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Interfacial Geochemistry

*Interfacial chemistry at mineral surfaces controls geochemical processes

*Critical gap in understanding is understanding the influence of nano-confinement on aqueous
speciation, 1on adsorption, and surface reactivity with applications related to energy security,
geologic carbon sequestration, and waste repository design

Al Ismail, M. et. al. (2016) Philos Trans A Math Phys Eng Sci, 374, 2078



3 I Size Dependent Observations

*Emergent Properties in nanoscale confinement
* Changes to surface tension, density, and dielectric constant of water
* Enhanced ion adsorption and increase inner-sphere surface complexes of cations

* Changes in redox behavior and electron transfer reactions
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A Systematic Approach to
Evaluate Nano-scale
Confinement

Hypothesis: By evaluating the adsorption chemistry of
cations on mesoporous materials with a narrow pore
distribution, we can develop more detailed understanding of
nanoscale confinement effects



5 I Mesoporous Materials: SBA-15

*Three SBA-15 materials with narrow discrete pore sizes
* SBA-15-8: Approximately 8 nm pore
* SBA-15-6: Approximately 6 nm pore
* SBA-15-4: Approximately 4 nm pore

TEM Image

SBA-15 Powder SEM Image

-------

SEM HV: 20.0 kV WD: 10.15 mm
SEM MAG: 500 x Det: SE
View field: 415 ym |Date(m/dly): 02/17/17
SBA 15

Trewyn, B. et. al. (2008). Chemical Engineering Journal, 137, 1, 23-29
Zhao, J. et. al. (1998). Science, 279, 548-552



6 I Mesoporous Materials: SBA-I5
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Analyte and Conditions

*Copper
* Trace and naturally occurring
* Essential for life

* Toxic at high concentrations- related to
speciation

° Distorted octabhedral coordination
environment

*High pH
* Low Cu solubility

* Wide distribution of Cu complex
species

* Dissolution of silica

*Low pH
* Poor adsorption

* Below p,c of silica
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al. (1998). Journal of Colloid and Interface Science, 208, 1, 110-128
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Batch Adsorption Isotherm Experimental Design

5 mM NH,NO,, pH = 6

[Cu]; = 0.005 MM -0.2 mM
N— I
Mix >
24 hours
—~ b N
N—— - SN— I

Centrifuge

XAFS Analysis of
Coordination
Environment

i
.

Filter

deq cu adsorbed =

([Cu];—[Culeq) * volume

mass silica * BET Surface Area

)

v

v

To ICP-MS for
Quantitative
Uptake Analysis




Adsorption Isotherm Models

1. Langmuir

Homogeneous surface
adsorption model where
adsorption that occurs at

discrete adsorption sites and
coverage does not exceed a
monolayer of adsorbate.

_ GmaxKL [Cul,

Te = T+ K, [Cul,

Omax 1S the adsorption maximum
K, is the Langmuir constant

2. Freundlich

Heterogeneous surface
adsorption model where
surface coverage can exceed
monolayer coverage.

1
de = Kp [Cu]?

Kris the adsorption maximum
n describes the surface heterogeneity

3. Dubinin-Radushkevich

Empirical adsorption model
to describe a pore filling
mechanism, which can occur
via both homogenous and
heterogeneous processes.

— —KpRre?
e = Qmaxe( DRE")
1
e =RT In[1 +——
. [ . [Cu]ge]
Jmax 1S the adsorption maximum

Kpris the Dubinin-Radushkevich constant
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Pore Size Effects on Trace Metal Adsorption: Adsorption Maximum
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11 | Pore Size Effects on Trace Metal Adsorption: Adsorption Maximum

*Enhanced adsorption of Cu is observed with SBA-15-4
over SBA-15-6 and SBA-15-8.

* Adsorption maximum values for SBA-15-6 and SBA-15-8

are similar

*The trend is observed for all three isotherm models
used.

*Previous studies have shown Cu dimerization on
amorphous silica via XAFS measurements
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12 I Adsorption Kinetics Experimental Design

- 5 mM NH,NO;, pH =6 ﬂ
— | — —

Mix

\ Aliquot at time =t

Samples t= 0 through t = n

With stir bar

Filter

dt cu adsorbed =

([Cu];—[Cul;) * volume

mass silica * BET Surface Area

)

U

To ICP-MS for
Quantitative
Uptake Analysis
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|. Pore Size Effects
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|. Pore Size Effects on Trace Metal Adsorption: Adsorption Kinetics
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15 |. Pore Size Effects on Trace Metal Adsorption: Intraparticle Diffusion

Liquid Film

1. External
Mass
Transfer

§ 2.
*Intraparticle/ film
Diffusion

*Intraparticle diffusion model estimates the rate of the
intraparticle/film diffusion step.

* The time breakpoints were determined with a piece wise
linear regression tool

*Time at break point increased with pore size suggesting
more rapid diffusion in smaller pores
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16 Pore Size Effects on Trace Metal Adsorption: Intraparticle Diffusion
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17 I Conclusions

*Nano-scale confinement impacts the adsorption of Cu on mesoporous silica as seen by:

* Increase in the surface area normalized adsorption maximum of Cu on SBA-15-4 over both SBA-15-6 and SBA-15-8
across all isotherm models.

* Increase in the pseudo first order reaction rate as a function of pore size.

* Intraparticle diffusion model was applied, and it illustrated that external mass transfer diffusion constant increased with
decreasing pore size, and we postulate that this rapid film diffusion in 4 nm pores was responsible for the observed
Increase 1n reaction rate.
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