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Background: Cellular and Polymeric

Foams

Cellular Materials
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Polyurethane-based
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Gibson, L.J. and Ashby, M.F. (1999) Cellular solids, structure, and properties, 2nd ed., Cambridge.



Hyperelastic Foam (Silicone Foam)

50% porosity

••

•

• •

O. •
• •

• Light weight (low density)

• Good for transportation

• Soft - Excellent vibration damper
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Compression Sample

• Comfort

• Protection (sensitive devices)

• Excellent shock/impact mitigation

• Protection (human, sensitive devices,
hazard materials, etc)
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Lu, W.-Y, (2015) Compression of silicone foams. 2015 SEM Annual Conference and Exposition on Experimental and Applied Mechanics. June 8-11,
2015. Costa Mesa. CA. USA.



Experimental Challenges in Dynamic
Compression of Hyperelastic Foams

■ Dynamic stress equilibrium/uniform
deformation

✓ Thinner specimen

✓ Pulse shaping

■ Weak transmitted signal

✓ Sensitive transmission bar/strain gage or
force transducers

■ Radial inertia

➢ Poisson's effect

Poisson's ratio

➢ Loading condition

Specimen geometry
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Chen, W., and Song, B., (2011) Split Hopkinson (Kolsky) Bar: Design, Testing and Applications. Springer, New York.



Radial Inertia

Inertia Acceleration

• Dharan and Hauser (1970) vr(t)= /42l v(t)

> In a compression test with a constant axial
velocity, the lateral velocity increases with
increasing strain (or decreasing specimen
thickness).

Radial lnertia

Temporal:

Radial Acceleration

Spatial:

Velocity Gradient
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Inertial Force

2cio

Radial lnertial Force

Radial Confinement
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Consequence of Radial Inertia

In a
compression

test

Radial
Confinement Radial Inertia

• Song, B., Chen, W.W, Ge, Y., Weerasooriya, T., (2007) Radial inertia
effects in Kolsky bar testing of extra-soft materials. Experimental
Mechanics, 47:659-670.

• Li, Q.M., and Meng, H. (2003) About the dynamic strength
enhancement of concrete-like materials in a split Hopkinson pressure
bar test. International Journal of Solids and Structures. 40:343-360.

• Forrestal, MJ., Wright, T.W, and Chen, W., (2007) The effect of
radial inertia on brittle samples during the split Hopkinson pressure
bar test. International Journal of Impact Engineering. 34:405-411.
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An abnormal stress peak that may
overcome the intrinsic material stress-
strain response.

The radial inertia becomes more
significant when characterizing

➢ Soft materials
>. Song et al. 2007

➢ Brittle materials
>. Li and Meng, 2003; Forrestal et

al. 2007



Radial Inertia lnduced Axial Stress

• Kolsky (1949, Proc. Royal Soc.)

• Forr

• Dhar

2 2v ao po

✓ Incompressible Solid
✓ Small deformation

1 ra r277-

All current analyses are based o
constant Poisson's ratio.

What will happen if Poisson's ratio is no
longer a constant?

U\ x/ L 1 11

• Warren and Forrestal (2010, EM)
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✓ Incompressible Solid
✓ Large deformation
✓ Stress distribution

Santla
Mond
laboratories

7



Poisson's Ratio in a Silicone Foam

Striker Bar

Pulse Shaper

Flash Lamps 

Incident Bar

Transmission Bar Momentum Bar

Strain Gage
Strain gageSpecimen Quartz Crystal Force

Transducers



Dynamic Poisson's Ratio in a SiliconEr' arms

Foam

Poisson's ratio calculation of a foam material is tricky:
➢ Large deformation
➢ Non-linear response

de,
v =  

de,
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Dynamic Poisson's Ratio in a Silicon

Foam
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Comprehensive Radial Inertia Analysi

2 a 0

Mass conservation:

1  dp(t) _ i V),(t) +2  V r (r , W

p(t) dt l (0 r (0 }

Mom en tum conservation:

a ay, (1,.. , Wo- (r t) ,
r  = AO( aVra( tr ,t) +Vr(r 't) ar iar
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Understanding Radial Inertia
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-1, (r ,t) = p (t) • 
a2 (t) — (t)

•20— e4t)) 
(t)-(v(t)+1

(t) dv (e
+
) rde„

Radial inertia effect:
• Strain acceleration
• Specimen strain (deformation)
• Change of Poisson's ration during deformation

Radial lnertia in a solid with a constant Poisson's ratio 
dv 
= 0
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Warren, T.L., and Forrestal, MJ., (2010) Cominents
on the effect of radial inertia in the Kolsky bar test for
an incompressible material. Experimental Mechanics.
50: 1253- 1255.

Exactly same as that given by Warren and
Forrestal (2010) for an incompressible solid
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Poisson's Ratio Effect on Radial
Inertia in a Silicone Foam
Radial inertia in a silicone foam with v(ex)= 
varying Poisson's ratio

a 1, (r. ,t) = p (t) • 
a2 (t) - T.' (t)
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Poisson's Ratio Effect on Radial

Inertia in a Silicone Foam
Radial inertia in a silicone foam with
varying Poisson's ratio
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Experimental Verification
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Potential Solutions

0 Numerical correction

,t)= p(t).
a 2 r2 (t)

20— e„(t))
v (t),*0+ v (t).(v (0+1) 1— ex 

(t) 
(0+ 

dv (ex)

➢ Challenge: it is highly sensitive to strain-
dependent Poisson's ratio (differentiation)

0 Experimental correction
➢ Using an annular specimen
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The radial inertia effect
becomes more significant
when charactering soft
materials.
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Song, B., Chen, W.W., Ge, Y., Weerasooriya, T., (2007) Radial inertia effects in Kolsky bar testing of extra-soft materials. Experimental Mechanics,
47:659-670.



Conclusions

• Unique Poisson's ratio of hyperelastic foams, i.e.,
silicone foam in this study

• Experimental characterization of Poisson's ratio of
hyperelastic foams

• Poisson's ratio varies with deformation

Drastic change before and after desification

• Radial inertia when dynamically characterizing
hyperelastic foams

• Key factors

Strain acceleration

Large deformation

Poisson's ratio change

• More significant in soft materials

• Suggested solutions

• Numerical correction

• Experimental remedy
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