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Video of Laser Ignition and Self- () s,
Propagating Reaction in Al/Pt Multilayer
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The relationship between physical @&z,
parameters and propagation velocity

From Mann, Gavens, Reiss, Van Heerden, Bao, and Weihs, J. Appl. Phys. 1997:

Fick’'s Second Law Heat Equation
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Solved for the case of a
moving wave
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Values for model parameters are @i
informed by experimental data

2 p2 _ Concentration at each 1 A wide
423RTED E4 |
exp | — mesh point comes from STEM-EDS
Egly(Taa = To) hdy to solve Cy(y)

Series of eigenvalues, «a,,, and Fourier
coefficients, k,,, account for the potential
energy lost to premixed material as a
function of initial concentration, Cy(y), Al-Pt 10nm
for quarter period 6.
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Values for model parameters are @
informed by experimental data

Heat of reaction from calorimetry
and enthalpy-temperature diagrams
allow for the calculation of adiabatic
and flame temperatures
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Thermal Conductivity in a three- @i,
parameter fit of velocity data

Heat of reaction from calorimetry
and enthalpy-temperature diagrams
allow for the calculation of adiabatic
and flame temperatures

Al/Pt Thermal Conductivity
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Pair of best fit for activation 7 i

energy and diffusion coefficient
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Heat of reaction from calorimetry
and enthalpy-temperature diagrams
allow for the calculation of adiabatic
and flame temperatures
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Material parameters remain =
constant for fitting off-stoichiometric
compositions of Al/Pt
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Laser flyer plate impact of Ni/Al .
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Reaction velocity of 25 nm Bilayer ) =

NiV/Al by Flyer Impact
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Reduction in Ni/Al Activation =,

Laboratories
In-plane Activation
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Radiation Loss in Electron )
Transparent Samples

Co/Al Velocity
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Accounting for Heat Loss in Model

Flame temperature is determined

4 74
based on the enthalpy/temperature 0,qq4(T) = —¢ 20(T" — Ty)
diagram from the heat of reaction brotal Thickness
minus heat lost to radiation by:
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Matching to Experimental Data

Co/Al Velocity
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Summary )

We have populated the Mann model based on experimental data
in order to fit values for activation energy and diffusion coefficient

This framework can be applied to the propagation of shock
impacted samples to calculate changes in activation energy

Energy loss to the environment can be incorporated into the
model based on its effects on flame temperature for studies
involving self-propagation of electron transparent reactive
nanolaminates



