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Quasi-Static Time-Series (QSTS)

What is QSTS?

Quasi-static time series (QSTS) analysis captures
time-dependent aspects of power flow, including the
interaction between the daily changes in load and
PV output and control actions by feeder devices and
advanced inverters.

What is the problem with today’s tools?
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systems may not be adequately analyzed.
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“You can't manage what you can't measure”

-P. Drucker
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Progression of Impact Study
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Our new rapid QSTS
algorithms maintain the
accuracy of high-
resolution yearlong QSTS
simulations
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Quasi-Static Time Series (QSTS) Requirements

e QSTS simulations need to be:

— High resolution simulation to capture solar variability (time
step less than 10 seconds)

— Extended-term simulations (year-long)
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Computational Time of QSTS

* Objective: Reduce the computational time (10-120 hours) and
complexity of QSTS analysis to achieve year-long time-series
solutions that can be run in less than 5 minutes

* There are several ways to improve the speed of QSTS
1) Fast Time-Series Approximations
2) Improved Power Flow Solution Algorithms
3) Circuit Reduction
4) Parallelization of QSTS (Temporally or Spatially)
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Evaluating Speed and Accuracy

* Speed improvements may come at the expense of accuracy
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* All new algorithms are tested extensively and validated against

yearlong 1-second resolution QSTS results
— Regulator tap changes, capacitor switching operations
— Bus voltages, hours per year with ANSI violations
— Thermal loading (worst overloads and time overloaded)
— Yearly line losses
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1) Fast Time Series Approximations

* Objective: Dramatically speed up the computational process using
innovative methods to progress through the timeseries simulation

= Variable Time-Step

— Reduce the computational burden
by adjusting the QSTS time-step to
solve fewer load flows, skipping
forward to time points of interest

m Event-Based Simulation

— Detect discrete system events using
voltage sensitivities and jump from
event to the next

= Vector Quantization

— Take advantage of repeated power
flow computations using a
guantized lookup table to bypass
the power flow solver
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2) Improved Power Flow Algorithms
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solutions through improved algorithms,
data handling, and memory management
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3) Circuit Reduction
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Objective: Use an equivalent reduced circuit Distribution Feader
with fewer buses to decrease the power flow 59,10
simulation time.
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* Many buses can be removed or aggregated 5
into nearby buses, while keeping the results
for the remaining buses equivalent - l
* Reduction algorithms can handle unbalanced | _ .~ = @ @ [ 1
loads and PV, unbalanced and substaton
unsymmetrical wire impedance, mutual iy el il
coupling, shunt capacitance, transformer
magnetizing currents, and multiple different
load profiles and PV power profiles.
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4) Parallelization of QSTS

Obijective: Solving QSTS is inherently sequential (single-core), but the speed can
be improved with more computational power

Solutions:

* Intelligently divide the solution to allow for parallelization (multi-core)
* Many personal computers have multiple cores

* Small clusters or servers can be used for processing (CYME Server)

Temporal Decomposition Diakoptics
®m  Yearlong QSTS is split into individual @ Circuit is intelligently divided and
solutions and computed via multiple power flows for division calculated
cores (multi-core) /.

= Solutions are “stitched” together
after processing
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Results of the QSTS Project for PY 1 & PY 2

2 We have developed a portfolio of rapid QSTS algorithms, each demonstrating significant speed
improvements

a  Algorithms can be combined for additional speed

» For example: a reduced circuit can be simulated with a variable time-step separated onto
several parallel cores

2 The project was targeting 1400x speed improvement:

120 hours & minut
= minutes
10 X P X 10 X 7
Fast Improved Circuit  Parallelization
Timeseries Power Flow Reduction
Solution

2 Project has been extremely successful and in research settings we may be able to achieve even
faster speeds reaching greater than 100,000x faster

200 X 5 X 20 X 7

Fast Improved Power Circuit Parallelization
Timeseries  Flow Solution Reduction
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Conclusions

* Timeseries analysis is important for distribution system planning
with high penetrations of DER, and high-resolution QSTS is
needed to model the impacts to voltage regulators and controls

 Compared to a normal brute-force QSTS simulation at 1-second
resolution for a year, rapid QSTS algorithms dramatically reduce
the computational time

* Several rapid QSTS algorithms have been implemented into
software - CYME improved QSTS speeds up to 10x faster

* Ongoing and future work

— Combining rapid QSTS algorithms to demonstrate full potential

— Implementing rapid QSTS into analysis software packages for researchers
and industry to use
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QUESTIONS?

Matthew J. Reno
mjreno@sandia.gov
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