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Abstract. In this work we extend compression-based algorithms for de-
ception detection in text. In contrast to approaches that rely on theories
for deception to identify feature sets, compression automatically identi-
fies the most significant features. We consider two datasets that allow us
to explore deception in opinion (content) and deception in identity (sty-
lometry). Our first approach is to use unsupervised clustering based on
a normalized compression distance (NCD) between documents. Our sec-
ond approach is to use Prediction by Partial Matching (PPM) to train a
classifier with conditional probabilities from labeled documents, followed
by arithmetic coding (AC) to classify an unknown document based on
which label gives the best compression. We find a significant dependence
of the classifier on the relative volume of training data used to build
the conditional probability distributions of the di↵erent labels. Methods
are demonstrated to overcome the data size-dependence when analytics,
not information transfer, is the goal. Our results indicate that deceptive
text contains structure statistically distinct from truthful text, and that
this structure can be automatically detected using compression-based
algorithms.

1 Introduction

Deception, whether in content or style, is a common element across all forms
of communication. However, human judgement performs roughly at chance at
identifying deception [5]. Furthermore, with the massive amounts of textual in-
formation produced online, analysts need an automatic method for identifying
features that are indicative of deception.

Previous work in deception detection has primarily relied on manual feature
selection based on, for example, psycholinguistic theories of deception and/or
computational linguistics, followed by supervised machine learning to build a
classifier [1, 6, 17, 21, 22, 27]. In this work, we explore an alternative to explicit
feature selection based on compression. In particular, we use compression to
automatically identify the most significant structural and statistical elements
common among deceptive documents in order to distinguish them from truthful
documents. The approach can be generalized to other applications in which the
goal is to identify similarities among common entities, e.g. authorship detection
or user categorization.
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In Section 2, we review related work on deception detection. In Section 3
we briefly discuss the two compression methods used to identify deceptive text;
additional details can be found in the Appendix. In Section 4, we present results
on two separate datasets for deception: a hotel dataset [20,21] containing truthful
and deceptive hotel reviews (deception in opinion), and the (Extended) Brennan-
Greenstadt [6] corpus on authentic, obfuscated, and imitated writing samples
(deception in identity). We also discuss modifications to improve the performance
of PPM/AC on unbalanced training data when the lossless information transfer
component of compression does not need to be preserved. Finally, in Section 5,
we conclude with the main findings of this work.

2 Related Work

2.1 Deception detection

As discussed in the Introduction, most work on deception detection in text has
focused on identifying features that are indicative of deception. In this section,
we provide a brief review of these studies, followed by an alternative, statistical-
based approach to motivate our current work.

Pennebaker et al. [17] approached deception detection by developing a linguis-
tic profile of deception based on the notion that how people express themselves
may be more informative than what they express. The authors were able to ap-
ply their Linguistic Inquiry and Word Count (LIWC) text analysis program [23]
to correctly identify deception at a rate of 67% when given a singular topic and
61% overall. Their results indicate liars show lower cognitive complexity, fewer
self-references and other-references, and more negative emotion words. Building
o↵ Pennebaker’s earlier work, Ott et al. [21] viewed the problem of deception
detection in three ways: a standard text categorization task based on n-gram
classifiers; an application of psychological e↵ects of lying emerging in text based
on LIWC; and an example of genre identification based on distributions of part-
of-speech tags [4,24], where deceptive and truthful writing fit into sub-genres of
imaginative and informative writing, respectively. The authors found that the
n-gram classifier outperforms both the psycholinguistically-motivated features
and genre identification, but that a combined classifier is able to achieve nearly
90% accuracy on their dataset of truthful and deceptive hotel reviews.

In a similar approach to the above two groups, Brennan et al. [1,6] proposed
to look for subtle changes in human behavior due to the additional cognitive
e↵ort required for deception. According to the authors, these subtle changes
are manifested in stylistic di↵erences between truthful and deceptive text. The
authors explored three feature sets: a Writeprints feature set containing lex-
ical, syntactic, and content specific features [25]; a lying-detection feature set

containing features of lying in computer mediated communications and typed
documents [8,13]; and a 9-feature set containing features from the neural network
experiments by Brennan and Greenstadt [7]. As with Pennebaker, the authors
found that non-specific features (e.g., function words) are as e↵ective as content-
specific features for identifying deception.
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In addition to the dictionary bag-of-words and parts-of-speech features dis-
cussed above, Probabilistic Context Free Grammars (PCFGs) have been applied
to extract deeper syntactic stylometry features with improved results [11]. Fi-
nally, a statistical language modeling (SLM) approach has also been used for
deception detection [26]. In their work, Zhou et al. were motivated by a general
technique that does not require explicit feature selection or extraction. Their
SLM approach captures dependecies between words in n-grams and considers
all words as potential features. Similarly, compression algorithms for text have
been developed to automatically identify the most significant structural and sta-
tistical features in a document, and have found previous success in authorship
identification and classification in gnereral [2, 9, 12, 15,18].

3 Methods

Compression algorithms for text attempt to take a document and reduce the
number of bits used to encode the document. The reason it is possible to reduce
the number of required bits for a document is that similar structures in a docu-
ment allow one to assign fewer bits for more common characters. For example,
if one sees a q in a document, the likelihood that the next character is a u is so
high that it is almost not necessary to include the u. Compression exploits these
types of facts by using fewer bits to represent qu than to represent something like
q-. Thus, if a document has a lot of similar structure, then usually a compression
algorithm can compress it into fewer bits.

The basic assumption behind our use of compression algorithms for classify-
ing truthful versus deceptive writings is that truthful documents should share
a similar structure and deceptivedocuments should share a similar structure
distinct from truthful documents. This structure can then be automatically de-
tected by using a compression algorithm resulting in a compression to a fewer
number of bits. The two methods that we use exploit this feature of compression
in two di↵erent ways. With NCD [14], compression is used as a method of deter-
mining the similarity between two documents; with PPM/AC [10], compression
is used to determine how similar a document is to a training set. Details of the
two methods are provided in the Appendix; here we focus our discussion on
modifications made to the standard implementation of PPM.

3.1 Modifications to PPM

As mentioned in the beginning of Section 3 and in the Appendix, we want to use
PPM to create models for truthful and deceptive documents. When applying
PPM for compression, the algorithm builds a set of tables that predicts the
probability for the next character, given a finite set of previous characters. The
finite set of previous characters is called the context. The model for truthful and
deceptive documents is then the final state of the PPM tables after processing
every document in the training set. Once we have the PPM tables for the truthful
and deceptive models, we can use PPM with AC to compress a test document and
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classify the document according to which model compresses the test document
best (i.e. with the fewest number of bits). For this compression, we use a modified,
static version of the PPM algorithm. In particular, we use the PPM tables after
building the models, and do not update the PPM tables while compressing the
test document. We avoid the updating step to avoid biasing the models with
information from the test document.

The modifications described above are enough to adapt the PPM algorithm
to a classifier scheme. However, we also explore the inclusion or exclusion of
two non-character symbols: the eof and the esc. In the implementation of the
PPM algorithm that we use, both the eof and the esc are given a static count
of 1 in every PPM table, while the characters are given a count equal to the
number of times that they have been seen for a given context. The prediction
for a character in a table is then given by the ratio of its count to the total counts
in the table; see Appendix for details. So, if the total counts in a given table are
large, then the additional count of 1 for the eof and 1 for the esc is negligible.
However, if the total counts in a given table are small, then including eof and
esc significantly changes the prediction for all the characters in that table.

In addition to modifying the prediction of the characters, the rational for ex-
cluding the eof and the esc is further motivated by the following. The purpose
of the eof is to mark the end of the file; unless some particular regular structure
is expected at the end of the document, the eof is not likely to provide much
information. The purpose for the esc symbol in the usual implementation of the
PPM compression scheme is to signal to the decompression algorithm that the
current table does not provide a prediction for the next character, and that the
next table will be considered; see Appendix for details. Since we are using com-
pression only as a means for comparing similarity, we do not need to decompress
the documents. Hence, we do not need to include symbols, such as the esc, that
are necessary only for decompression. In what follows, we explore the e↵ects of
including or excluding the eof and the esc.

4 Results

4.1 Data

We present results on two datasets. The first dataset is the Brennan-Greenstadt

(BG) corpus of truthful and deceptive writing samples from 12 authors. The
truthful writing samples are pre-existing samples written for an academic or
business purpose. Each author provided 7–10 samples, for a total of approxi-
mately 5000 words per author. The deceptive writing samples are written for
the purpose of two types of adversarial attacks: obfuscation and imitation. For
the obfuscated samples, authors are asked to write a 500-word article describing
their neighborhood while hiding their identity. For the imitated samples, authors
are asked to write a 500-word article describing a day in their life in the third
person in the style of Cormac McCarthy’s “The Road”. An extended version of
the BG corpus [6] was collected from Amazon Mechanical Turk (AMT), where
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Fig. 1. Graphs showing the lowest 5% of the NCD scores for the BG dataset.

the participants were asked to adhere to a set of submission guidelines. Out of
100 submissions, 45 were accepted.

The second dataset consists of truthful and deceptive hotel reviews collected
by Ott et al. in separate studies on positive [21] and negative [20] opinion spam.
The authors mined various online travel review communities for truthful reviews.
Although not a gold standard for truthful, recent studies suggest that deception
rates in these online travel review communities is small [16, 19]. Deceptive re-
views were then obtained through AMT, where each participant was given 30
minutes to complete the review and only one review per participant was allowed.
400 of each of the following categories were collected: truthful positive, truthful
negative, deceptive positive, and deceptive negative.

4.2 NCD

We begin by computing the NCD between all pairs of documents within the BG
corpus and visualizing the result as a graph, where the edge connecting docu-
ments di and dj is assigned a weight corresponding to NCD(di, dj). To iden-
tify clusters with higher intracluster similarity, our approach is to remove edges
above a maximum NCD

max

, where smaller values correspond to higher similar-
ity. In Fig. 1, we visualize [3] the result of this approach using the Fruchterman-
Reingold layout, where nodes correspond to documents and we keep only the
lowest 5% of the NCD scores (i.e. the top 5% in terms of similarity). The two
graphs are color-coded according to: a) deception and b) authorship. From the
deception graph, it is apparent that the NCD score is able to correctly distin-
guish truthful documents (pink) from deceptive documents, where the latter
can be further separated into “imitation” (blue) and “obfuscation” (green) cat-
egories. Within the truthful region of the deception graph, there appears to be
several di↵erent clusters, which can be attributed from the authorship graph
as belonging to di↵erent authors. In contrast, the two deception clusters, which
are highlighted by the dashed box, can be seen to contain several di↵erent color
nodes, indicating documents from several di↵erent authors. This result suggests
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Fig. 2. Graphs showing the lowest 5% NCD scores for the modified BG dataset, where
we have removed the word “neighborhood” from obfuscated text, and added authentic
writing samples from Cormac McCarthy.

that deceptive documents contain features distinct from truthful documents and
automatically discernible without global state.

Recall that deceptive documents in the BG corpus are collected by asking the
authors to provide text that imitates Cormac McCarthy, and text that describes
a neighborhood while obscuring the author’s identity. One could then propose
that the compression algorithm is picking up on these two features, rather than
features of deception. To test this hypothesis, we have modified the BG cor-
pus in two ways. First, to test whether NCD identifies Cormac McCarthy rather
than imitation, we added writing samples of Cormac McCarthy taken from “The
Road”, “Blood Meridian”, and “All the Pretty Horses”. Second, to test whether
NCD identifies “neighborhood” rather than obfuscation, we removed this word
from the corpus. In Fig. 2 we show results for our modified BG corpus. Even
without the “neighborhood” feature, the NCD algorithm is still able to correctly
identify obfuscated (green) from truthful (pink) documents. In addition, there
is a new cluster corresponding to the authentic Cormac McCarthy (purple) that
is separate from imitated Cormac McCarthy (blue). These results suggests that,
while it is possible to hide one’s identity (i.e. separate from your own author-
ship cluster), it is less easy to imitate another’s identity (i.e. participate in an
authorship cluster not your own). Furthermore, we have identified two ways to
“obscure” identity: intentional obfuscation and attempting to imitate another
identity.

We also applied the NCD algorithm to the corpus of truthful and deceptive
hotel reviews. In this case, we are unable to identify an NCD

max

that separates
truthful from deceptive documents. We hypothesize that the failure to identify
deception in the hotel corpus as opposed to the BG corpus may be due to the
di↵erence in “deception” defined in the two datasets. For the hotel reviews,
“deception” is in terms of lying about content; for the BG writing samples,
“deception” is in terms of lying about identity. The results here suggest that
lying about content is more di�cult to identify using the NCD compression
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Fig. 3. PPMA/AC on hotel dataset: accuracy as a function of context order for clas-
sifying truthful (blue), deceptive (red), and total (green) documents.

algorithm. We have also tested whether the NCD algorithm is identifying hotels
rather than deception, and were unable to obtain clusters of reviews written
about the same hotel.

4.3 PPMA/AC

Here we present results using PPMA, followed by AC to build a classifier from a
background collection of labeled documents. The category that compresses the
unknown document with fewer bits is selected as the category. For categories,
we consider “truthful” (T ) and “deceptive” (D).

We begin with the hotel dataset, for which the NCD algorithm was unable
to identify truthful and deceptive clusters. Fig. 3 shows accuracy as a function
of context order d, averaged across a 4-fold cross validation scheme when a test
document is compressed to a set of static PPMA tables. When looking at the
entire dataset, it can be seen that the accuracy quickly reaches a maximum of
0.85 at order 2, without significant gains at higher orders. We note that an opti-
mal accuracy at order 2 is somewhat unexpected since the best compression for
the English language (and verified in this dataset) is usually around order 4 [10].
However, this result suggests that, in contrast to NCD, PPMA/AC successfully
distinguishes deceptive from truthful hotel reviews. Furthermore, Table 4 in the
Appendix shows that PPMA/AC outperforms standard machine learning with
stylometry features on the same dataset by at least 20%. Similar stylometry
features have been applied for deception detection, where it has been proposed
that deceptive text contains simpler words and shorter sentences than truthful
text [8].

Although we could already be satisfied with the high accuracies obtained in
our classification of truthful and deceptive hotel reviews using PPMA/AC, it
is still useful to understand why the algorithm achieves such high accuracy so
that we can understand how to modify the algorithm when this is not the case.
Therefore, we take a closer look at the statistics of the PPMA/AC algorithm
on the hotel dataset. In Fig. 4, we show expected values for di↵erent statistics
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Fig. 4. PPMA/AC on hotel dataset: expected values for the counts n̄ and probabilities
P̄ as a function of context order for max orders d

max

� 12. Panels a) and c) are for
observed characters; b) and d) are for escapes. Figure label indicates test and model
category, respectively.

as a function of order for di↵erent max orders. Note that max order here refers
to the same order used in Fig. 3. We need to distinguish max order here be-
cause each time the max order context has not been observed by the model,
the PPMA algorithm emits an escape and drops to lower order contexts; see
the Appendix for details. Thus, for a given d

max

there will be relevant statistics
for all context orders d  d

max

. Note that each curve corresponds to a di↵er-
ent test-to-model pairing, where correct test-to-model pairings (T, T and D,D)
are indicated by the solid curves and incorrect test-to-model pairings (T,D and
D,T ) are indicated by the dashed curves.

We begin with Fig. 4a, which shows the expected value for the observed
character counts n̄c(d; dmax

) as a function of the context order and maximum
allowed order for di↵erent max orders d

max

. For clarity, we show only d
max

> 12,
but note that results can be generalized to all d

max

. In terms of the implications
of n̄c(d; dmax

) to the accuracy of a classifier, it can be seen that for both truthful
(blue) and deceptive (red) documents, the correct test-to-model pairings (solid)
have higher expected values for higher orders (including d

max

) than the incor-
rect test-to-model pairings (dashed), where the latter also have higher expected
values at the lower orders. In other words, a given test document is able to
match higher order contexts of its correct model, which is intuitively what we
would expect. Furthermore, Fig. 4c shows that the expected probabilities of the
observed contexts P̄c(d; dmax

) decrease as the context order decreases (except
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Fig. 5. PPMA/AC on extended BG dataset: accuracy as a function of context order for
classifying truthful (blue) and deceptive (red) documents using PPMA for the extended
BG dataset (solid) and for the normalized BG dataset (dashed).

for order 1). Since lower probabilities require more bits to encode, the incorrect
model will compress the test document worse than the correct model. These are
precisely the desired properties for a compression algorithm used as a classifier.

Interestingly, the average counts per order overlap for all max orders except
for n̄c(dmax

; d
max

). In fact, n̄c(dmax

; d
max

) can be shown to be the sum of all
higher order counts from larger d

max

. This is equivalent to saying that any-
thing observed at contexts larger than the maximum that is requested by d

max

gets lumped into n̄c(dmax

; d
max

). In the figure, this fact is demonstrated by the
following combinations: A = C +B, C = E +D, and A = E +B +D.

In addition to accounting for contexts previously observed in the model, PPM
is required to account for unobserved contexts by emitting escapes. In Fig. 4b
we plot the expected value for the number of escapes n̄

esc

(d) as a function of
context order d. Note that the results for di↵erent n̄

esc

(d) are independent of
d
max

, so that we only show d
max

= 15. It can be seen that for both truthful
(blue) and deceptive (red) test documents, the incorrect model (dashed) emits
more escapes across all orders than the corresponding correct model (solid).
Therefore, for all context orders the test document more often misses the tables
of the incorrect model, emits an escape, and drops to a lower order table. This
is shown directly in Fig. 4 by noting that the number of escapes at any given
order is directly related to the sum of the number of characters emitted by all
the lower order tables: J = F +G+H + I. Thus, the more escapes emitted at a
given order, the more characters must also be emitted at lower order contexts.
This has two e↵ects. First, the cost of emitting an escape and its corresponding
probability (see Fig. 4d) are accounted for. Second, as discussed above, the cost
of dropping to lower orders is accounted for through lower probabilities, on
average, of the lower order contexts (see Fig. 4c). These are the two primary
reasons why the PPMA/AC algorithm is able to correctly classify deceptive and
truthful documents in the hotel dataset with such high accuracy.
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Fig. 6. PPMA/AC on extended BG dataset: expected values for the counts n̄ and
probabilities P̄ as a function of context order for max order d

max

= 15. Panels a) and
c) are for characters; b) and d) are for escapes. Figure label indicates test and model
category, respectively.

Next, we apply the PPMA/AC algorithm to the extended BG corpus. Fig. 5
shows the accuracy of the truthful (blue solid) and deceptive (red solid) doc-
uments, where all deceptive (obfuscated and imitated) documents are grouped
together. It can be seen that, while the truthful category reaches an accuracy near
1.0 by order 3, the deceptive category drops to 0.2 after order 5. We hypothesize
that this result is due to an imbalance in training data. In particular, because
the extended BG dataset contains nearly an order of magnitude more samples
of truthful than deceptive documents, we obtain significantly more examples of
truthful than deceptive contexts, which significantly alters the expected values
of n̄c(d; dmax

) and n̄
esc

(d) to favor the truthful model. To test this hypothesis,
we investigate the output of the PPMA/AC algorithm applied to the extended

BG corpus; see Fig. 6.
There are some notable di↵erences between Fig. 4 and Fig. 6 that explain the

low accuracy of the deceptive documents of the extended BG dataset, compared
to the hotel dataset. First, recall that accurate classification by the PPMA/AC
algorithm requires the expected value of the character count n̄c(d; dmax

) to
peak at higher orders for the correct model (solid) than for the incorrect model
(dashed). This is expected, since the test document should, on average, match
longer strings of the correct model. Whereas the truthful tests (blue) show this
pattern, the deceptive tests (red) do not; see Fig. 6a. Second, an accurate clas-
sifier requires the correct model (solid) to emit fewer escapes n̄

esc

(d) than the
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Fig. 7. Modified PPM on extended BG dataset: accuracy as a function of context order
for classifying truthful and deceptive documents. Di↵erent colors correspond to di↵erent
modifications to the PPM algorithm, where accuracy for all truthful documents are
indicated by the empty circles.

incorrect model (dashed). The truthful test documents (blue) show this property
across all context orders d, whereas the deceptive test documents (red) do not;
see Fig. 6b. Taken together, the truthful model compresses both the truthful and
deceptive test documents with fewer bits by matching higher order contexts and
emitting fewer escapes. These results are consistent with our hypothesis that
because there are so many more examples of observed contexts in the train-
ing data for the truthful model, a given test (truthful or deceptive) will match
higher order contexts of the truthful model. Therefore, we obtain low accuracies
for deceptive documents in Fig. 5. Based on these observations, two modifica-
tions to improve the accuracy are proposed: 1) a modification of the PPMA/AC
algorithm to ignore the esc and 2) a normalization of the size of the training
data, followed by a voting scheme to select the best model. We note that in
reality, situations where there are far more examples of “regular” than “anoma-
lous” training data is normal, and so it is important to modify the compression
algorithms to handle these situations.

4.4 Modifications to the implementation of PPM

In Fig. 7 we show the accuracy of truthful and deceptive documents from the
extended BG dataset, where di↵erent colors correspond to accuracies of the de-
ceptive documents with di↵erent modifications to the PPMA/AC algorithm (see
Section 3.1 for a discussion). However, we still show results for the accuracy of
the truthful documents (empty markers) to demonstrate that none of the modi-
fications we have considered reduce the accuracy of the truthful documents. The
accuracy of identifying deceptive documents using PPMA is reproduced from
Fig. 5 in red. It can be seen that ignoring the esc symbol (purple) increases the
accuracy of the deceptive documents to nearly 100% for order 2, before drop-
ping o↵ again for higher orders. Interestingly, ignoring the eof symbol (magenta)
eventually achieves an accuracy comparable to ignoring the esc symbol, but re-
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Fig. 8. Modified PPM on extended BG dataset: expected values for a) the escape
probabilities and b) the character probabilities, for max order d

max

= 15. Di↵erent
colors correspond to di↵erent PPM algorithms; D,D and D,T are given by solid and
dashed lines, respectively.

quires higher context orders: d
max

> 12. The combination of ignoring both the
esc and the eof symbols significantly improves the accuracy across all contexts in
a similar manner as ignoring only the esc symbol. In contrast to ignoring the esc
and/or the eof, PPMC (green) decreases the accuracy. To understand how these
modifications a↵ect the accuracy, in Fig. 8a) we take a closer look at the expected
values for the escape probabilities P̄

esc

(d). Here, the curves are distinguished by
color according to the modification made to the PPMA/AC algorithm in Fig. 7
and we focus on deceptive test documents, where solid corresponds to D,D and
dashed corresponds to D,T . The trivial result of ignoring the esc symbol is not
shown.

PPMC (green) slightly increases P̄
esc

(d), relative to PPMA, particularly at
the lower context orders. This result can be expected by recalling that the PPMC
algorithm assigns the escape a count equivalent to the number of distinct entries
in a given table at a given context; see Appendix. PPMA, in contrast, assigns all
escapes a count of 1. Both PPMA and PPMC converge to P̄

esc

(d = 15) = 0.5,
since these higher order contexts have never been seen before and contain only
the eof and the esc symbols, each with probability 1/2. In contrast, PPMA with-
out the eof symbol (magenta) significantly increases P̄

esc

(d) across all orders,
before eventually converging to P̄

esc

(d = 15) = 1.0. In other words, by ignor-
ing the eof, the higher order tables now contain only a single symbol: the esc.
Because a probability of 1.0 requires zero bits to encode, the esc symbol is essen-
tially ignored for the higher order contexts, which are where the vast majority of
the escapes are actually issued; recall Fig. 6b. Therefore, ignoring the eof symbol
has a very similar e↵ect as ignoring the higher order escapes.

In cases where the expected value of escapes n̄
esc

(d) is primarily determined
by di↵erences in training data size and are therefore meaningless, these results
suggest that ignoring the esc symbol altogether is a successful method for re-
covering accuracy of the classifier. Instead, it is possible to use the structural
information held in the context probabilities P̄c(d; dmax

). In particular, Fig. 8b)
shows that for all versions of PPM/AC, the probabilities P̄c(d; dmax

) of the de-
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ceptive test to the deceptive model (solid) are higher than the deceptive test
to the truthful model (dashed). This is su�cient for better compression by the
deceptive model once the escapes are removed. Note, however, that once the
escapes are ignored, we no longer have an algorithm that can decompress. For
analytic purposes, this is not our concern, and so we have the ability to modify
our algorithm to optimize the output of compression for optimal classification.

4.5 Normalizing the training data

Finally, we consider a di↵erent approach to improving the low accuracies ob-
served for the deceptive documents in the extended BG dataset. In particular,
we propose to treat the discrepancy in the size of truthful versus deceptive train-
ing data head on: by dividing the truthful training data into subsets containing
roughly the same number of documents as the deceptive training data. We then
apply PPMA/AC to each subset of the truthful model, together with the full
deceptive model, and assign a category using a voting scheme across all subsets,
i.e. the final resulting category is the category that is selected most often while
comparing a test document to a model of a subset of truthful training docu-
ments with a model of the full deceptive training documents. Results from this
approach are shown in Fig. 5, where it can be seen that our normalization vot-
ing scheme (dashed) recovers high accuracy of the deceptive documents without
significantly sacrificing the accuracy of the truthful documents.

Once again, we can compute the statistics of the counts and probabilities
of characters and escapes, in order to better understand the accuracy of the
algorithm. In Fig. A1 it can be seen that our normalization scheme produces
statistics with similar trends to the hotel dataset. This result is not surprising
since the hotel dataset was “normalized” to begin with. In particular, n̄c(d; dmax

)
for the correct model (solid) now peaks at higher orders than the incorrect model
(dashed) for both the truthful (blue) and the deceptive (red) test documents; and
the incorrect model (dashed) emits more escapes on average P̄

esc

(d) across all
orders than the correct model (solid) for both truthful (blue) and deceptive (red)
test documents. Together these results suggest that indeed the low accuracy of
classifying the deceptive documents is due to the discrepancy in the training
data size, and that the normalization scheme discussed here is able to produce
a classifier that recovers high accuracies for all categories.

5 Conclusion

In this work we extend compression-based algorithms for deception detection in
text. The basic motivation for this work is that deceptive text contains structure
statistically distinct from truthful text, and that this structure can be automati-
cally detected using compression-based algorithms. We consider two approaches:
one based on normalized compression distance (NCD) and one based on using
Prediction by Partial Matching (PPM).
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For our first approach, we use an unsupervised clustering based on the NCD
between pairs of documents whereby we identify clusters by selecting a threshold
for allowed distances. We found that NCD does well at identifying identity de-
ception, where individuals are attempting to imitate another’s style or obfuscate
their own identity. Moreover, we found that these types of deceptions themselves
were distinguishable. We also found that this technique was not as successful for
detecting deception in terms of false opinions.

For our second approach, we use Prediction by Partial Matching (PPM) to
train a classifier with conditional probabilities from labeled documents, followed
by arithmetic coding (AC) to classify an unknown document based on which
class gives the best compression. We found that this approach is able to fill
the gap left by our NCD approach in that this approach was able to discern
false opinions from truthful ones. However, in attempting to identify deception
in identity, we found a significant dependence of the classifier on the relative

volume of training data used to build the conditional probability distributions
of the di↵erent classes. We show that by modifying the PPM/AC algorithm we
are able to overcome the data size-dependence when compression is used as a
means of measuring similarity. The most successful modifications are the removal
of the esc and the introduction of a voting scheme that attempts to balance the
training data for both categories of truthful and deceptive.
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A1 Normalized compression distance

Our first method of distinguishing between truthful and deceptive documents is
to use a type of similarity measure called the normalized compression distance

(NCD) [1]. NCD attempts to determine how similar two strings are to each other
while also taking their size into account. Rather than providing an absolute
distance, NCD is normalized in the sense that a pair of small strings should not
be considered closer to one another than a pair of large strings simply because
they are smaller. NCD is defined by:

NCD(x, y) =
C(xy)�min {C(x), C(y)}

max{C(x), C(y)} ,

where C(x) is a compression algorithm applied to a string x and xy denotes
the concatenation of two strings x and y. We use LZMA as the compression
algorithm.

To use the NCD in a clustering scheme, we compute the pairwise NCD be-
tween every pair of documents. We then use a threshold on the size of the
distance in order to identify clusters.

A2 Prediction by partial matching and arithmetic coding

PPM using AC is a powerful method for compression and was used as the bench-
mark for compression algorithms for a number of years. The two algorithms
complement each other in that PPM provides a model for predicting the next
character in a document while AC takes a prediction model and uses the provided
probabilities for each character to produce an encoded binary output. When the
probability for a particular character or symbol is provided to AC we say that
it is emitted. This terminology is helpful since PPM does not always provide the
probability for the next character, but instead emits a sequence of other symbols
called escapes to encode the fact that the PPM model is changing its internal
state. These escapes, in turn, are used by a decoder so that the decoder can
make the same changes.

The complementary nature of PPM and AC allows us to use them as part
of a supervised learning scheme. We can use PPM to create models for truthful
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documents, called the truthful model, and for deceptive documents, called the
deceptive model. We can then classify a document by using each predictive model
together with AC and assigning the document to the class whose model produces
the fewest number of bits for the compressed output.

For this scheme to work, it is possible to use a standard implementation of
AC and the details are not necessary for understanding our method or results.
There are only two facts that one needs to know. The first is that only non-
zero probabilities are allowed and the second is that the higher the probability
assigned to the next character the fewer the eventual bits needed for the com-
pressed output. Saying the second fact another way, the better the predictor is
at predicting the next character, the fewer the bits that are required.

Unlike AC, our way of using PPM is not the standard method. Moreover,
in Section 4 we use two variants of PPM, known as PPMA and PPMC, and
we make additional modifications to the PPM algorithm. To understand these
changes, it is necessary to give a detailed overview of PPM, which we do next.

In general, PPM uses a set of tables of predictors of the next character that
are conditioned on previous characters. The previous characters used are called
the context, where the number of characters in the context, d, is called the or-

der. Each table is representative of all the prediction of a given context within
a given order, and is called an order-d table. Note that since there are multiple
contexts that have the same order, there are several order-d tables for each or-
der d � 1. For example, if one has the characters abab as the context, then the
prediction for the next character to be an a given abab is contained in a table
of order-4 with context abab. Thus, an order-d table for context c

0

c

1

. . . cd�1

is
really the collection of conditional probabilities P (c|c

0

c

1

. . . cd�1

) providing the
probability of seeing a token c given that c

0

c

1

. . . cd�1

are the preceding charac-
ters. The special case when the order is 0 is P (c), which is just the probability
of c occurring.

For the versions of PPM that we consider (PPMA and PPMC), the orders
that are allowed are bounded by a user–specified maximum order d

max

. When
predicting the next character c, PPM first considers the previous d = d

max

char-
acters c

0

c

1

. . . cd�1

as the context, where cd�1

is the character directly preceding
c. If P (c|c

0

c

1

. . . cd�1

) is non-zero, then this probability is provided to AC. How-
ever, it may be the case that P (c|c

0

c

1

. . . cd�1

) = 0, which is not an allowable
probability for AC. When this event occurs, we say that the table does not con-
tain c and PPM issues a probability for a special symbol called an escape to
indicate that the character was not found. Then, PPM changes state and at-
tempts to provide the probability of the next smaller context P (c|c

1

. . . cd�1

).
If P (c|c

1

. . . cd�1

) = 0, then P (c|c
2

. . . cd�1

) is considered, etc. If the character
is not found with any context, then P (c) is considered. Finally, if PPM has no
prediction for P (c), then a default uniform distribution is assumed for all char-
acters. The table for this distribution is considered to have order �1. In addition
to the characters, every table of order d > �1 has two additional symbols: an
end-of-file symbol eof and an escape symbol esc. These symbols are present even
if the probability for the characters may be zero.
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PPM uses an adaptive strategy for generating the tables. Instead of keep-
ing track of the probabilities for a given context directly, a character count is
maintained for each character seen with the given context up to context order
d

max

. For example, consider the string rowrowrow and a max context order of
d

max

= 2. After receiving the first character r, the count r is incremented by one
in the order-0 table. When o is received, the count for o is incremented by one
in the order-1 table with context r, and the order-0 table. When w is received,
the count of w is incremented by one in the order-2 table with context ro, in
the order-1 table with context o, and in the order-0 table. When the next r is
received, the count of r is incremented by one in the order-2 table with con-
text ow, the order-1 table with context w, and the order-0 table. This process
continues until all characters are received. The resulting character counts for
this example are shown in Table A1. Note that this process is the exact process
used for PPMA and the process we use for PPMC, though technically a pure
implementation of PPMC updates the tables di↵erently. In our results, it is the
escapes that seem particularly influential on the number of output bits, so we
chose to focus on the change that PPMC does for the escapes and not the change
PPMC does for tables. More details on the pure implementation of PPMC are
in [2].

Table A1. Resulting characters counts for the PPM tables after receiving the character
string rowrowrow.

Order Context Character Count Total
r o w

2 ro 3 3
2 ow 2 2
2 wr 2 2
1 r 3 3
1 o 3 3
1 w 2 2
0 3 3 3 9

As mentioned above, it is not only the characters that are contained in the
table, but also two symbols: eof and esc. The end-of-file symbol, eof, is always
allocated a count of one. The count associated with the esc is di↵erent depending
on whether we are using PPMA or PPMC. In fact, the di↵erence in escape
counts is the only di↵erence between PPMA and PPMC that we use in our
implementation. For PPMA, the esc symbol is allocated a single count while for
PPMC, the escape is given a count equal to the number of non-zero character
entries in the table, or 1 if no non-zero character entries are present. Thus, for
the order-0 table in Table A1 the corresponding count for the esc according to
PPMC is 3 while for any of the order-1 tables, the count is 1. The symbol counts
for both methods are shown in Table A2.
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Table A2. Resulting symbol counts for PPMA and PPMC tables after receiving the
character string rowrowrow.

Order Context Symbol Count
eof escA escC

2 ro 1 1 1
2 ow 1 1 1
2 wr 1 1 1
1 r 1 1 1
1 o 1 1 1
1 w 1 1 1
0 1 1 3

To get the probabilities that are sent to AC, PPM just normalizes the entries
in the tables. For example, for PPMA P (r|ow) = 2

4

since r has a character count
of 2, eof has a count of 1, and esc has a count of 1. So, the total count is 4, which
is the normalization factor. The rest of the probabilities for PPMA and PPMC
are shown in Table A3. Note that each row in this table is really a full PPM
table for a given context of a given order-d, as defined in the beginning of this
section.

References
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Table A3. Resulting probabilities for the characters and symbols provided by PPMA
and PPMC.

PPMA
Order Context Probability

r o w eof escA

2 ro

3

5

1

5

1

5

2 ow

2

4

1

4

1

4

2 wr

2

4

1

4

1

4

1 r

3

5

1

5

1

5

1 o

3

5

1

5

1

5

1 w

2

4

1

4

1

5

0 3

11

3

11

3

11

1

11

1

11

PPMC
Order Context Probability

r o w eof escA

2 ro

3

5

1

5

1

5

2 ow

2

4

1

4

1

4

2 wr

2

4

1

4

1

4

1 r

3

5

1

5

1

5

1 o

3

5

1

5

1

5

1 w

2

4

1

4

1

5

0 3

13

3

13

3

13

1

13

3

13

Table A4. Machine learning on the Hotel corpus.

Machine Learning Algorithm Accuracy

Random Forest 0.59
Gradient Boosted Forest 0.61
Linear Support Vector Machine 0.63
Support Vector Machine 0.65

Stylometry features

Number of line endings
Number of punctuations

Number of multiple punctuations
Longest multiple punctuation
Number of capital letters

Number of words
Average word length

Average sentence length
Average paragraph length
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Fig.A1. Normalizing the extended BG dataset: expected values for the counts n̄ and
probabilities P̄ as a function of context order for max order d

max

= 15. Panels a) and
c) are for characters; b) and d) are for escapes. Figure label indicates test and model
category, respectively.


