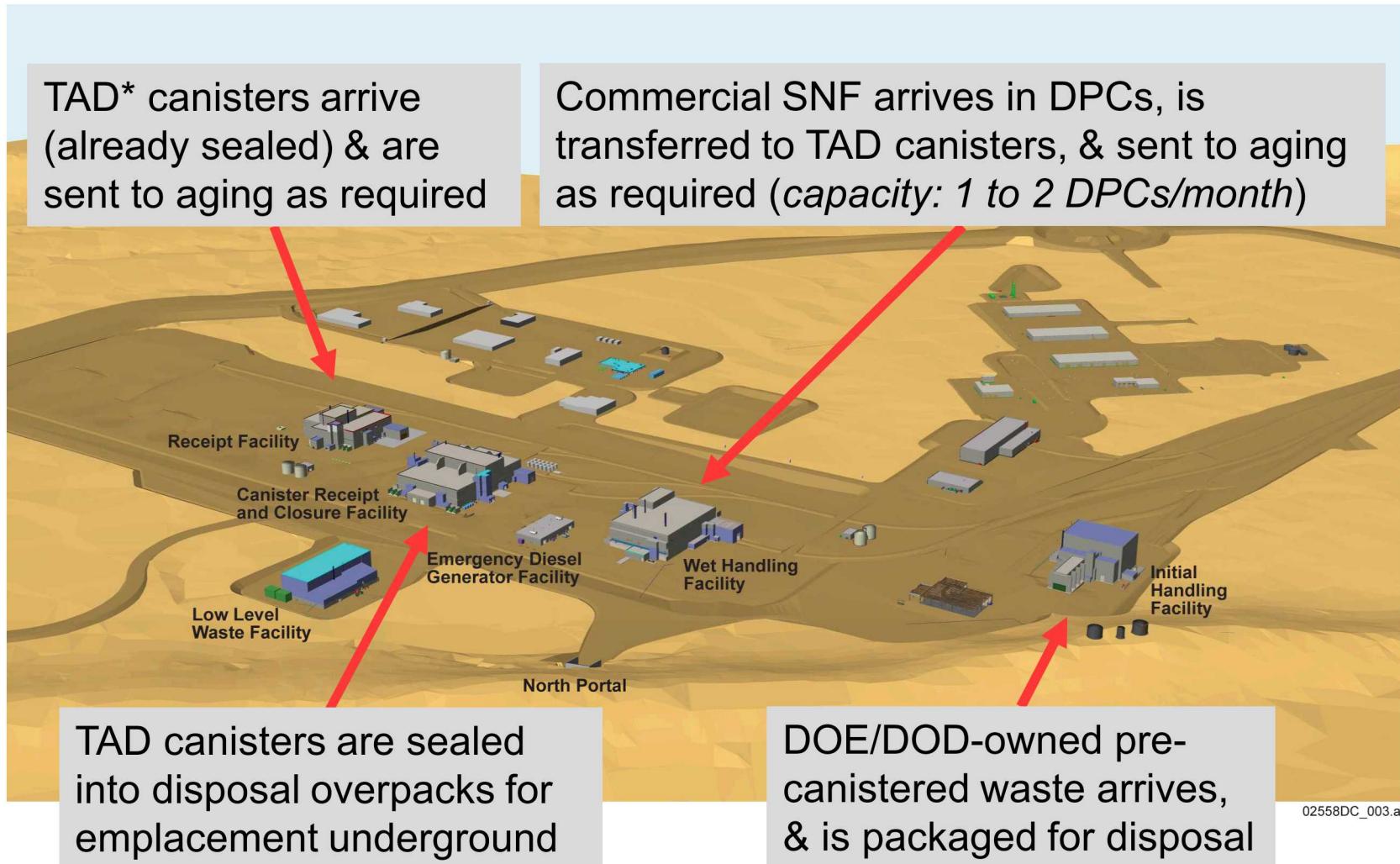
- CSNF Projection
 - Extend all operating reactors → 60 yr
 - Last shutdown ~2055 (140,000 MTHM total)
 - Avg. burnup ~45 GWd/MT



- Pool Storage for SNF
 - ~60,000 MTHM system-wide capacity
- Dry Cask Storage
 - ~20,000 MTHM current
 - +2,000 MTHM/yr
 - 1/2 of all U.S. SNF by ~2035

Recent DPC Designs

- Example: Magnastor® DPC system (NAC International)
- Capacity 37-PWR assemblies (or BWR equiv.)
- Thermal limits: 35.5 kW storage/ 24 kW transport
- Size evolution: fresh fuel → burnup credit → heat transfer features → more efficient storage and transport



Pictures and data
from NAC
International
website 31Mar2012

ROM Cost Analysis for DPC Direct Disposal vs. Re-Packaging of All Commercial SNF

Scenario 1: Estimated Most Costly Case, Loading All CSNF into DPCs and Re-packaging All of Them for Disposal Total DPCs 140,000 MTU (all re-packaged)	Unit Cost	CSNF Qty. (MTU)	Avg. DPC Capacity, MTUs	# DPCs	Cost \$B
Sunk cost to procure, load and store existing DPCs (\$/MTU)	\$ 100,000	25,000	12.0	2100	\$ 2.5
Cost to continue status quo through >2055 (\$/MTU)	\$ 100,000	115,000	16.7	6895	\$ 11.5
Re-packaging costs for all fuel, current fleet estimate:					
Unload all DPCs (\$/MTU)	\$ 10,000	140,000		8995	\$ 1.4
Transport and dispose of each DPC hull (\$/DPC)	\$ 150,000	140,000		8995	\$ 1.3
Re-canister for disposal (\$/MTU)	\$ 100,000	140,000			\$ 14.0
Re-packaging facility capital cost					\$ 2.0
Total cost to make CSNF ready for disposal					\$ 32.7
Maximum potential savings from direct disposal of DPCs, not including filler implementation					\$ 18.7
Notes:					
1. \$100k/MTU canisterization cost is for hardware and labor to load/seal/store, and not for facilities.					
2. Does not include costs for the repository, storage of re-packaged CSNF, or disposal of storage and transportation casks.					
3. Estimate does not include an interim storage facility that could be needed to support the repository.					
4. Re-packaging facility operating cost does not include transportation to/from storage.					

Yucca Mtn Surface Facilities (LA Design)

* TAD = Transport, aging and disposal

Postclosure Criticality of SNF in Breached and Flooded DPC-Based Waste Packages

- Postclosure criticality is particular to SNF in large canisters (e.g., >4 PWR fuel assemblies)
- Package breach from external corrosion leads to flooding with ground water (criticality cannot occur without at least partial flooding)
- Neutron absorbers readily corrode in water (Boral®, Al-B4C, and Metamic® are all aluminum-based)
- Stylized fuel basket degradation cases for criticality analysis:
 - Loss of Al-based neutron absorbers
 - Basket collapse (and loss of absorbers)
- Apply reactivity margin to degradation cases for individual DPCs
 - Burnup credit analysis, with as-loaded fuel and configurations,
 - Investigate disposal environments (e.g., brine)

Actinides					
^{234}U	^{235}U	^{236}U	^{238}U	^{238}Pu	^{239}Pu
^{240}Pu	^{241}Pu	^{242}Pu	^{241}Am	^{243}Am	^{237}Np
Fission products					
^{95}Mo	^{99}Tc	^{101}Ru	^{103}Rh	^{109}Ag	^{133}Cs
^{143}Nd	^{145}Nd	^{147}Sm	^{149}Sm	^{150}Sm	^{151}Sm
^{152}Sm	^{151}Eu	^{153}Eu	^{155}Gd		

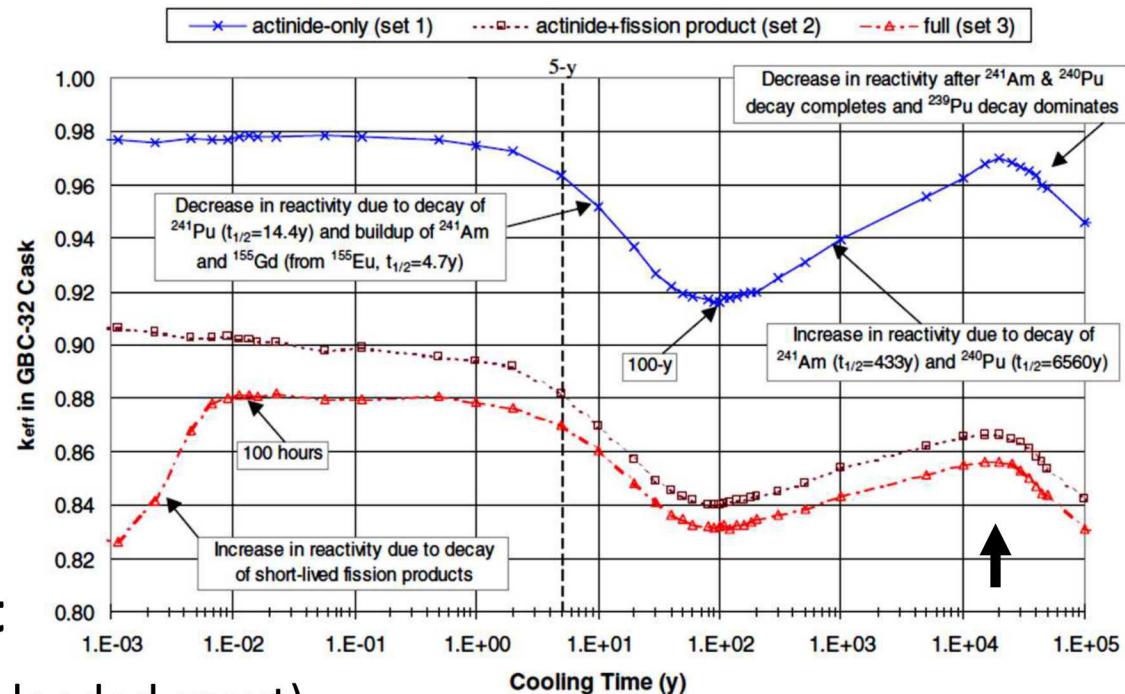
Clarity, J.B. and J.M. Scaglione 2013. *Feasibility of Direct Disposal of Dual-Purpose Canisters-Criticality Evaluations*. ORNL/LTR-2013/213.

Spent Fuel Disposal: Postclosure Nuclear Criticality Control

■ Disposal Environment

- Groundwater availability
- Chloride in groundwater
- Overpack integrity

■ Moderator Exclusion


- Overpack integrity

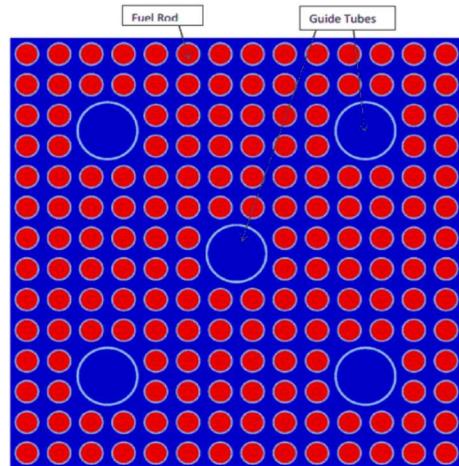
■ Moderator Displacement

- Fillers (e.g., boron carbide loaded grout)

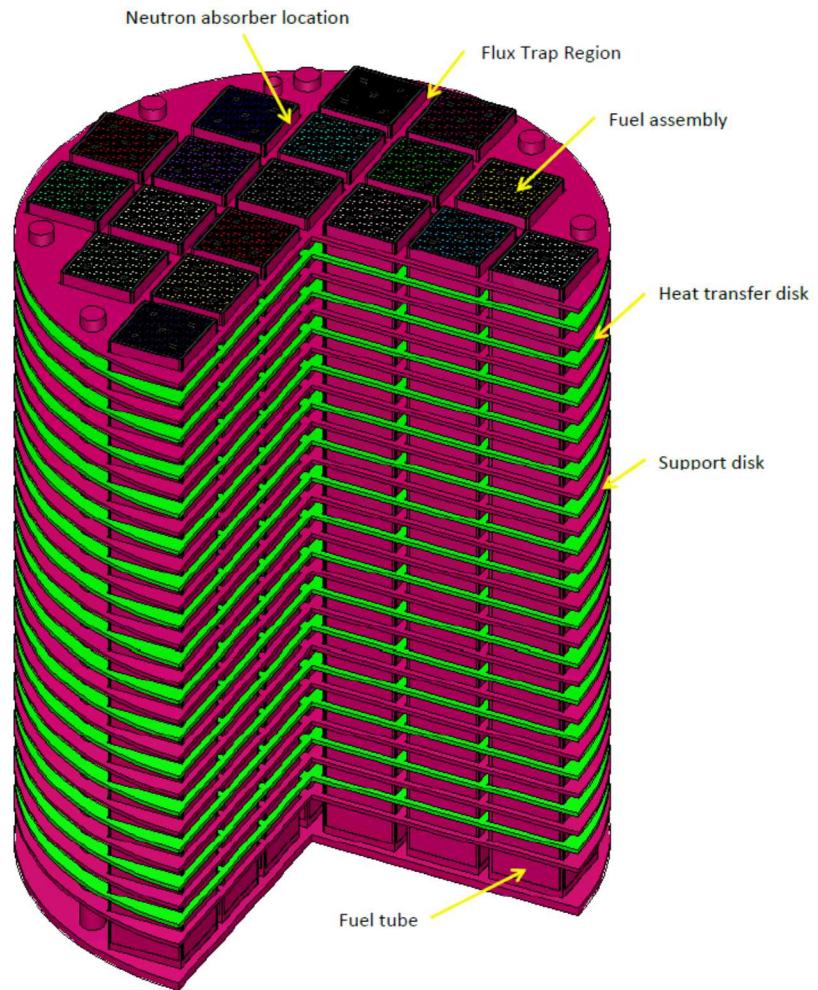
■ Criticality Analysis Methodology

- Burnup credit, as-loaded, degradation cases
- Peak reactivity occurs at ~25,000 years

k_{eff} vs. time
Generic burnup credit 32-PWR cask

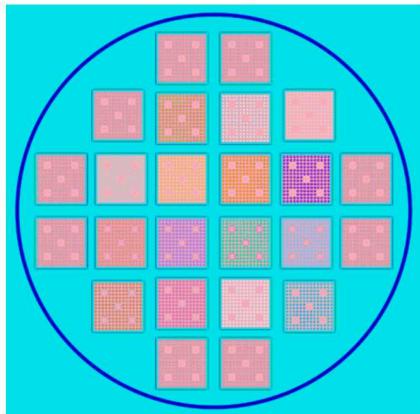

PWR fuel (4% enriched,
40 GW-d/MT burnup)

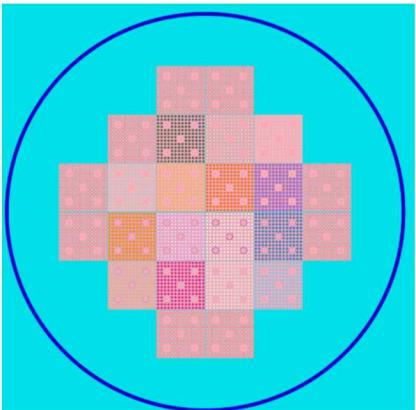
Wagner and Parks 2001 9NUREG/CR-6781, Fig. 3)


Note: Set #2 burnup credit reactivity results correspond to criticality scoping analysis of Clarity & Scaglione (2013).

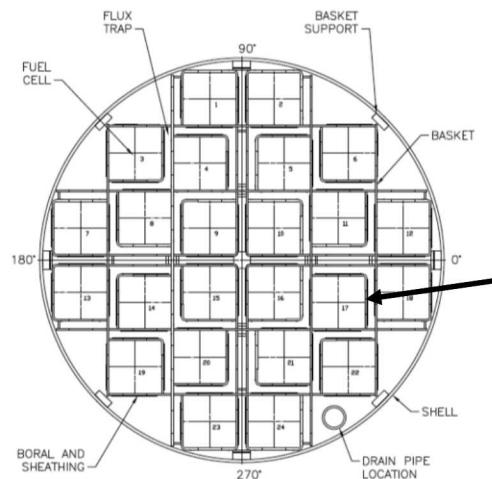
Reactivity Scoping Analysis (Site “A”)

Model array representing Westinghouse 17x17 standard assembly in cross-section.


- Numerical Model of TSC-24 Canisters
- ORNL Database “UNF-ST&DRDS”
 - Software/Data
 - SCALE code system (ORNL 2011)
 - Details: Clarity and Scaglione (2013)

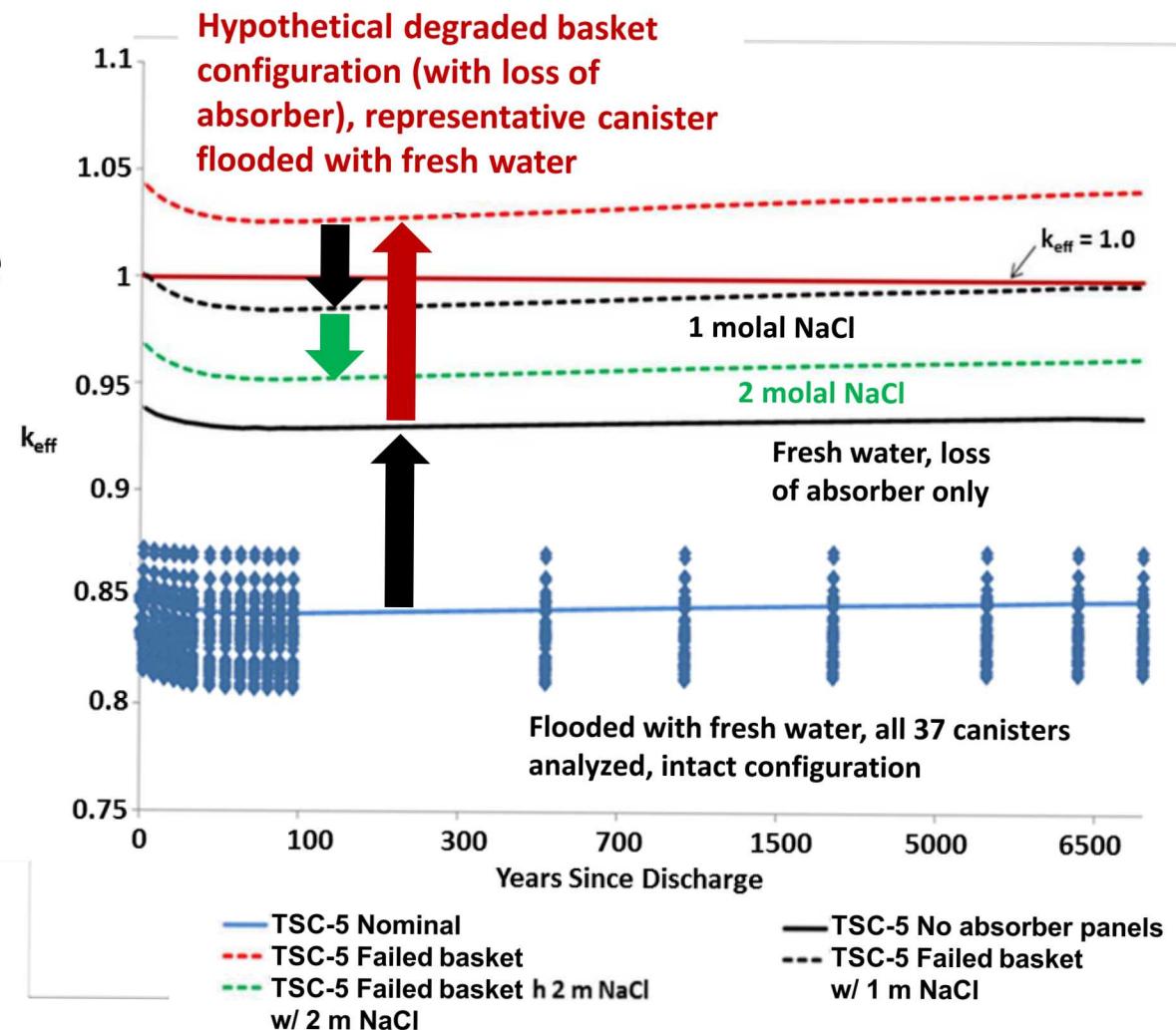

References:

ORNL (Oak Ridge National Laboratory) 2011. ORNL/TM-2005/39 Version 6.1.
Clarity, J.B. and J.M Scaglione 2013. ORNL/LTR-2013/213.

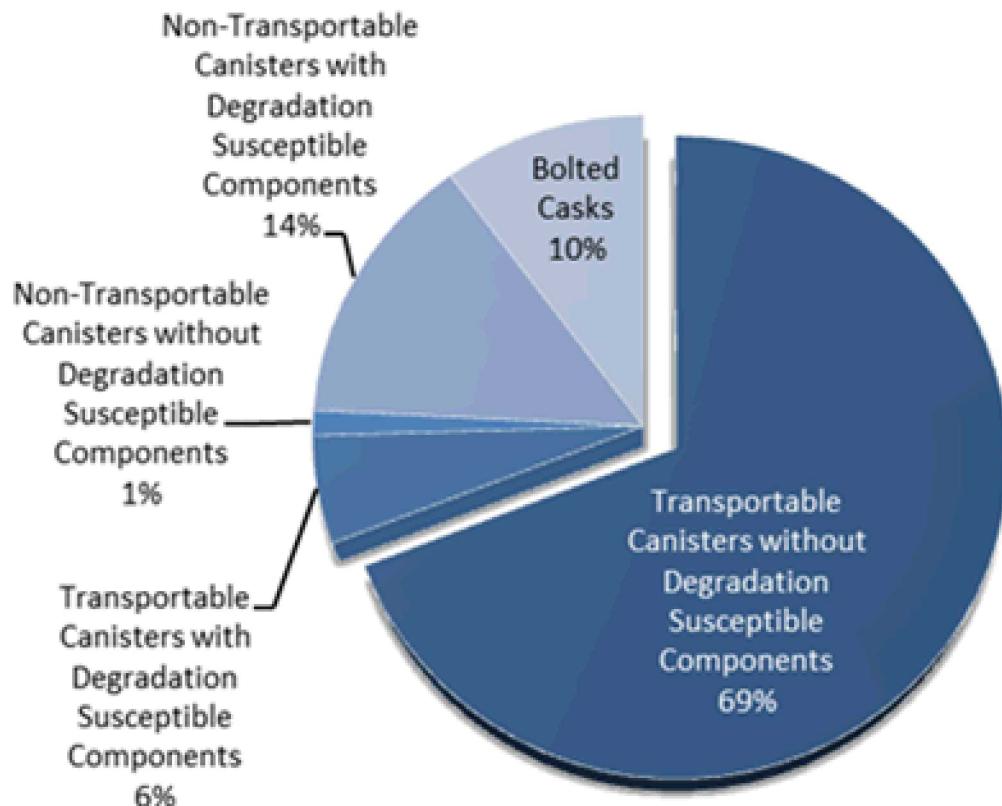

Basket Configurations for TSC-24 System (“Site A”)

Intact Basket
With Loss of
Neutron Absorber
Plates

Collapsed Basket,
(with loss of
neutron
absorbers)



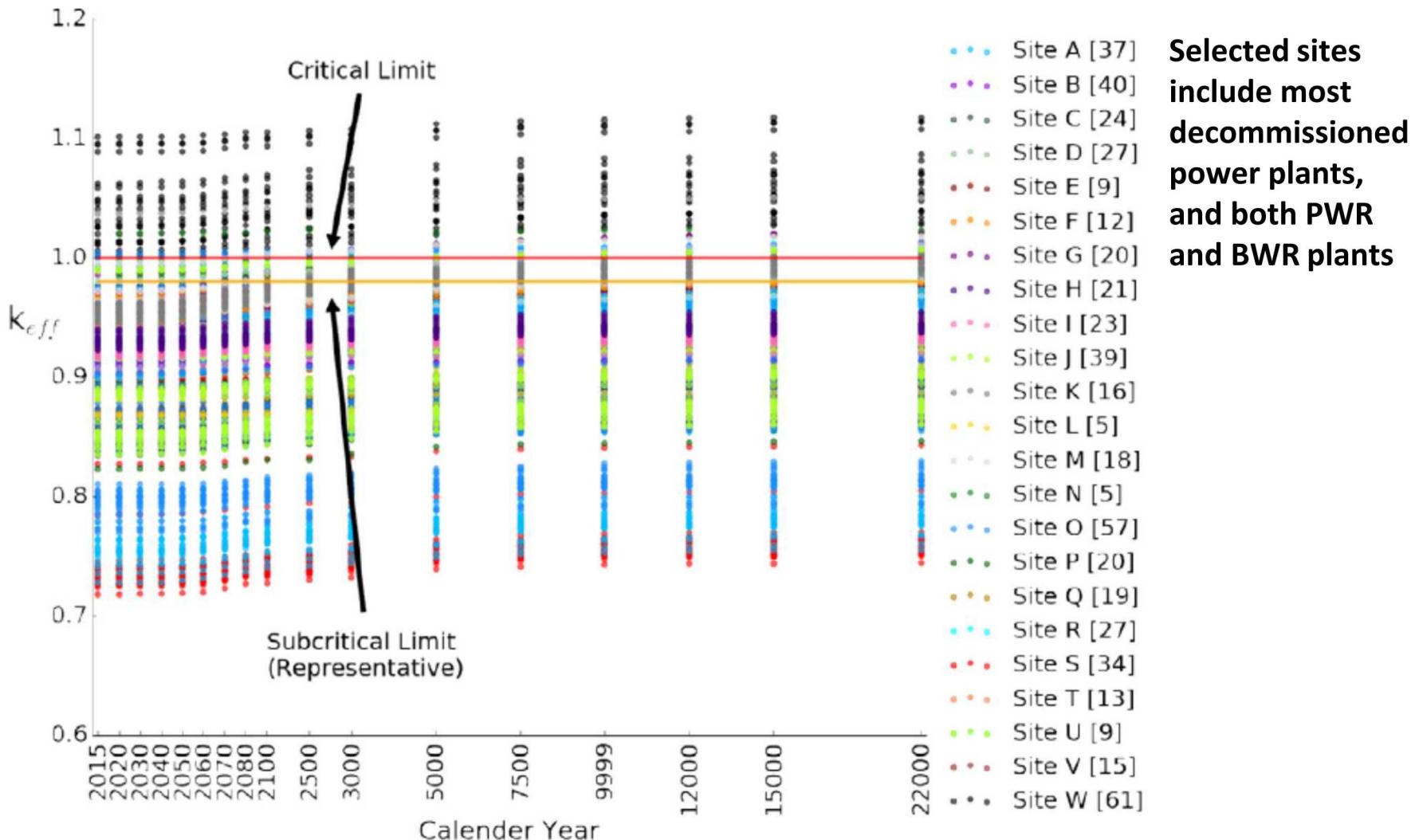
Fuel-tube type basket
(e.g., TSC-24)
Boral sheets attached
with thin-gauge SS
sheathing (welded)


References:
 Clarity, J.B. and J.M Scaglione 2013. ORNL/LTR-2013/213.
 Hardin et al. 2012. FCRD-UFD-2012-000219 Rev. 2.

Criticality Scoping Analysis Results (“Site A”)

- Analyzed as-loaded, with burnup credit
- Higher chloride brine strength → less reactivity (saturated NaCl \approx 6 molal)
- Note: $k_{\text{eff}} > 1$ results signify DPCs for which additional control measures might be used, e.g., re-packaging

DPC Construction Affects Potential for Postclosure Criticality and Thus, Disposability



Based on Greene et al. 2013. *Storage and Transport Cask Data For Used Commercial Nuclear Fuel – 2013 U.S. Edition*. ATI-TR-13047.

- Fresh-water disposal environment, flooding possible
- Reliance on uncredited margin (as-loaded, full burnup credit)
- After package breach, degradation of neutron absorbers
- Basket structural integrity maintains assembly fuel rod pitch
- Stainless steel has the longest corrosion lifetime

k_{eff} vs. Time for DPCs Flooded with Fresh Water

All DPCs from 23 sites, loss-of-absorber (except P & W)

Liljenfeldt et al. 2017. Summary of Investigations on Technical Feasibility of Direct Disposal of Dual-Purpose Canisters. SFWD-SFWST-2017-000045.

Canister Disposability Framework

Group	Postclosure Criticality Design Alternative
Group 1 – Small canisters (up to 4 PWR assemblies or BWR equiv.) with no neutron absorbers	1.A Small capacity waste package 1.B Small capacity waste package combined with heavy insert
Group 2 – Larger canisters with bolted closures or bolted/welded combinations	2.A Bolted closures (both inner and outer canister lids) 2.B Bolted closure combined with welded closure 2.C Can-within-can arrangements using bolted or welded closures
DPC Direct Disposal Ideas (Existing Canisters)	3.A High reliability ($\sim 10^{-12}$ /year/package) overpack performance 3.C Flooding possible only with chloride brine
	This study
Group 4 – Existing DPC designs (welded closure) used for disposal with modifications	4.A Reactivity control improvements 4.B Fillers for reactivity control
Group 5 – Multi-purpose canisters with long-lived baskets and neutron absorbers	5.B Larger canisters, with basket and absorber materials selected for longevity in a range of chemically reducing and oxidizing environments

Source: Hardin, E. 2013. Spent Fuel Canister Disposability Baseline Report. FCRD-UFD-2014-000330 Rev. 0.

Proposed Goals - DPC Filler Program

- **Develop technological filler solutions**
 - Maturity sufficient for decision making
 - Provide information to scope program and select one or more approaches
- **Involve stakeholders (utilities, vendors, and regulators) for program review and to build acceptance**
 - Develop wide consensus on:
 - 1) which types of canisters and baskets, with
 - 2) which fuel characteristics, are disposable in
 - 3) which repository environments, and
 - 4) what modifications can be made to DPCs to expand disposability

R&D History: YMP Steel Shot Filler Test (Framatome-Cogema)

- **Steel shot**
 - SAE S230 & S330 sizes; nom. 600-850 μm and 850-1,180 μm diameter
 - As-poured density $\sim 4.6 \text{ g/cm}^3$
 - Thermal conductivity $\sim 0.4 \text{ W/m}\cdot\text{K}$
- **Selection (judgement based)**
 - Ease of handling and placement ("flow")
 - Commercial availability
 - Low cost
 - Cathodic protection
 - Chemical buffering
 - Moderator displacement
 - Thermal conductivity
- **Dummy PWR assemblies (15×15 and 17×17) in polycarbonate cells**
- **Eight tests (2 assemblies, 2 shot sizes, w/without vibration)**
- **Test successful: 94% fill ratio (void space minus “excess” porosity)**

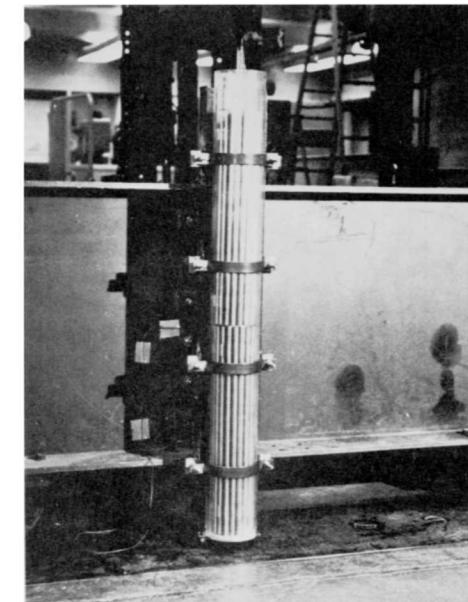
Cogar, J. 1996, *WASTE PACKAGE FILLER MATERIAL TESTING REPORT*, BBA000000-01717-2500-00008 REV 01

R&D History: Particle Filler Tests (1/2)

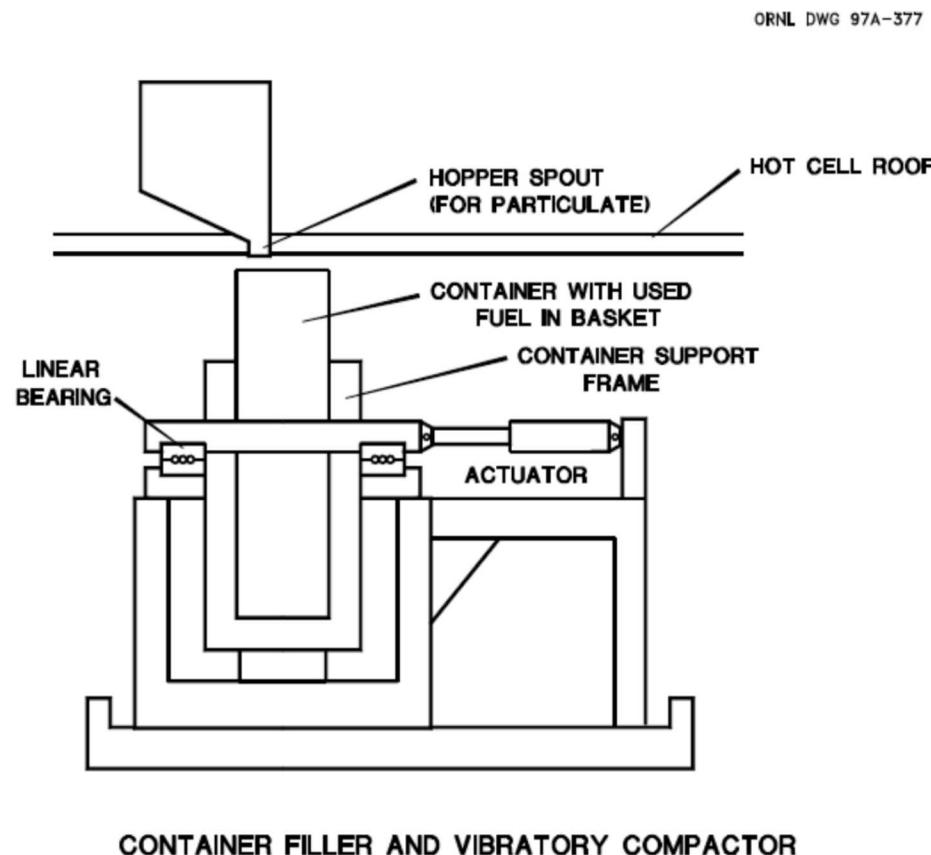
Atomic Energy of Canada, Ltd.

- **Glass Beads**

- Industrial 20 to 300 μm and 0.8 to 1.2 mm dia.
- Density 1.6 (small) to 1.9 (large) g/cm^3
- Structural support (10 MPa hydrostatic)
- Titanium-shell package


- **Single-Cell Filling Test**

- Two dummy CANDU fuel assemblies
- Shaker table


- **Mockup Package Test**

- 19 \times 2 ceramic basket
- Vibratory compaction
- Weld-sealed
- Hydrostatic testing

Forsberg, C.W. 1997. *DESCRIPTION OF THE CANADIAN PARTICULATE-FILL WASTE-PACKAGE (WP) SYSTEM FOR SPENT-NUCLEAR FUEL (SNF) AND ITS APPLICABILITY TO LIGHT WATER REACTOR SNF WPS WITH DEPLETED URANIUM-DIOXIDE FILL*, ORNL-TM-13502.

AECL Filler Tests (2/2)

Vibratory compaction apparatus – full scale.

Hydrostatic testing vessel, AECL/Whiteshell

Figures from Forsberg (1997)

Perspective on Dry Particulate Filler Options for Existing U.S. DPCs

- **Cut DPC Lids Off**
 - Skiving selected among various methods (DOE IWM/NFST investigation)
 - Wet is possible but what about dry operations? Cut lids off dry?
- **Particulate Filling → Dry**
 - Dewatering after filling is impractical
 - Moisture → Corrosion & radiolysis, gas generation, internal pressure
- **Alternative: Criticality Control Features (EPRI 2008)**
 - Open DPCs, insert “disposal control rods”
 - Rearrange fuel assemblies and/or de-rate capacity

EPRI (Electric Power Research Institute) 2008. *Feasibility of Direct Disposal of Dual-Purpose Canisters: Options for Assuring Criticality Control.* #1016629. Palo Alto, CA.

Liquid or Slurries Fillers Pumped In: Attributes

Injectable – ~6,000 L through a 0.5-in ID fill (drain) tube in reasonable time (e.g., a few hours)

Void Filling – Penetrate limber holes, fuel end blocks, spacer grids, and fuel-rod gaps (voids may be less than 1 mm, may be >8,000 fuel pins)

Compatible – Limited gas generation, no chemical attack of fuel or canister internals, limited water content

Durable – 10,000+ yr chemical/physical lifetime before or after waste package breach (natural analogues)

Reactivity Control – By displacing groundwater that may flood a package, or incorporating neutron absorbing material, or both

Safe – Handling and implementation does not endanger workers or members of the public (e.g., RCRA metals)

Practical – Reasonable weight, possibility of retrieving fuel

Low Cost (relative to alternative disposal alternatives)

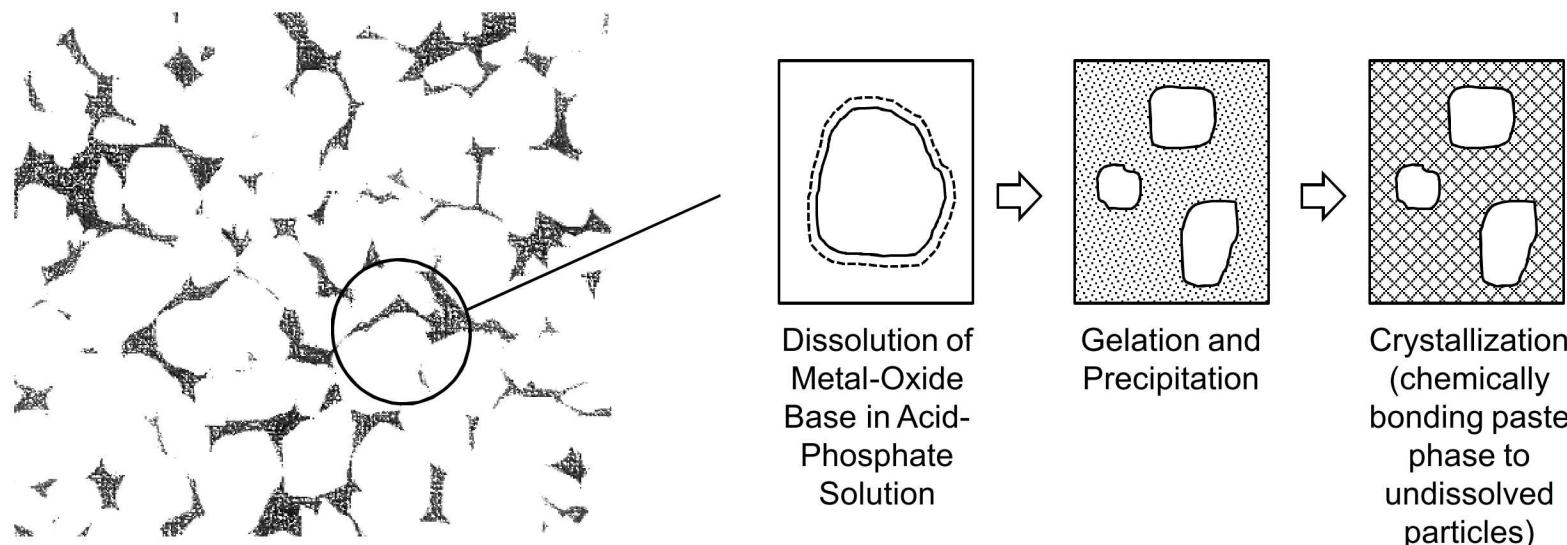
Background: Ordinary Portland Cement (OPC)

The Good

Reactions well understood
Many antique analogues
Inexpensive

The Bad

High pH bad for corrosion
High pH bad for RN solubility, sorption



An Alternative – Phosphate Cements

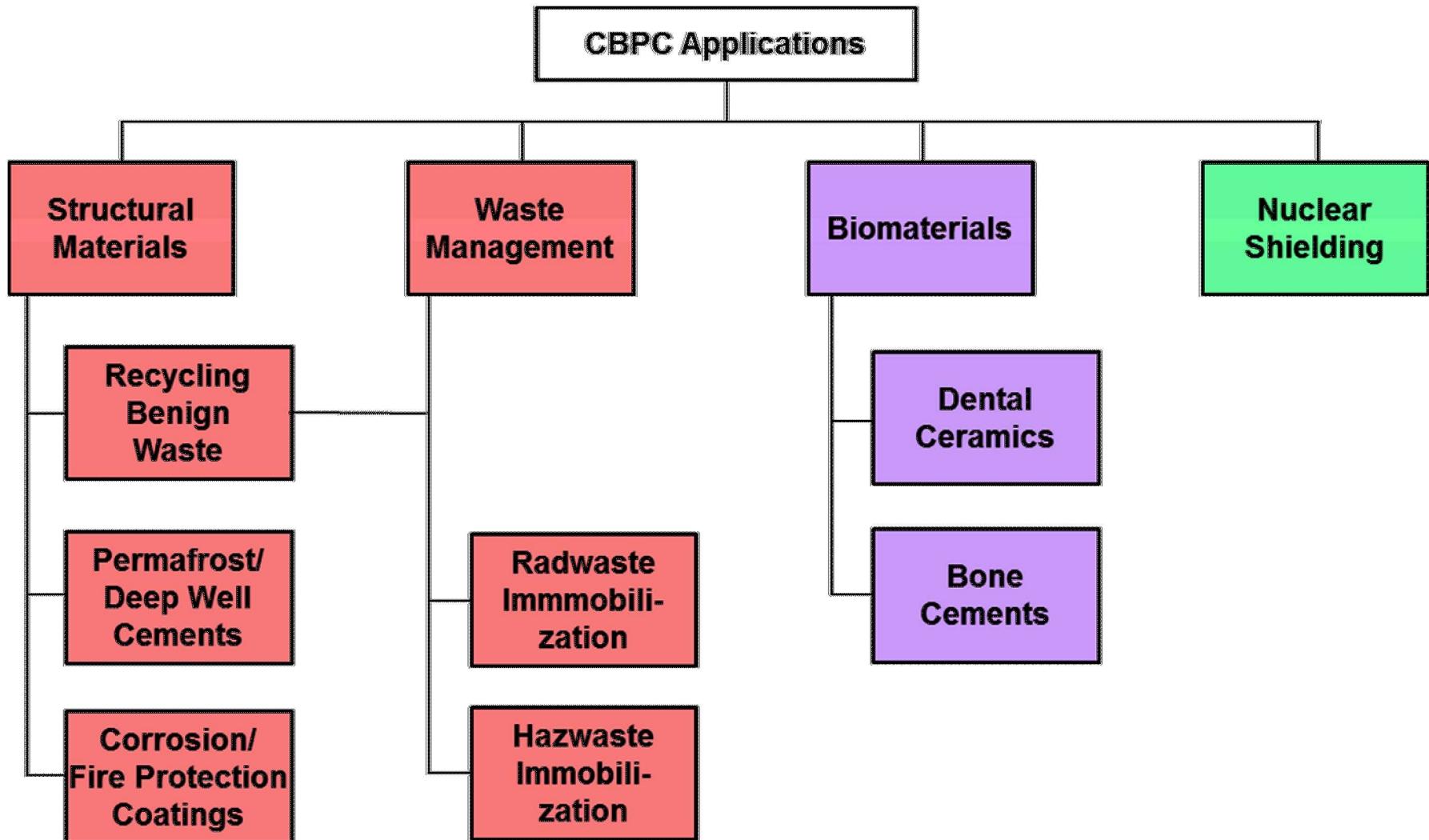
Lower pH decreases corrosion potential
Strong binder of RNs; used for reactive barriers, separations
Many natural analogues; fossil bone, teeth.

Background: Chemically Bonded Ceramics

- Process and Nomenclature

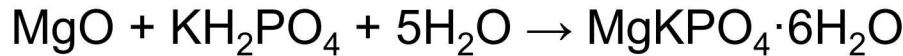
Ceramic ← Crystalline

Cement ← Low temperature


Chemically Bonded ← Paste phase chemically bonds to undissolved particles or aggregates (instead of hydrogen bonds)

Background Nomenclature: Ceramic vs. Cement vs. Chemically Bonded Cement

Attributes:	Ceramics	Cements	Chemically Bonded
How they are commonly produced	Fuse compacted powders at high-T	Hydraulic (water-based)	Acid-base reactions in slurries*
Bonding	Ionic or covalent	Hydrogen and van der Waals bonding	Mostly ionic or covalent
Porosity	Low (~1%, except sinters)	High (typ. 15 to 20%)	Moderate to high
Service Temperature	Very high T	Ambient to low T	Moderate
Corrosion Resistance	Wide pH range	Attack by strong acids and caustics; amorphous phases	Wide pH range, crystalline
Cost	Limiting	Bulk applications	Bulk and specialty
Examples	Porcelain	OPC	Phosphate-bonded cements (dental cements, Ceramicrete® & ThermaLock®)


* Does not include chemical (liquid) grouts, or organics.

How are Phosphate Cements Being Used?

Example Cement Types: Ceramicrete® Mg-K-PO₄ Chemically Bonded Phosphate Ceramic Binder

A. Wagh* and D. Singh, Argonne National Laboratory

MKP binder: Density 1.7 g/cm³ Porosity 2.9% (Cantrell & Westsik 2011; PNNL)

Admixtures: Fly ash, sand, zeolite, wollastonite (CaSiO₃), boric or citric acid as retarder

Slurry pH 5 to 8; Final pH slightly alkaline; Working time 20 min to 2+ hours;
Comp. strength >> 500 psi; Adiabatic temp. rise 50 to 80°C (Stefanko & Langton 2011).

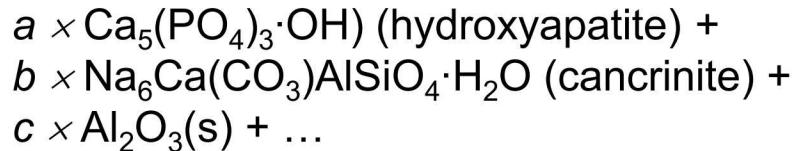
Waste immobilization (Hanford secondary waste studies)

Waste encapsulation (SRNL P-Reactor cement study)

Nuclear material storage (Borobond® – Ceradyne/3M with ORNL, ANL)

Casting and patching (rapid setting/early strength and permafrost)

Ceramicrete: R&D 100 awards in 1996 and 2004 (*R&D Magazine*)

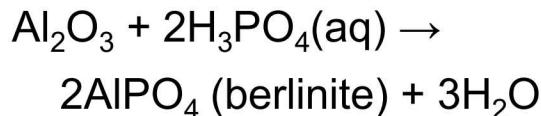

GRANCRETE YouTube URL: <https://www.youtube.com/watch?v=p7foDkuQi7U>

Ceramicrete YouTube URL: <https://www.youtube.com/watch?v=KxidwoJaC1c>

* Inorganic Polymer Solutions, Inc.

Example Cement Types: ThermaLock® Ca-Al-Phosphate Geothermal Wellbore Cement

Haliburton, Unocal, and Brookhaven National Laboratory;
Sugama (1996 and various other publications); Wagh (2016, Section 16)

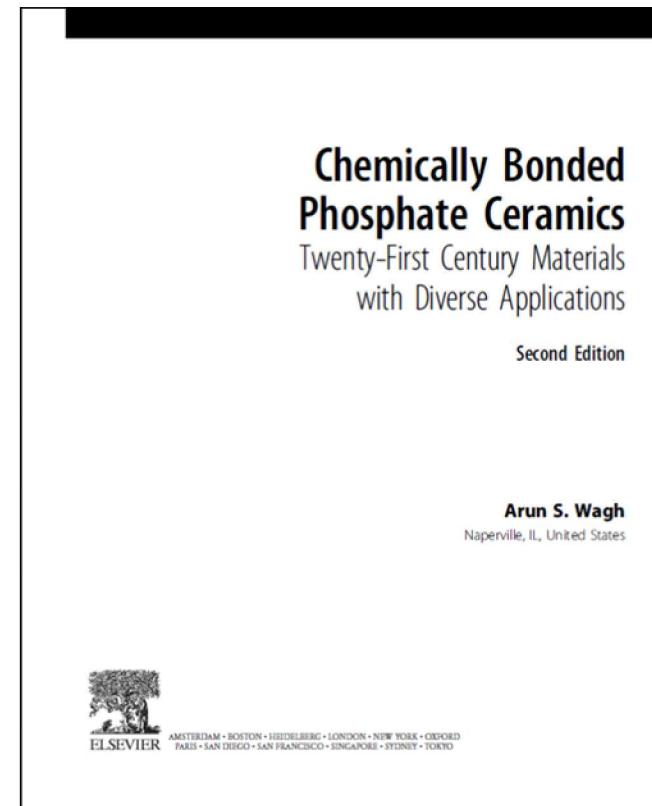

Tested CO₂ resistant in geothermal wells

Strength, pumping time, and temperature tolerance suitable for deep well cementing

May have high porosity (e.g., >20%); boric acid may not function as retarder at higher temp.

Probable admixtures: fly ash, sulfonate plasticizer, betaine stabilizer

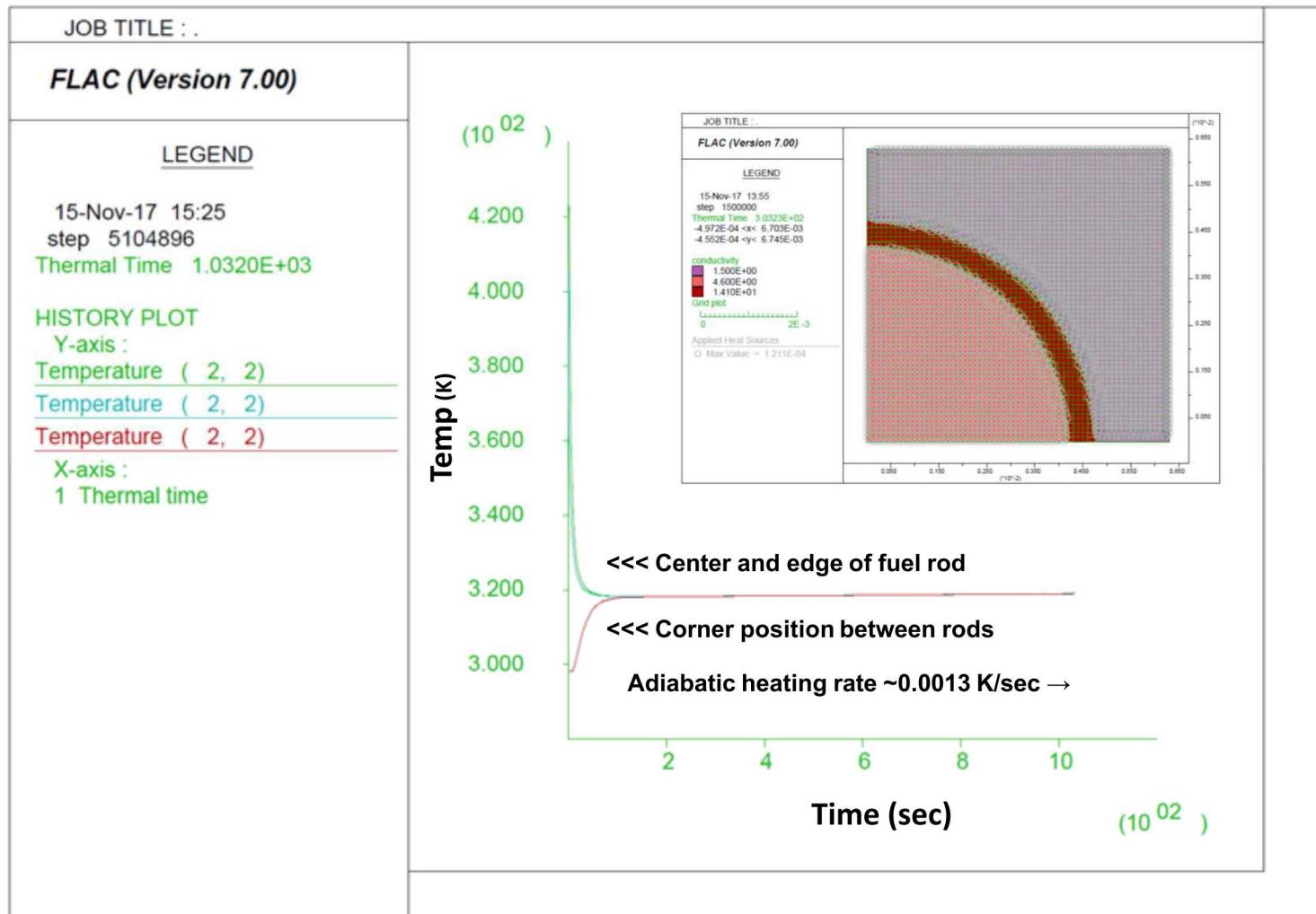
Alternative formulation (Wagh 2016, Table 16.3):


Forms AlH₃(PO₄) gel at low temperature (but converts to crystalline berlinitite at 150°C)

A visual comparison of ThermaLock cement (right) and Portland cement (left) shows how CO₂ deteriorates Portland cement over time, while leaving ThermaLock cement virtually unaffected (HAL1343).

Recommended Cement Types for Filler Investigation

- **Al-phosphate** (end-product berlinit, AlPO_4 , as thermally setting binder, possibly with fly ash)
- **Mg-K-phosphate** (Ceramicrete® binder with fly ash, fine silica sand, retarder)
- **Ca-phosphate** (esp. dental cements that form hydroxyapatite, with retarders and fly ash)
- **Ca-aluminate-phosphate**
 - ThermaLock® as received from Halliburton
- **Generic OPC Class G Oilwell Cement** (with plasticizer/retarder, fly ash, fine sand)
- Defer testing of
 - Ca-aluminate cements (alkaline)
 - Ca-sulphoaluminate cements (less alkaline, but forms thermally unstable ettringite)



Technical Questions

Filler Behavior and Durability in the Canister Environment

- **Curing behavior and intermediate complexes and solids**
- Temperature during filling and cure (heat generation, heat of reaction)
- Thermal Expansion
 - Filler expansivity vs. canister internals, during initial set and cooling
 - Contraction on dewatering after set
- Dewatering Effectiveness
 - After set, self-heated and vented canister → 200°C
- Radiolytic Gas Generation
 - Gamma: ^{137}Cs and ^{90}Sr - ^{90}Y ($t_{1/2} \sim 30$ yr)
 - Neutron: Spontaneous fission of ^{242}Cm ($t_{1/2} < 1$ yr), ^{244}Cm ($t_{1/2} = 18$ yr)
 - ^{238}Pu (α , n) (target $t_{1/2} = 88$ yr)
 - Other possible reactions, include decay ingrowth
 - Interaction with filler materials
- Filler Cracking or Bond Failure
 - Before/after package breach (cracks allow groundwater penetration)
- Filler Dissolution and Alteration
 - Long-term leaching tests
 - Mainly after package breach (incl. wedging, galvanic corrosion effects)

Early-Time Fuel and Filler Temperature from Scoping Adiabatic Model

Zero heat flow through model boundaries, heat generation in fuel and filler (10 kW/m³), initial fuel/filler temps. 150/25°C

Cement Slurry Testing Strategy (1/2)

1. **Initial Screening:** Eliminate candidate cements that are non-injectable, produce liquid separation, or exhibit rapid exothermic reaction.

Screening tests applied together or selectively:

- Pseudo-viscosity at time intervals, e.g., 30, 60 and 120 minutes after mixing.
- Separation (bleed) test (ASTM C-940)
- Adiabatic curing temperature history
- Slurry pH (test paper)
- Curing expansivity (in simple molds)
- Pre-rinse ingredients (e.g., fly ash)

Ford cup (ASTM D-1200) and flow cone (ASTM C-939) testing apparatus:

Cement Slurry Testing Strategy (2/2)

2. Heat Treat Selected Samples (especially AlPO₄):

- Follow approximate DPC temperature-time trajectory

Down-select 4-5 cement mixes

3. Additional Screening:

- Modify/improve candidate cements, and add fillers like B₄C

Down-select 2-3 cement mixes

4. Characterization:

- Powder XRD (mineral identification)
- TGA (release of moisture and gases; mineral identification)
- Radiolysis (exposure to gamma dose; gas generation)
- Autoclave/geochemical bomb aging studies (leaching effects)
- Cured pH (leaching effects)
- Compressive strength (compare internal cement structure)
- Viscometry (multi-process simulation)
- Physical/thermal properties (multi-process simulation)
- Unsaturated permeability/contact angle (multi-process simulation)
- Calorimetry (multi-process simulation)
- Acid dissolution (retrieval scenario)

Testing Final Goal: Filler Demonstration

- **Scaled**
- **Simulated Basket and Fuel**
- **Filler Handling/Emplacement Equipment (mixing, heating/cooling)**
- **Environmental Exposure (heat, moisture)**
- **Pre-Test Predictions**
- **Post-Test Examination**
- **Final Documentation**

Weld-test mock-ups from ORNL standardized canister test program.

Backup Slides

Background: Mg-phosphate Phases

Phases found in Mg-phosphate cements (Wagh 2016)		
$\text{MgHPO}_4 \cdot \text{H}_2\text{O}$, $\text{MgHPO}_4 \cdot 2\text{H}_2\text{O}$	Haysite	
$\text{MgHPO}_4 \cdot 3\text{H}_2\text{O}$	Newberyite	Secondary; lava tube caves
$\text{Mg}(\text{NH}_4\text{HPO}_4)_2 \cdot 4\text{H}_2\text{O}$	Schertelite	Converts to struvite
$\text{MgNH}_4\text{PO}_4 \cdot 6\text{H}_2\text{O}$	Struvite	Found in guano, bioliths, wastewater scales; endpoint phase = struvite
$\text{MgNH}_4\text{PO}_4 \cdot 4\text{H}_2\text{O}$	Stercolite	
$\text{MgNH}_4\text{PO}_4 \cdot \text{H}_2\text{O}$	Dittmarite	
$\text{MgK}(\text{PO}_4)_2 \cdot 6\text{H}_2\text{O}$	Mg potassium phosphate	
$\text{Mg}_3(\text{PO}_4)_2 \cdot 4\text{H}_2\text{O}$	Mg phosphate	
$\text{Mg}(\text{H}_2\text{PO}_4)_2 \cdot 2\text{H}_2\text{O}$	Mg dihydrogen phosphate	
$\text{Mg}(\text{H}_2\text{PO}_4)_2 \cdot 4\text{H}_2\text{O}$		
Some other Mg-phosphate minerals		
$\text{Mg}_3(\text{PO}_4)_2$	Farringtonite	Meteorites
$\text{Mg}_3(\text{PO}_4)_2 \cdot 8\text{H}_2\text{O}$	Bobierrite	Found in guano, elephant tusks
$(\text{Mg},\text{Fe})_2\text{PO}_4\text{F}$	Wagnerite	Pegmatite
$\text{Mg}_2(\text{PO}_4)(\text{OH})$	Hydroxylwagnerite	Hydrated form
$\text{Mg}_2(\text{PO}_4)(\text{OH},\text{F})$	Althausite	With serpentine, magnesite
$\text{Mg}_3\text{B}_2(\text{PO}_4)_2(\text{OH})_6 \cdot 6\text{H}_2\text{O}$	Lünebergite	
$\text{Mg}_{14}(\text{PO}_4)_6(\text{PO}_3,\text{OH},\text{CO}_3)_2(\text{OH})_6$	Phosphoellenbergerite	With serpentine, magnesite; high-P assemblages
Does not include phosphates containing Mg with transition metals, Li, Sr, U, Pb, As, etc. Based on Wagh (2016) Table 2.2: Phases found in Mg-phosphate ceramics.		

Background: Ca-phosphate Phases

Ca-phosphate phases found in nature and in phosphate cements		
$\text{Ca}_5(\text{PO}_4)_3 \cdot \text{OH}$	Hydroxyapatite	Bone, dental enamel
$\text{Ca}_5(\text{PO}_4)_3 \text{F}$	Fluorapatite	Most common natural phosphate; igneous, metamorphic and sedimentary occurrences; a major component of phosphorite rock
$\text{Ca}_5(\text{PO}_4)_3 \text{Cl}$	Chlorapatite	Igneous and metamorphic; forms in fluorine-deficient solutions
$\text{Ca}_5(\text{PO}_4 \cdot \text{CO}_3)_3 \cdot (\text{OH}, \text{F})$	Dahllite	Carbonated apatite
$\text{CaHPO}_4 \cdot 2\text{H}_2\text{O}$	Brushite	Cave minerals, bioliths, coal ash
$\text{CaAl}_3(\text{PO}_4)(\text{PO}_3\text{OH})(\text{OH})_6$	Crandallite	Phosphatic aluminous sedimentary rock, some carbonatites, pegmatites and metamorphics, anoxic marine sediments, clay-rich tropical soils
$\text{Ca}_4\text{O}(\text{PO}_4)_2$	Hilgenstockite	Artificial tetracalcium phosphate; alters to hydroxyapatite
$\text{Ca}_3(\text{PO}_4)_2$	Whitlockite	Tricalcium phosphate; kilning of bone
Does not include phosphates containing Ca with transition metals, Li, Sr, U, Pb, As, etc.		

Background: Al-phosphate Phases

Al-phosphate phases found in nature and in phosphate cements		
AlPO_4	Berlinite	High temperature
$\text{AlPO}_4 \cdot 2\text{H}_2\text{O}$	Variscite	Hydrated form
$\text{KAl}_2(\text{PO}_4)_2(\text{OH},\text{F}) \cdot 4\text{H}_2\text{O}$	Minyulite	Secondary product from phosphate minerals
$\text{Al}_4\text{PO}_4(\text{OH})_3$	Trolleite	Metamorphic, exceptionally hard
$\text{Al}_3(\text{PO}_4)_2(\text{OH})_3$	Wavellite	Pegmatite mineral alteration
Al_2O_3	Alumina	Occurs naturally as corundum, in bauxite, etc.
$\text{Al}(\text{OH})_3$	Gibbsite	Common secondary mineral
$\text{Al}_2\text{O}_3 \cdot 3\text{H}_2\text{O}$	Bayerite	Polymorph of gibbsite (with doyleite and nordstrandite)
$\gamma\text{-AlOOH}$	Boehmite	Dimorphic with diaspore; component of bauxite
$\text{Ca}_2\text{Al}_2\text{SiO}_7$	Gehlenite	Naturally occurring weathering product; constituent of Ca-aluminate cements
Does not include phosphates containing Al with transition metals, Li, Sr, U, Pb, As, etc.		

Cement Testing – Phases 2 and 3

- **Examples of Unit Cell Tests**
 - Flow studies to compare mixes (Bingham fluids)
 - Slurry separation and homogeneity of set cement at scale
 - Hydraulics of tube-and-plate baskets vs. egg-crate designs
- **Examples of Separate Effects Tests**
 - Heating during injection
 - Agitation/vibration during injection
 - Variations in basket configurations