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Application space for GaN in power electronics
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high power • high temperature • high frequency • low power losses • low weight and volume

Data Centers

Transportation

gizmodo.com

tesla.com

Aerospace

nasa.gov

Consumer Electronics

apple.com

Energy

ge.com solarcity.com energy.gov

1/.11 01IPARTOMMT OP

AENERGY I gS4.1.......,•••••w /ft....., •••••••••••••• 2



State-of-the-art devices do not achieve the theoretical
limits of performance
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A power semiconductor device is
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• Perfect short when conducting
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Field crowding leads to premature breakdown, below
the theoretical limit of planar junctions
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Ideal parallel plane junction:
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Real junction has edges
where field crowding occurs:
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Numerical calculations courtesy of J. R. Dickerson
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Edge terminations are used to mitigate field crowding
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Our work focuses on gaining a more nuanced
understanding of edge termination performance
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map electric field
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ln-operando beam-induced-current methods show
electric field spreading and more!
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scanning
electron
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OBIC = Optical-Beam-Induced Current
EBIC = Electron-Beam-Induced Current

Beam-induced-current map shows . . •
• extent of space-charge region (field

spreading)
• in the case of high fields, field-induced
charge multiplication (field strength)

• carrier diffusion length
• recombination centers
• areas prone to breakdown

• device non-uniformities

We will highlight each of these with studies
on GaN and AIGaN devices
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Detection of shifting E-field peak location with bias
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• Model predicts movement of E-field peak
from end of edge termination towards
contact with increasing bias

• Confirmed by OBIC measurements

F. Léonard et al., IEEE Electron Device Lett., 2016
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Detection of field-induced charge multiplication gives
an indication of local electric field strength

Sandia
National
laboratories

Vbias

probe
tip

p+ GaN

e-beam

.• ...: :,....1 : ..: ...: .. J ...: ...: ...! ...: : ..:
. ....... ..

n+ GaN

0 kV
---- 0.1 kV
 0.2 kV

0.3 kV
---- 0.4 kV
 0.5 kV

0.6 kV
0.7 kV
0.8 kV
0.9 kV

----1.0 kV
 1.1 kV

50

40

30

eT3 20
UJ

10

0

... ............
.

......

.• • ... 

....

•**........

•

SCR expands with
increasing reverse bias

carrier
multiplication

:."..::c:...,
tal ...:, ..,.3...,.....jr .::.•,, - :ror

It vggiktiLr'il :11.• .......•:••••
., ,

1144/_ _,,

....•.. .... . ...

0 10 20 30 40 50 60
d (pn)

n-typep-type

1

Device courtesy of Avogy, Inc.

K. C. Collins et al., IEEE Electron Device Lett., 2017

U S OSPARTOSIMT 01

ENERGY NASA 9



Measuring field spreading and strength provides insights
into edge termination performance following irradiation
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Irradiation decreases free carrier diffusion lengths, and
the effect is apparent in the near-contact EBIC magnitude
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Identifying high field regions prone to avalanche
initiation
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locally inducing avalanche with
carrier injection from e-beam
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Investigating defects: a nanopipe in AIGaN
Sandia
National
Laboratories

400

200

0

M 60

40

20

0

I
I

probe
tip

contaI Si N

p+ AlGaN

n- AIGaN

n+ AlGaN

10 20
d (p,m)

e-beam

implanted

40 50

0.9 kV
0.95

Vbias =

0 kV
----0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

EBIC
- line scan
location

probe
tip

contact

substrate

AIGaN vs GaN . . .

• mismatched epitaxy

• insulating substrate & front side contacts

• higher dislocation density and more point defects
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Non-uniform p-layer thickness leads to non-uniform
carrier compensation by ion implantation
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In summary, EBIC and OBIC are useful diagnostic tools
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Measuring field spreading and field
strength in-operando:
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