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Hyperelastic Foam (Silicone Foam) @&

0% porosity .

= Light weight (low density)

= Good for transportation

Quasi-static Compression

= Soft - Excellent vibration damper _ /}
= Comfort % ;
= Protection (sensitive devices) W

= Excellent shock/impact mitigation =

= Protection (human, sensitive devices, 0 1/«
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hazard materials, etc) Bisplscernent. i




Experimental Challenges in Dynamic @g.
Compression of Hyperelastic Foams

= Dynamic stress equilibrium/uniform
deformation

v Thinner specimen

v’ Pulse shaping

= Weak transmitted signal

v’ Sensitive transmission bar/strain gage or
force transducers

= Radial inertia

> Poisson’s effect
» Poisson’s ratio
» Loading condition

» Specimen geometry 4




Radial Inertia

Inertia Smmn  Acceleration <===) |Inertial Force
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= Dharan and Hauser (1970) Vr(t):éVx(t)

» In a compression test with a constant axial
velocity, the lateral velocity increases with

V),

increasing strain (or decreasing specimen Mo T
thickness). 2a,
- Temporal:
Radial Acceleration &) Radial Inertial Force
Radial Inertia —
Spatial:
—  Velocity Gradient & Radial Confinement
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Consequence of Radial Inertia ) .
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An abnormal stress peak that may
overcome the intrinsic material stress-

Radial strain response.

Eenfnetment Radial Inertia

The radial inertia becomes more
significant when characterizing

« Song, B., Chen, W.W., Ge, Y., Weerasooriya, T., (2007) Radial inertia > SOft mater IaIS

effects in Kolsky bar testing of extra-soft materials. Experimental

Mechanics, 47:659-670. > Song et al. 2007
e Li, Q.M. and Meng, H. (2003) About the dynamic strength > Brittle materials

enhancement of concrete-like materials in a split Hopkinson pressure

bar test. International Journal of Solids and Structures. 40:343-360. > Liand Meng, 2003; Forrestal et
o Forrestal, M.J., Wright, T.W., and Chen, W., (2007) The effect of

radial inertia on brittle samples during the split Hopkinson pressure al = 2007

bar test. International Journal of Impact Engineering. 34:405-411.




Radial Inertia Induced Axial Stress &=

= Kolsky (1949, Proc. Royal Soc.) j Isrﬁoarlvzreefzfriszigr?lid

2 2
_V Hh | g

O-Z

= Forrg All current analyses are based on
constant Poisson’s ratio.

MOIEl:  \What will happen if Poisson’s ratio is no
longer a constant?

= Warren and Forrestal (2010, EM)

v Incompressible Solid

v' Stress distribution

o= P { 3& +@}(G§_r2) v' Large deformation
2(1-e,)




Poisson’s Ratio in a Silicone Foam ([
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Dynamic Poisson’s Ratio in a Siliconem .

Foam

Poisson’s ratio calculation of a foam material is tricky:
» Large deformation
» Non-linear response

de
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Dynamic Poisson’s Ratio in a Siliconem i,
Foam
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Comprehensive Radial Inertia Analys@m“

Mass conservation:

it 1.W:_(K(f)+zn(r,t)j
~ TB plt) dt 1(¢) r(¢)
l"k'y Momentum conservation:
>

00l0t)__ o Ar) )0

or




Understanding Radial Inertia
a0l (’).[v(t)gc(t)+v(t).(v(t)+1)l

5, (r,1) = p(t) T00) &(1) dv(ex)@%(t)

—e (1) _de,

X

Radial inertia effect:
% Strain acceleration
% Specimen strain (deformation)
% Change of Poisson’s ration during deformation

Radial Inertia in a solid with a constant Poisson’s ratio ]
e

Warren, T.L., and Forrestal, M.J., (2010) Comments
on the effect of radial inertia in the Kolsky bar test for

E V= % an incompressible material. Experimental Mechanics.
50:1253-1255.

, &(1) Exactly same as that given by Warren and
Forrestal (2010) for an incompressible solid
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Poisson’s Ratio Effect on Radial
Inertia in a Silicone Foam

Vi—V,

Radial inertia in a silicone foam with V(ex) = +v,

varying Poisson’s ratio 1+exp ( € "0 J
@) | &) dv(e)

()= (0 A w000 (00 B 0 g




Poisson’s Ratio Effect on Radial 7 i
Inertia in a Silicone Foam

Radial inertia in a silicone foam with
varying Poisson’s ratio
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Experimental Verification
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Potential Solutions

d Numerical correction

()=o) S0 St ), 200 g )

e, (1)

30

» Challenge: it is highly sensitive to strain-
dependent Poisson’s ratio (differentiation)

N
&)]

O Experimental correction
» Using an annular specimen
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The radial inertia effect
becomes more significant
when charactering soft

materials.
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Conclusions ()}
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= Experimental characterization of Poisson’s ratio of 350 o5 8
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= Poisson’s ratio varies with deformation $30f 5
= Drastic change before and after desification 2201 1%
10l 10.2
= Radial inertia when dynamically characterizing O o1 om 08 i o5 o8 o7 obv
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= Experimental remedy




