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mevn Epoxy Selection and Performance

Material properties:

« Cure behavior, cure state evolution, physical relaxation (Tg),
degradation chemistry tendencies, elevated temperature performance,
adhesion, wetting, viscosity

Broad research goals and approach:

« Cure behavior in epoxies

* Quantification of cure conversion states

» Spatially resolved oxidation chemistry

* High temperature epoxy degradation phenomena

« Degradation chemistry off-gassing characterization

* Develop diagnostic tools and lifetime prediction models

Key words: Materials Characterization, Spectroscopy,
Mechanistic Evaluation, Degradation Chemistry
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maan High Temperature Performance of Epoxy

« Concern: Thermally induced decomposition (pyrolysis chemistry)
» Sealed ampoules, trapped gases, flow through approach, IR rapid scans

* IR based analysis of gaseous decomposition products
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Quantification of H,0 and CO, yields via spectral and time integration4




Doan Analytical Methods

Considered multiple approaches (prior work in this area):

MS or GC-MS is the method of choice for establishing exact mechanistic pathways through
identification of volatiles. Some calibrated direct MS approaches have been accomplished .

SPME (solid phase micro-extraction) may enable analysis of a large range of volatiles (often
higher Mw) that can be individually identified through subsequent GC-MS, but does not easily
capture H,0, CO, or CO.

GC (gas chromatography) requires individual head space sampling techniques and calibration
efforts with temperature and pressure controls. Water analysis is usually challenging due to
surface adsorption, particularly if needed in parallel with CO, and CO.

Is there a feasible approach using a simple flush-out of the ampoule gases through
an IR gas cell? Development of IR Flow-Through Volatile Quantification

This was accomplished for CO, and CO gas evolution from epoxies using IR, but
water was not considered. In situ IR gas evolution diagnostics was also applied to
polymer pyrolysis or even fire gases.

No perfect ‘ready to go’ method available

~ laboratories
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IR Based Gas Analysis
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men Successful Quantification of Water
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Conversion of
51 absorbance to
concentration
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M = Q X jz [F jva(v) dv] dt
¢ vi

F = calibration factor [ugl/abs]
A(v)=Absorbance at v
Q = flow rate [cc/min]

« Spectral signatures for
H,O, CO,, CO do not
overlap

 Calibration is non linear

* 0.01% of 1 gram sample
=10 mg

Theoretical: 70% RH at 25.5°C — (19.2
cc)(0.7*23.7 pg/cc) =318.5 ug
Measured: (7.94 pg-min/cc)(40 cc/min) =
317.6 ug

H,0 concentration [ug/cc]

Theoretical: 7.3% RH at 27.1°C — (19.2
cc)(0.073*26 pg/cc) = 36.4 ug
Measured: (1.155 pg-min/cc)(40 cc/min)
=46.2 pg

Time [mins]

Good spectral response in concentrations of interest 7



mann Successful Quantification of CO,

- Similar approach for quantification of CO,
» Method validation through analysis of ampoules with known amount

160

Theoretical: (700 Torr)(0.0863)(19.2 cc)/(62363 cc
Torr K-' mol)/(296.6 K)(44 g/mol)= 2759 ug
Measured: (68.2 pg-min/cc)(40 cc/min) = 2729 ug

Theoretical: (100 Torr)(0.0863)(19.2 cc)/(62363 cc
Torr K-' mol)/(296.6 K)(44 g/mol)= 395 ug
Measured: (10.48 pg-min/cc)(40 cc/min) = 419 ug

CO, Concentration [[Og/cc]
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Flushing out of known amount validates this method



mean Aged Epoxy Test Specimen

IR peak absorbance over time

Primary IR spectral response over time > 7
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mann Complications - Calibrations

* Volatile (H,0, CO,, CO) absorbance depends on more than absolute P
« Absorbance depends on gas composition, collisional energy transfer?
 Calibration and volatile analysis need to have similar concentrations

» Could not use reduced P calibration; aging and analysis at 632 Torr N2
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Absorbance Units

NIR Degradation Kinetics

« Changes in epoxy hydroxyl group (loss) with aging

* Formation of amine; must form carbonyls or unsaturation in parallel
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mean H,0 Yield - Weight Loss - Contraction

- Each property is monitored as part of extensive aging study
 t-T superposition to yield aging behavior with temperature
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Volatile Formation with T

« Some subtle differences in volatile formation over large T range
» Cross-correlations are used to highlight mechanistic variations
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Ongoing aging studies towards lower temperatures — Arrhenius?
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II"Iﬁéﬁﬂinetic Models — Basis for Extrapolations

» Shift factors were determined by time—temperature superposition of
multiple property changes referenced to 210°C

« Still significant uncertainty in shift factors for 180-160°C
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Trend: Activation energies range from ~140-180 kJ/mol 14




méb Lifetime Prediction Models

 Arbitrary performance expectations for t-T
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Need to establish Ea for high temperature epoxy degradation
processes through extensive t-T data sets, establish relevant Ea s



maTn Summary

IR based volatile identification and quantification for aging studies
 Method is amenable to successive aging exposures

* Determination of H,0, CO, and CO in presence of some methane,
toluene, phenol, acetone, isopropylene is possible

Ongoing work, more comprehensive t-T aging studies for lifetime
prediction studies, evaluation of mechanistic changes towards
lower temperatures

Impact: New method and systematic volatile analyses as
degradation chemistry signatures are being used for
lifetime prediction purposes
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