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Application space for GaN in power electronics

high power ¢ high temperature ¢ high frequency ¢ low power losses ¢ low weight and volume
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State-of-the-art devices do not achieve the theoretical @{“:g:,‘:';?;,ies

limits of performance

A power semiconductor device is Unipolar Figure-of-Merit
ideally a perfect switch:
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Field crowding leads to premature breakdown, below ()

the theoretical limit of planar junctions

Real junction has edges

|deal parallel plane junction: . .
P P J where field crowding occurs:
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Edge terminations are used to mitigate field crowding

Guard ring too close: Optimized 15 ring design:
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Numerical calculations courtesy of J. R. Dickerson
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Our work focuses on gaining a more nuanced () =

understanding of edge termination performance

map electric field
spreading with
EBIC/OBIC
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In-operando beam-induced-current methods show () e,

electric field spreading and more!

scanning
electron OBIC = Optical-Beam-Induced Current
or optical EBIC = Electron-Beam-Induced Current
probe beam
i e

edge termination Beam-induced-current map shows. ..

sontact .~ §.< ® extent of space-charge region (field
Voue —— || P+ spreading)

\ R.o..e-h pairs ® in the case of high fields, field-induced
- charge multiplication (field strength)

e carrier diffusion length

® recombination centers

® areas prone to breakdown

® device non-uniformities

We will highlight each of these with studies
on GaN and AlGaN devices




Detection of shifting E-field peak location with bias ()
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Detection of field-induced charge multiplication gives () i
an indication of local electric field strength

; Vbias = carrier o

BT multiplication . | '

Device courtesy of Avogy, Inc.
K. C. Collins et al., IEEE Electron Device Lett., 2017




Increasing
proton
fluence
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Measuring field spreading and strength provides insights () i
into edge termination performance following irradiation

Device courtesy of Avogy, Inc.

K. C. Collins et al., IEEE Electron Device Lett., 2017
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Irradiation decreases free carrier diffusion lengths, and @[‘f&:,‘:z?éms

the effect is apparent in the near-contact EBIC magnitude

(I) drift & diffusion

(1) drift dominates Quantifying carrier transport
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ldentifying high field regions prone to avalanche () &

Initiation

locally inducing avalanche with beam-induced avalanche
carrier injection from e-beam l
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Investigating defects: a nanopipe in AlGaN () i
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AlGaN vs GaN . ..

e mismatched epitaxy
e insulating substrate & front side contacts

® higher dislocation density and more point defects R. J. Kaplar et al., Elect. Dev. Fail. Anal., 2017
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Non-uniform p-layer thickness leads to non-uniform () =

carrier compensation by ion implantation
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In summary, EBIC and OBIC are useful diagnostic tools ()i

Measuring field spreading and field |dentifying 400 - réverizizsk;
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