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Ferroelectric HfO2

 2011 Boscke et al. – Namlab 
 2 to 5% Si:HfO2 via ALD with TiN top 

and bottom electrodes and anneal.

 Proposed metastable orthorhombic 
crystal structure.

 Since then:
 Dopants: Zr, Gd, Al, none,…

 Electrodes: Mostly TiN, TaN, Pt, Ir, Ru 
Si, …

 Thickness: 25 to ~5 nm, maybe less

 CMOS compatible ferroelectric 
stable at <20 nm thickness.
 Applications: ferroelectric memory, 

energy storage & harvesting, low 
power FETs.

2Böscke, et al., Appl. Phys. Lett. 99, 102903 (2011)

M.H. Park, et al., Nanoscale, June 2017 DOI:10.1039/C7NR02121F
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What is a Ferroelectric Material?

 Spontaneous polarization which 
can be reoriented by an electric 
field

 Noncentrosymmetric ionic 
crystals
 Centers of positive and negative charge 

do not coincide

 Applications

 Memory: FRAM

 Actuators: Ultrasound, Sonar, AFMs

 Capacitors: Cellphones and nearly 
all electronics

 Sensors: Night vision, IR cameras

 Due to pyroelectric effect
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What is the Pyroelectric Effect?

 If: Spontaneous polarization

 Then: Uniform change in 
temperature creates a change in 
polarization
 Change in polarization can be 

measured as a voltage or current. 
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Pyroelectric Measurements

 Dynamic & Direct Measurement

 Continuous change in temp and 
measure the current simultaneously

 Sinusoidal Oscillating Temperature

 Pyroelectric current depends on 
change in temperature with time

5

p – pyroelectric coefficient
ω – angular frequency of temperature
A – area of device

E. J. Sharp and L. E. Garn, J Appl. Phys. 53, 8980 (1982); doi: 10.1063/1.330455
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Pyroelectric Setup

6

1.500 pA1.500 pA

Function Generator
• Keysight 33500B
• 15 mHz
• 10 Vpp

Electrometer
• Keithley 6512
• Measures current 
• ± 2 pA range

Labview
• Collects current 

and temperature 
measurement

Peltier cooler 
• TE Technology
• VT-127-1.0-1.3-71
• ± 2.3 K range

SampleThermocouple
• Omega CO1-K

LCR meter
• HP 4192 LF impedance analyzer
• Pole sample 2 MV/cm
• Check capacitance and loss tangent at 1 kHz

01.000     nF01.000     nF
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Experimental and Device Stack
 RF sputter TaN from TaN target

 Thermal ALD Hf1-xZrxO2 at 
150 ℃ by TDMA Hf, TDMA Zr, 
and H2O
 HfO2 1.01 nm GPC 

 ZrO2 0.99 nm GPC 

 5 cycle ZrO2 & 5 cycle HfO2
supercycle (~1 nm)

 Rapid thermal anneal 30s at 
600 ℃ under nitrogen

 Sputter Pt through shadow-
mask

 ICP reactive ion etch 
 SF6 and C4F8 atmosphere
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Si 

TaN 100 nm 

Hf1-xZrxO2 20 nm 

TaN 20 nm TaN 20 nm 

Pt 90 nm

Et
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Polarization: Test Profiles
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Polarization: Wake Up

20 nm Initial 6 V Polarization 4 V Square Wave 103 cycles
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5 nm Initial 1.5 V Polarization 1.5 V Square Wave 105 cycles
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Polarization Trend

 Remanent polarization 
decreases with decreased 
thickness.

 Square waveform cycling 
increases remanent 
polarization.
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Pyroelectric Measurement Data
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Pyroelectric Measurement Data
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Pyroelectric Coefficient

 Pyroelectric coefficient 
increases as thickness 
decreases.

 Wake up makes little 
difference.

 Except 5 nm.
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Pyroelectric Coefficient & Polarization
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dP/dT= ρ
 As thickness decreases:

 Polarization decreases.

 Pyroelectric coefficient 
increases.

 Polarization vs. temperature 
curve response:
 TC decreases.

 Phase transition becomes 
more gradual.
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Conclusions

 ALD (Hf, Zr)O2 displays switchable polarization and 
pyroelectric response down to 5 nm.

 Polarization decreases with decreased thickness.

 Pyroelectric response increased with decreased thickness.

 Pyroelectric measurements provide insight into stability of 
ferroelectric orthorhombic phase: Curie temperature and 
transition.
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