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2 Interfacial Geochemistry

•Interfacial chemistry at mineral surfaces controls geochemical processes

Planetary-scale to atomistic-scale
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Critical gap in understanding is understanding the influence of nano-confinement on aqueous
speciation, ion adsorption, and surface reactivity with applications related to energy security,
geologic carbon sequestration, and waste repository design

Al Ismail, M. et. al. (2016) Philos Trans A Math Phys Eng Sci, 374, 2078



3 I Size Dependent Observations

•Emergent Properties in nanoscale confinement
• Changes to surface tension, density, and dielectric constant of water

Enhanced ion adsorption and increase inner-sphere surface complexes of cations

- Changes in redox behavior and electron transfer reactions
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A Systematic Approach to
Evaluate Nano-scale
Confinement

Hypothesis: By evaluating the adsorption chemistry of
cations on mesoporous materials with a narrow pore
distribution, we can develop more detailed understanding of
nanoscale confinement effects



5 Mesoporous Materials: SBA- 15

Three SBA-15 materials with narrow discrete pore sizes
SBA-15-8: Approximately 8 nm pore

• SBA-15-6: Approximately 6 nm pore

• SBA-15-4: Approximately 4 nm pore

SBA-15 Powder

•
•

SEM Image

SEM MAG: 500 x

View field: 415 tun

Det: SE

Date(m/d/y): 02/17/17

TEM Image

Trewyn, B. et. al. (2008). Chemical Engineering Journal, 137, 1, 23-29
Zhao, J. et. al. (1998). Science, 279, 548-552



6 I Mesoporous Materials: SBA- I 5
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Material BET SA Average pore diameter Pore Volume % Surface Area mmol OH/nm2
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SBA-15-6 600 ± 16 5.2 ± 0.2 0.87 ± 0.03 80 ± 5 1.9 ± 0.2 1.9 ± 0.2



7 Analyte and Conditions

Copper

Trace and naturally occurring

hssential for life

Toxic at high concentrations- related to
speciation

Distorted octahedral coordination
environment

High pH

Low Cu solubility

• Wide distribution of Cu complex
species

• Dissolution of silica

Low pH

Poor adsorption

Below p7c of silica
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8 Batch Adsorption Isotherm Experimental Design

_ 5 mM NH41\103, pH = 6
[Cu]; = 0.005 mM -0.2 mM

.
Mix

24 hours

%."........"

Centrifuge

Fil ter

qeq Cu adsorbed = mass silica * BET Surface Area

aCuli—[Cu]eq)* volume

XAFS Analysis of
Coordination
Environment

MN

To ICP-MS for
Quantitative

Uptake Analysis



9 Adsorption Isotherm Models

1. Langmuir

Homogeneous surface
adsorption model where
adsorption that occurs at

discrete adsorption sites and
coverage does not exceed a
monolayer of adsorbate.

CUuu\74VI,

qn,,,,KL[Cu],
qe =  1 + [Ci]e

qmax is the adsorption maximum
KL is the Langmuir constant

2. Freundlich

Heterogeneous surface
adsorption model where

surface coverage can exceed
monolayer coverage.

(le = KF[CU] e

KF is the adsorption maximum
n describes the surface heterogeneity

3. Dubinin-Radushkevich

Empirical adsorption model
to describe a pore filling

mechanism, which can occur
via both homogenous and
heterogeneous processes.

qe = q.e(—KDRE2)
E = RT ln[1 + Cz.t]e]

qmax is the adsorption maximum
KDR is the Dubinin-Radushkevich constant



lo Pore Size Effects on Trace Metal Adsorption:Adsorption Maximum
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11 Pore Size Effects on Trace Metal Adsorption:Adsorption Maximum

Enhanced adsorption of Cu is observed with SBA-15-4
over SBA-15-6 and SBA-15-8.

Adsorption maximum values for SBA-15-6 and SBA-15-8
are similar

4 The trend is observed for all three isotherm models
used.

•Previous studies have shown Cu dimerization on
amorphous silica via XAFS measurements
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12 I Adsorption Kinetics Experimental Design

IT- 5 mM NH41103, pH = 6
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13 1 I. Pore Size Effects on Trace Metal Adsorption: Adsorption Kinetics
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14 I I . Pore Size Effects on Trace Metal Adsorption: Adsorption Kinetics
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15 I. Pore Size Effects on Trace Metal Adsorption: Intraparticle Diffusion

Liquid Film
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qt = kpt2 + C

Intraparticle diffusion model estimates the rate of the
intraparticle/film diffusion step.

The time breakpoints were determined with a piece wise
linear regression tool

•Time at break point increased with pore size suggesting
more rapid diffusion in smaller pores
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16 Pore Size Effects on Trace Metal Adsorption: Intraparticle Diffusion

Liquid Film
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17 Conclusions •
•Nano-scale confinement impacts the adsorption of Cu on mesoporous silica as seen by:
• Increase in the surface area normalized adsorption maximum of Cu on SBA-15-4 over both SBA-15-6 and SBA-15-8

across all isotherm models.

• Increase in the pseudo first order reaction rate as a function of pore size.

• Intraparticle diffusion model was applied, and it illustrated that external mass transfer diffusion constant increased with
decreasing pore size, and we postulate that this rapid film diffusion in 4 nm pores was responsible for the observed
increase in reaction rate.
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