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Outline

Overview of a couple new methods for Rapid QSTS

1. Variable Time-Step Methods

— Predetermined Time-Step
— Causal Variable Time-Step: Backtrack

2. Circuit Reduction
3. Sampling Partial Year
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Variable Time-Step

Objective:
 Reduce the computational burden by adjusting the QSTS time-
step to solve fewer load flows

e Variable time-step solver does not solve every time-step and
skips forward to time points of interest, advancing through
the QSTS analysis with varying time-steps

 Two different methods to calculate step-size:

— Input Variables: preprocesses the load and generation time-
series data in order to define the time-steps

— QOutput Variables: Causal solver adjusts the time-step using data
from previous power flow

e Possible to combine the two methods
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Variable Time-Step (Input Variables)

* Predetermined time-steps by preprocessing the load and generation time-series
data. Only requires the input data (no interaction with the power flow solver)

* This type of variable time-step solver has two tuning parameters (max time-step
and deviation threshold)
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Variable Time-Step (Output Variables)
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Backtrack method employs two
time-step sizes (large and small)

Large time-steps are taken until a
change in the automatic voltage
regulation state is detected

Upon detection, the solution
backtracks to the last known time
point with no state changes and
small time-steps are taken to
resolve the potential control
actions
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time — back track

e Fine solution step size instances
© Large solution step size instances
e Instances solved during back track

Utilizes the implemented control delay as a window to detect

automatic voltage regulation device operation
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Variable Time-Step (Input AND Output)

* The variable time-step using input and output variables can
be combined for additional speed

1. First determine the variable time-steps using the input variables
(power deviation threshold and maximum allowed time-step)

2. Run QSTS jumping between predetermined time-steps. If during a
power flow solve an event is detected, backtrack to the previous
predetermined time-step and runs the simulation at high resolution.

Threshold (kW) | Step (s) Per Regulator Switches | Reduction | Faster

7048,7222,8449 2504

100 180 -5.8%, -5.8%, -6.1% -7.0% 97.0% 32.9x
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Circuit Reduction

Distribution Feeder

User Selected
Capacitor
Transformer

Objective:

— Use an equivalent reduced circuit
with fewer buses to decrease the
power flow simulation time

Solution:
— Many buses can be removed or
aggregated into nearby buses,
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Circuit Reduction

e Reduction algorithms can handle unbalanced loads and PV,
unbalanced and unsymmetrical wire impedance, mutual
coupling, shunt capacitance, transformer magnetizing
currents, and multiple different load profiles and PV power
profiles.

* With certain assumptions, the results are exactly equivalent
for the reduced circuit

* Steps:

1) Select buses to keep
2) Remove buses without objects (Kron reduction)

3) Remove unnecessary laterals (Norton equivalents)
4) Load Bus Reduction
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Intelligent Sample Selection

* QObjective:

* Run QSTS on most effective sample
periods of the year and reconstruct the
annual simulation results

* Many ways to select samples intelligently:

0.7
* Clustering days (top figure) 06
» Stratified sampling (bottom figure). < |
T 0.5 /\/
* Stratified sampling has shown good results, =, —
grouping periods based on their median 5 L& l?
load and PV variability score. 0.3 —————
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Intelligent Sample Selection
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For a Monte Carlo simulation with 100,000
iterations, the intelligent sampling (IS) is
compared to random sampling (RS) in the top
figure.

—RS Mean Err ||
—IS Max Err
—RS Max Err
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Randomly sampling time periods from the year
to perform QSTS simulations can occasionally
have a significant bias because only specific
types of days (e.g. only clear sky days, or only

o
o

winter days) are sampled Toput Hiddan Output
layer layer layer
Additional accuracy can be achieved by using the wpu 41— . |
intelligently sampled periods as training dataina ., o
neural network to learn and predict the number =~ @ ? Output
of tap changes for the rest of the year. o <@
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Intelligent Sampling With Machine Learning
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» Statistical techniques provide a confidence interval for the metrics, so
more of the year can continue to be run with QSTS until allowable
error thresholds are met.

« By simulating more of the year with QSTS, the training data size and
accuracy is increased, but additional computational time is required

K" for running the longer QSTS simulation.
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Conclusions

e Compared to a normal brute-force QSTS simulation
at 1-second resolution for a year:

— Variable time-step is 30x faster by skipping through
time during low variability periods

— Circuit reduction is 10-50x faster by reducing the
computational time of each power flow

— Intelligent sampling is 5x faster by selecting
representative parts of the year to solve
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