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FBAR based Optical Modulator
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• Variety of approaches to phase modulation

• Silicon photonics phase modulator approaches based on carrier injection

• Nonlinear Optics

• Opto-mechanics

• MEMS based approaches

• Plasmonics 4 Speed, form factor, and power handling

• FBAR approach Small displacement will be resonantly enhanced

optically and mechancially

• Low V,

• High power handling

• Relatively compact
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FBAR modular Phase Response
• System response is determined by the optical phase response and the

FBAR response

dO dcp ds

dV ds x A dV

• Optical phase response

2

o

-2

-3 -2 -1 0 1 2 3

t 2 — exp (4)
rrefl = r

1 — r(1 — 0.5exp(up))

dco
Is determined by optical finesse

ds

output

Input coupler:

Pump r/t

Reflected 4—
Pump AreuP

loss: /

Sandia
National
Laboratories

L s
• Mechanical Displacement

• Dilatational mode

• Frequency set by film thickness

• Displacement set by Kt2 and
mechanical Q

• Optimal response with large optical finesse and mechanical Q



FEM Simulation of FBAR Response
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• Resonant frequency for dilatational mode is set by film thickness
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• The product lq x Q determines
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Electro-mechanical coupling

1q4 determined by series
and parallel resonances

Quality factor

Q 4 Needs to be low to have
reasonable bandwidth

ds

dV 
= .5nmIVolt

Want large lq



Required Optical Finesse From Model
FBAR mechanical response
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Slope rises
sharply with
finesse

• Without Optical or mechanical Resonances Vn is large (1kV)
de dco x 2n- ds .5nm/Volt
dV ds dV

2-rr/1550nm

• In order to achieve a Vpi on the order for Wok

ds 4 Need high mechanical Q -100 dco 4 Want high optical Finesse

dV to have reasonable bandwidth ds 4 Slope on the order of 1000



Fabrication and Electrical Characterization
1. Define Poly

2. Tungsten plugs

3. Bottom Metal

4. Define Vias in
AIN

L

5. Top Metal

6. Poly Release

• Electrical Testing Confirms Film Quality
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few percent around center frquency and parallel resonances



Optical Experimental Characterization
• Scanning confocal balanced homodyne

interferometer for Doppler vibrometry
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Mode Profile Across Resonance
-1.65

-1.55

Freq=2691.7 MHz 1

0.8

-1.65

-1 55

37.94 37.96 37.98
x (mm)

Freq=2691.7 MHz

37.94 37.96
x (mm)

37.98

• Purely
dilatational in
the RF pass
band region

0.6

0.2 
2.64 2.66

-1.65

-1 55

Freq=2691.7 MHz

37.94 37.96
x (mm)

37 98

2.68

Freq=2691.7 MHz

-1.65

E -1 6 - Ea- • •

M•••::

-1 55
37.94 37.96

x (mm)
37.98

-1.65

-1.6

-1 55

-1.65

E
E -1 6

-1 55

Sandia
National
Laboratories

Phase in µRads
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Calibrated Phase Measurement
• Lens Taper Fiber (LTF) is positioned at center of large area FBAR

JP
ds

• FBAR driven with fixed RF

power causing displacement

amplitude, ds

• Detector measures de for a
given voltage:

dco 27/- ds
dt9 = x AVs 

ii 6

0 4

0.2
2 62

2 62

2 64

2 64

2 66

2.66

2 68

2.68
Frequency

2 7

2 7

2_72

2 72

Sandia
National
Laboratories

2_74

x 10
9
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• From these results we can

determine \fit

V, = .4V / 300 pRad x -rr = 1.3kV

4 Optical cavity need to reduce VTT



Dielectric Coated Fiber

• Reflected power with coated
fibers with different reflectivities
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Phase Response Enhancement from Optical
Finesse

LTF

2000

-En- 1500-0

CS- 1000

cn

r 500
o_

0
2.62 2.64 2.66 2.68 2.7 2.72 2.74

Frequency
x 10

9

xl

R=67%

0.289 -

0.288 -

0.287

0.286 - 
0

2000

-Cd 1500

C5L 1000

tn

(2 500
o_

S11

10 15 20 25

0 ii*AliOifirn
0 5 10 15

Time (ms)

x6

20 25

0.285

0.28

0.275

0.27

2000

1500
co

1000

CO'n."
500

0

Sandia
National
Laboratories

Presence of cavity mode
shifts Impedance
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x18 larger than without cavity

• Phase response increases by the optical finesse

• Reduction in vpi by optical enhancement

• Driven with 5dBm RF power

25



Phase Response Enhancement from Opti4 !pal ms

Finesse
• Reduce intracavity optical loss to the .6% range
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• Large improvement as finesse increases

• Improvement in mechanical Q factor

• Should get Vn down to a few volts

High finesse will bring Vpi
down to the few volts
range



High Speed Devices
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• Thinner membrane device increases resonance frequency

• of 20 µ-rad with OdBm RF-excitation at 8.85GHz

• Finesse on the order of 1000 we expect a vpi in the few volt

range
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Conclusion
• Proposed a way to use FBARS and a coated and cleaved fiber

end to achieve high speed modulators in a Fabry-Perot
configuration

• Numerically modeled system performance

• Shown that vpi in the few volt range is possible given
experimental parameters

• This concept has high power handling and monolithic
integration, however it is narrow band.

• Improve fiber deposition quality and top metal reflectivity

High Reflectivity
coatin 
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Single optical
mode fiber
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