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ABSTRACT 

Conventional signal processing to estimate radar Doppler frequency often assumes uniform pulse/sample spacing.  This 
is typically more for the convenience of the processing.  More recent performance enhancements in processor capability 
allow optimally processing nonuniform pulse/sample spacing, thereby overcoming some of the baggage that attends 
uniform sampling, such as Doppler ambiguity and SNR losses due to sidelobe control measures. 
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1 INTRODUCTION 

The realm of pulse-Doppler radar systems is defined by the action of a sequence of pulses being transmitted, with 
echoes therefrom recorded and processed.  Conventional processing across pulses especially in coherent systems often 
assumes the pulses are equally spaced, either in time or in spatial offset.   

Uniform sample spacing is particularly convenient for conventional processing schemes that often employ efficient 
transforms such as the Fast Fourier Transform (FFT) for Doppler frequency calculations.  Even when the collected data 
is not precisely uniform, data samples are typically resampled to a uniform spacing for subsequent processing.  For data 
that are uniformly sampled, or even nearly so, a problematic consequence is the manifestation of grating lobes in their 
spectrum, leading to ambiguous Doppler frequency measures.  We emphasize the point that strong Doppler grating 
lobes are a direct consequence of uniform sample spacing.  In addition, another consequence to any Doppler frequency 
notches, such as for stationary clutter suppression, is that they too are repeated to form periodic “blind” velocities.  
Furthermore, a Doppler spectral analysis of uniform samples often requires amplitude tapering to control deleterious 
sidelobe responses, with the problematic side-effect of reducing Signal-to-Noise Ratio (SNR). 

The conventional approach to resolving Doppler ambiguities is to stagger the Pulse Repetition Frequency (PRF) of the 
radar, with conventional uniformly spaced samples within the staggered subintervals, if the stagger interval is greater 
than a single pulse.  Skolnik1,2 provides an introduction to designing staggered PRF systems.  Extended discussions can 
also be found in texts by Galati,3 and by Schleher.4  Applying a random “jitter” to the radar PRF has also been 
investigated, and is discussed by among others Vergara-Dominguez.5  We note that early investigations often dealt with 
effects of suboptimal processing of such jittered PRF data.  More recently, techniques have been explored to 
disambiguate Doppler in GMTI modes by examining residual range migration.  Representative publications include 
those by Xia, et al.,6 Zhu and Liao,7,8 and Huang, et al.9 The processing of sampled-data is also very related to array-
antenna design and operation, with much of the mathematics readily transferable.  More abstract treatments of non-
uniform sampling are also available in a number of publications, including texts by Marvasti,10 Yen,11 Davis and 
Lanterman,12 and Aldroubi and Grӧchenig.13  

We examine herein a more unconstrained sample spacing to facilitate advantage to unambiguously identifying Doppler 
spectral content.  We note that Legg, et al.,14 examined using a randomly varying PRF to disambiguate Doppler in a 
SAR image.  Herein we extend these ideas to achieve further-improved performance.  This paper is an abridged 
rendering of a more comprehensive report by the author.15 
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2 DETAILED DISCUSSION 

2.1 Some Basics 

To set up the following discussion, we begin by defining a generic signal  x t  = continuous function of time t.  As we 

will be interested in the Fourier Transform of functions, we accordingly define 

    2j ftX f x t e dt






    = forward transform, and     2j ftx t X f e df




   = inverse transform, (1) 

where the Fourier Transform is in terms of frequency f.  We may use shorthand to identify the transform pair as 

   x t X f . (2) 

2.2 Periodic (Uniform) Sampling 

We now define the periodic sampling function in the conventional manner and identify its transform, namely 

   s s s
n u

t T n f f f u     , (3) 

Where n = pulse index, u = spectral Nyquist band index, sT  = uniform sampling interval, 1s sf T  = constant sampling 

frequency, and  z  = Dirac delta function.  The individual samples of  x t  are then given (modelled) by 

         s s s s sx T n x t t T n x T n t T n     , (4) 

and the sampled function is identified as 

     s s s
n

x t x T n t T n  . (5) 

We will generally assume that we have N samples of the function over an interval of duration T.  For uniform periodic 
samples, we have sT T N .  The Fourier Transform of the sampled function is well-known and given by 

       *s s s s s
u u

X f X f f f f u f X f f u     , (6) 

where “*” denotes convolution.  The Fourier Transform can be expanded to 

    2 sj fT n
s s

n

X f x T n e   . (7) 

This is in fact the Discrete-Time Fourier Transform (DTFT).  If we select uniformly spaced sample frequencies, where 

  sf k K f , where K = number of frequency samples over the interval [0, )sf ,  then we may write 

 
2

k
j n

K
s s s

n

k
X f x T n e

K

   
 

 . (8) 

This is customarily referred to as simply the Discrete Fourier Transform (DFT) of the sequence  sx T n .  We further 

note that the DFT is related to the continuous-time spectrum via Eq. (6), such that 
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 
2

k
j n

K
s s s s

u n

k
X f f u T x T n e

K

   
 

  . (9) 

If  x t  is suitably band-limited, then we may identify the baseband spectrum as specifically the case for 0u  , for 

suitable values of k.  What is important to note here is that the calculation of the actual spectrum requires scaling the 
DFT result by the sampling interval sT .  This is typically ‘not’ what most implementations of the DFT, such as the Fast 

Fourier Transform (FFT), in fact calculate. 

The Data Interval 

We stipulate that we will generally be interested in a finite number of samples over a finite data collection interval.  
Accordingly, we identify our data characteristics for subsequent analysis as N = number of data samples, with 
0 1n N   , and T = data collection interval, with individual sample times 0 nt T  .  These definitions will hold true 

for the remainder of this paper.  Nevertheless, for periodic/uniform sampling, we identify sT T N .  With malice 

aforethought, we may also now write the baseband spectrum as 

    2 nj ft
n

n

T
X f x t e

N
  . (10) 

2.3 Aperiodic (Nonuniform) Sampling 

Let us now choose arbitrary sampling times such that our sampled function is  

     s n n
n

x t x t t t  . (11) 

We will still generally assume that we have N samples of the function over an interval of duration T, but the samples at 
times nt  are no longer required to be uniformly spaced.  The spectrum of this sampled function is then 

        22 nj ftj ft
s n n n

n n

X f x t t t e dt x t e 






    . (12) 

However, what we really want is an estimate of the continuous-time spectrum  X f .  This requires scaling the input 

signal samples according to their density, which we identify with a “local” sampling frequency and associated “local” 
sampling period as 

 s nf t  = local sampling frequency, and 

    1
s n s nT t f t


     = local sampling period (interval). (13) 

Note that these are now non-constant functions of nt .  Accordingly, our estimate of a band-limited continuous-time 

spectrum is identified as 

      2 nj ft
s n n

n

X f T t x t e   . (14) 

We may still choose to index our spectral index to sampled frequencies where   reff k K f , where now K = number 

of frequency samples over the interval [0, )reff , with reff  = a specified reference frequency.  Since sampling is no 

longer periodic, we also no longer have the replicated spectra that Eq. (3) would otherwise imply.  This means that the 
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aliasing that occurs with uniformly sampled data is subverted, allowing us to discriminate tonal signals beyond what 
otherwise might be a sampling bandwidth.  We also stipulate that there is no particular reason other than convenience 
for sampled frequencies to be regular in the frequency domain.  We will nevertheless to choose to do so hereafter 
anyway. 

Local Sampling Frequency/Period Calculation 

We now explore the relationship between sample times and the local sampling frequency/period calculations.  Let us 
begin by defining a reference continuous function for the basis of sampling period calculations as 

 g z  = some specific differentiable reference function. (15) 

Here, the argument z is merely an arbitrary placeholder for now.  We further identify that at specific integer arguments 

  ng n t . (16) 

Essentially, nt  are merely samples of  g z  at integer arguments.  Some additional properties include  0 0g  , and 

 g N T .  This allows us to identify the local sampling period as 

     s n z n
z n

d
T t g z g z

dz 


  . (17) 

Otherwise, given the local sampling period, we may identify the sample positions as a summation of previous sampling 
periods, as we might expect, as 

 
1

0

n

n s m
m

t T t



  . (18) 

This is only approximate due to the vagaries inherent in sample-time increments not being precisely equal to the local 
sampling period at a particular sample time.  This difference diminishes for smooth functions as the number of sample 
times increases.  Often, we will choose a  g z , but such that 

 
0

N

z

g z dz T


  , (19) 

and therefrom calculate  g z .  Occasionally, however, we may in fact begin with  g z  and therefrom identify  g z .  

Sometimes, iteration between the two might even be required.  In any case, once we have a  g z  and  g z  pair, we 

may use Eq. (16) and Eq. (17) to identify both sample times and local sampling period, as desired.  We note that our 
choice of N samples in T seconds remains consistent with the case of uniform sampling.  That is, we are not seeking 
advantage by increasing either of these over the uniform sampling case, but are merely rearranging the specific sample 
times to no longer be uniform.  We note that Marvasti10 shows that as long as the “average” sampling rate is not 
diminished, then nonuniform sampling offers no loss in information compared to uniform samples for band-limited 
signals. 

2.4 Aperiodic (Nonuniform) Sampling with Window Tapers 

Window taper functions are used in processing data to control processing sidelobe characteristics.  There are many 
windows from which to choose, with various trades in parameters and characteristics.16  We offer to employ a window 
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taper function with all the usual characteristics, including being real, even, and non-zero over the interval  1 2, 1 2 , 

with unit DC gain.  An example of such a window taper function is the Hann (a.k.a. Hanning) window, stipulated to be 

    1 cos 2 1 2

0

z z
w z

else

   


, (20) 

Employing such a window function modifies our estimate of the band-limited continuous-time spectrum to 

      21

2
nj ftn

s n n
n

t
X f w T t x t e

T
   

 
 . (21) 

Of course, we may continue to index this to sampled frequencies where, as before   reff k K f .  We observe that to 

estimate the band-limited continuous-time spectrum in Eq. (21), the specific data samples are weighted with two distinct 
factors.  The first is the local sampling period, and the second is the actual taper function.  These two factors combine 

for a net data weighting being their product    1 2n s nw t T T t   . 

Consider the special case where    1 2n s nw t T T t T N    for all nt .  In this case, the window taper function is 

effectively incorporated into the sample spacing.  That is, we get sidelobe control by sample spacing rather than 
amplitude tapering. 

2.5 Aperiodic Sample Times Selection 

Given the analysis in the previous sections, we summarize with the following procedure for selecting the sample times. 

1. Select one of the functions  g z  and  g z  for a desired characteristic, and calculate the other. 

2. From the functions  g z  and  g z , calculate the sample times nt  and local sample spacing  s nT t  at those 

times, using Eq. (16) and Eq. (17). 

For subsequent spectral analysis of the sampled signal, we might add the following steps. 

3. Choose a final net window taper function  w z . 

4. Calculate the signal spectrum using Eq. (21), perhaps at specific frequencies   reff k K f . 

3 SAMPLING STRATEGIES 

We now examine several sampling strategies.  In all subsequent cases, we expect common parameters for the following. 

N = number of data samples, with 0 1n N   , and 
T = data collection interval, with 0 nt T  . (22) 

Note that the “average” sampling rate will be held constant.  In particular, for the following examples, we will assume  
N = 1024, and T = 0.25 s.  To illustrate signal processing fidelity, we will also assume a noise-free signal  

   2 0.25j N T tx t e   = arbitrary test signal. (23) 

Unless indicated otherwise, we will also assume employment of a Hann window taper function. 
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3.1 Constant Sample Spacing (Reference) 

To provide reference for following aperiodic sampling strategies, we begin with the conventional uniform sampling, 
conducive to FFT processing, where 

 g z T N   = constant sample time increments, and 

   g z T N z  = linear increment in sample times. (24) 

For this first sampling of our reference signal we choose a constant PRF; a constant sample time increment.  This is the 
conventional sampling strategy.  Furthermore, we will employ a Hann window taper function.  Figure 1 shows the 
sample-time increment as a function of essentially sample index.  Note that this is constant.  Figure 2 shows the 
spectrum of the signal.  Note that for a uniform sampling strategy, we have replicated spectra at integer offsets of the 
constant PRF; these offset intervals being multiples of N T .  These grating lobes are well-understood.  Otherwise, the 

structure of the response is precisely what we expect for using a Hann window taper function.  Figure 3 is a zoomed 
version of the mainlobe response. 

3.2 Staggered/Stepped Sample Spacing 

A not-uncommon practice to disambiguate Doppler frequency is to stagger the radar PRF.  This involves dividing the 
overall observation interval into multiple subintervals, with each sub-interval operating at a unique PRF.  The 
information from the subintervals are then combined or compared to ascertain the proper Doppler estimate.  We 
exemplify this technique by dividing the N pulses into four groups, each with an equal-number of pulses, and with the 
sample time increments illustrated in Figure 4.  While various schemes can be concocted for how the spectra from the 
individual subintervals are combined, we shall combine the data coherently for a single spectrum response. 

As we might expect, and as shown in Figure 5, we still have a maximum response at the correct signal frequency, but 
the regular grating lobes previously exhibited in Figure 2 have now had their energy divided into lesser grating lobes 
corresponding to aliasing due to the individual PRFs of the subintervals. Furthermore, the lesser lobes are broader as 
well.  We do note that while the lesser grating lobes are reduced, some are still quite strong.  For this reason, a more 
typical operating procedure would be to coherently process each subinterval separately, rather than as one single data 
set.  Separate detections for the various subintervals would be compared, passing only those that coincided.  This 
amounts to a voting scheme, or non-coherent filtering of the subinterval results.  Since coherent processing is only over 
a subinterval, there is an attendant SNR loss, especially for low-SNR signals. 

As the number of subintervals increases, we would observe a corresponding increase in the number of lesser grating 
lobes, but the strength of the individual aliased components would themselves decrease.  We note that the stagger need 
not be generally increasing, and can in fact be randomly ordered.  Furthermore, the specific PRF of the subintervals also 
need not be regularly spaced, nor do the lengths of the subintervals need be equal in time or in number of pulses. 

3.3 Log-Periodic Sample Spacing 

We now examine a “log-periodic” sample spacing; a sample spacing where the sample time increments change with 
each pulse in an exponential manner, i.e. where the log of the sample spacing is periodic.  Specifically, we construct 

    azg z T N be      = sample time increments, and 

     1azg z T N b a e     = sample times, (25) 

where b = the initial minimum sample spacing, and a = the exponential growth rate of the sample time increments.  Note 

that we require a be found to satisfy  g N T .  Figure 7 illustrates the case of  g z  with 1 2b  , and 0.001228a  .   

Figure 8 shows the spectrum of the input signal so sampled, with the additional sample scaling of a Hann window taper 
function.  Figure 9 details the mainlobe response and near-in sidelobes.  We note that despite nonuniform sampling, 



  
  

SPIE 2018 Defense & Security Symposium - 7 - Vol. 10633 

 

 

Figure 1.  Sample-time increments normalized to T/N. 

 

Figure 2.  Spectrum of input signal with Uniform tapering. 

 

Figure 3. Zoomed rendering of Figure 2. 
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Figure 4.  Sample-time increments normalized to T/N. 

 

Figure 5.  Spectrum of input signal using Hann window taper function. 

 

Figure 6.  Zoomed rendering of Figure 5. 
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that the spectral response is virtually perfect for the mainlobe and a significant bandwidth around the mainlobe, in fact a 
region greater than N T .  We also note that the grating lobes evident in Figure 2 are absent, having been replaced by 

broadly smeared versions thereof with attendant reductions of at least 23 dB in this example.  The reduction furthers as 
N increases.  The coherence of any energy that otherwise might have been aliased in Doppler has been severely 
diminished.  While we have shown here a log-periodic sampling, we stipulate that many other non-uniform sampling 
intervals will achieve similar results. 

3.4 Discussion 

One might ask whether uniformly sampled data can be resampled to nonuniform spacing and processed accordingly to 
advantage.  Regrettably, this is not viable to remedy aliasing or Doppler ambiguity because the resampling process 
inherently assumes antialiasing filters built into the interpolation filter.17  Consequently, since the aliasing is already 
“built in” to the data, it is not affected by subsequent processing, including interpolation. 

It takes little imagination to construct other functions, some which might offer specific attributes desirable for some 

particular application.  Important parameters for radar applications will be that  g z  and  g z  conform to the 

characteristics discussed in section 2.3, with perhaps the additional constraint that  g z  be always greater than some 

minimum value determined by range-ambiguity requirements. 

3.5 Spectrum Disambiguation 

The real power of nonuniform sampling may be exemplified by examining the case of a signal with multiple 
frequencies.  Accordingly, we put forth an example with the sum of three equal-amplitude tones with the following 
frequencies. 

frequency #1 = 0.25 N T , 

frequency #2 = 0.8 N T , and 

frequency #3 = 1.6 N T . 

Figure 10 illustrates the spectrum using Hann weighting with uniform sample spacing.  Note that characteristic aliasing 
renders problematic ambiguity of the spectrum.  Figure 11 illustrates the spectrum using Hann weighting but with log-
periodic sample spacing as described in Figure 7.  We note that what otherwise would have been aliased signals have 
been smeared to render essentially background noise, thereby clearly revealing the true disambiguated spectral 
components.  Figure 12 illustrates the same calculations as Figure 11, except that 16 times the number of signal data 
samples were used, but with constant ratio N T , implying T was extended by the same factor.  Note the background 

smearing is to a significantly lower level. 

4 CONCLUSIONS 

Uniform sample spacing, while particularly “nice” to process, nevertheless exhibits the well-known baggage of aliasing 
due to grating lobes leading to ambiguous spectrum measurements.  Adjusting sample times to nonuniform spacing 
interferes with aliasing, and can disambiguate spectral calculations.  The nonuniform nature of useful sampling 
strategies might be deterministic, random, or chaotic.  Proper spectrum calculations must consider not only the actual 
nonuniform sample times, but also the local sample spacing at those times.  Window taper functions for sidelobe control 
must also be adjusted to actual sample times.   

For radar Doppler analysis, conventional transform-based frequency estimation such as the FFT are inadequate to the 
task for processing nonuniform-spaced samples.  However, the more recent viability of back-projection processing 
techniques also makes viable the more general calculations necessary for samples with nonuniform spacing.  Employing 
smooth variations in sample spacing often allows a cleaner spectrum.  This suggests that a smooth deterministic sample-
spacing modulation is preferable to one with random steps or jumps.  This analysis is readily extensible to other 
sampling applications. 
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Figure 7.  Sample-time increments normalized to T/N. 

 

Figure 8.  Spectrum of input signal using Hann window taper function. 

 

Figure 9.  Zoomed rendering of Figure 8. 
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Figure 10.  Spectrum of input signal using Hann window taper function, and uniform sample spacing. 

 

Figure 11.  Spectrum of input signal using Hann window taper function, and log-periodic sample spacing. 

 

Figure 12.  Same as Figure 11, except with 16 times the number of signal data samples. 
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