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• We provide material
science-based solutions for
engineering challenges

• We are active in applied
polymer materials science,
material selection, polymer
characterization,
performance,
lifetime prediction
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Epoxy Selection and Performance

Material properties:
• Cure behavior, cure state evolution, physical relaxation (Tg),
degradation chemistry tendencies, elevated temperature performance,
adhesion, wetting, viscosity

Broad research goals and approach:
• Cure behavior in epoxies
• Quantification of cure conversion states
• Spatially resolved oxidation chemistry
• High temperature epoxy degradation phenomena
• Degradation chemistry off-gassing characterization
• Develop diagnostic tools and lifetime prediction models

Key words: Materials Characterization, Spectroscopy,
Mechanistic Evaluation, Degradation Chemistry
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I-u-gh Temperature Performance of Epoxy
• Concern: Thermally induced decomposition (pyrolysis chemistry)

• Sealed ampoules, trapped gases, flow through approach, IR rapid scans

• IR based analysis of gaseous decomposition products
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Quantification of H20 and CO2 yields via spectral and time integration 4

Giron N., Celina M., High temperature polymer degradation: Rapid IR flow-through method for volatile
quantification. Polym Deg Stab 2017, in press
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Analytical Methods

• Considered multiple approaches (prior work in this area):

• MS or GC-MS is the method of choice for establishing exact mechanistic pathways through
identification of volatiles. Some calibrated direct MS approaches have been accomplished .

• SPME (solid phase micro-extraction) may enable analysis of a large range of volatiles (often
higher Mw) that can be individually identified through subsequent GC-MS, but does not easily
capture H20, CO2 or CO.

• GC (gas chromatography) requires individual head space sampling techniques and calibration
efforts with temperature and pressure controls. Water analysis is usually challenging due to
surface adsorption, particularly if needed in parallel with CO2 and CO.

• Is there a feasible approach using a simple flush-out of the ampoule gases through
an IR gas cell? Development of IR Flow-Through Volatile Quantification

• This was accomplished for CO2 and CO gas evolution from epoxies using IR, but
water was not considered. In situ IR gas evolution diagnostics was also applied to
polymer pyrolysis or even fire gases.

No perfect 'ready to go' method available
5
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Successful Quantification of Water
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Q = flow rate [cclmin]

Theoretical: 70% RH at 25.5°C — (19.2
cc)(0.7*23.7 ug/cc) = 318.5 ug

Measured: (7.94 ug-min/cc)(40 cc/min) =

317.6 ug

Theoretical: 7.3% RH at 27.1°C — (19.2

cc)(0.073*26 ug/cc) = 36.4 ug

Measured: (1.155 ug-min/cc)(40 cc/min)

= 46.2 [.i.g

Good spectral response in concentrations of interest 7



oci u Successful Quantification of CO2

• Similar approach for quantification of CO2

• Method validation through analysis of ampoules with known amount
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Torr K-1 mol-1)/(296.6 K)(44 g/mol)= 395 pg
Measured: (10.48 pg-min/cc)(40 cc/min) = 419 pg

Flushing out of known amount validates this method
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Aged Epoxy Test Specimen
Primary IR spectral response over time
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• - 1g sample was aged for < 1 d
at 240°C

• Formation of 0.44 % H20, 0.04%
CO2, 0.01% CO during exposure

• Note: Extended H20 detection

3.5

a) 3.0

2.5

2.0

1.5

O
co
• 1.0

0
0.5

0.0

IR peak absorbance over time

 AMP ,

—4)— H20

- CO2

—so— CO

2 4 6 8

Time [mins]

10

Volatile concentrations over time

12

7

4

3 CD
10

2

O
1

5

0

30

Co
nc
en
tr
at
io
n 
[❑
g/
cc
] 

—6— H20 - 508011g, -0.44%

—6— CO2 - 428 Eg, -0.04%

—4,— CO - 167 Eg, -0.01%

0 2 4 6 8 10 12

Time [mins]

Volatile analysis works for aging experiment 9



Complications - Calibrations
• Volatile (H20, CO2, CO) absorbance depends on more than absolute P

• Absorbance depends on gas composition, collisional energy transfer?

• Calibration and volatile analysis need to have similar concentrations

• Could not use reduced P calibration; aging and analysis at 632 Torr N2

N2 and CO2 ampoules expanded into evacuated IR cell
CO2 ampoule pressure = 178 torr
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NIR Degradation Kinetics
• Changes in epoxy hydroxyl group (loss) with aging

• Formation of amine; must form carbonyls or unsaturation in parallel
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U H20 Yield - Weight Loss - Contraction
• Each property is monitored as part of extensive aging study

• t-T superposition to yield aging behavior with temperature
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Volatile Formation with T
• Some subtle differences in volatile formation over large T range

• Cross-correlations are used to highlight mechanistic variations
12
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• Less water

• More CO2

• More acetic acid

Ongoing aging studies towards lower temperatures — Arrhenius? 13



Lnetic Models Basis for Extrapolations
• Shift factors were determined by time—temperature superposition of
multiple property changes referenced to 210°C

• Still significant uncertainty in shift factors for 180-160°C
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Lifetime Prediction Models
• Arbitrary performance expectations for t-T• .7    
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Need to establish Ea for high temperature epoxy degradation
processes through extensive t-T data sets, establish relevant Ea 15



Summary

• IR based volatile identification and quantification for aging studies_.

• Method is amenable to successive aging exposures

_

• Determination of H20, CO2 and CO in presence of some methane,
toluene, phenol, acetone, isopropylene is possible

Ongoing work, more comprehensive t-T aging studies for lifetime
prediction studies, evaluation of mechanistic changes towards
lower temperatures

impact: New method and systematic volatile analyses as
degradation chemistry signatures are being used for
lifetime prediction purposes
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