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Abstract
It has been shown that forced mixing of reactive layers (foils) leads to
an exothermic release of energy after initiation of mixing by forced
impact or pulsed laser irradiation. In order to understand the ignition
of foils initiated by laser irradiation, we study the interaction of laser
pulses with Al/Pt multilayer reactive foils prepared by sputter
deposition. It will be shown that the single-pulse ignition threshold is
dependent on the length of the laser pulse as the pulse length is
varied from 100 fs to 100 ms. The dependence of the ignition
threshold on pulse length is a combination of laser-material
interactions such as the size of the heat affected zone, changes in
reflectivity with pulse length, and the onset of ablation for ultrafast
irradiation. The laser spot size is varied for each pulse length to
explore the effects of heat confinement on the ignition threshold. Foil
ignition kinetics is further investigated by varying the bilayer thickness
for each pulse length, which subsequently changes properties such as
mixing and reaction front velocity.

Applications
• Reactive foils typically used for joining applications
• Ignition generates heat and induces self-propagating reaction
• Adiabatic reaction temperature = 2798 °C
• Heat from reaction melts brazing material
• Laser induced ignition leads to more control over ignition 
• Laser irradiation commonly used for cutting foils 
• Laser ignition allows for remote ignition of foils 
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• DC Magnetron Sputtering
• S102 deposited first as a passivation layer
• Several bilayer designs tested
• Bilayer thickness chosen to maintain a 1-to-1 Al/Pt atomic ratio
• Foils removed from substrate before ignition 
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• Bright-field transmission electron microscopy cross-section
• 10 - 15 A layeer thickness variation
• Pre-mixing at interfaces during deposition forms layers of product phases (AlxPty)
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Imaging Reaction Propagation

• Ignition by capacitive discharge in air
• Freestanding foils
• Room temperature
• High-speed photography of steady-state propagation
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Laser Ignition
• Single laser pulses used to ignite foils
• Always irradiate Pt side first
• Flat-top beam profile
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• Laser-foil interaction volume is initially defined by the focused
laser beam diameter and the bilayer thickness 

• Input heat flow is provided by laser power and heat generated by
self-propagating reaction

• Heat flow away from system is main due to conduction
• Heat flow during and after irradiation changes interaction volume
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• Reaction front speed increases with
decreasing bilayer thickness.

• Pre-mixed regions responsible for no
propagation of thinnest bilayers.
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• Laser energy is increased until foil ignites
• Non-irradiated region of foil used for each test
• Laser fluence is calculated by dividing laser

energy by focused laser beam area
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Determining Ignition Threshold 
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• The laser fluence required for ignition increases with
increasing pulse length

• Thinner bilayers have lower thresholds
• Larger laser diameters have lower thresholds
• Larger laser interaction volumes lead to lower thresholds 
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Timescales
• Laser fluence does not account for incident laser pulse length
• Calculate laser intensity by dividing laser fluence by the pulse length

• Intensity threshold decreases with increasing pulse length
• Suggests conduction of heat generated by reaction during irradiation increases the interaction volume,

decreasing the threshold for longer pulses

6tin= Laser Power
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• Increasing interaction volume due to heat
conduction during pulse

• At the ignition threshold for 100 µs pulses
(highest intensity), Al and Pt are estimated to
reach r‘j 700 °C within the irradiated area.
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• Diffusion length estimates for 100 µs pulses show
the entire foil thickness can be heated to 700 °C in
r‘j 30 ns within the laser irradiated region
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• Perform high-speed imaging on Al side to determine when foil ignites
• Foil often ignites before laser pulse ends
• Pulse lengths must be adjusted for laser-foil interaction time. 

Imaging foil from the Al side 
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Conclusions and Future Work
• Reactive foils are ignited with 100 [is to 100 ms laser pulses.
• Pulse length, focused laser beam size, and bilayer thickness affect the threshold for ignition.
• Laser-foil interaction volume affects ignition threshold.
• Foils usually ignite before laser pulse ends, leading to an effective pulse length.
• Future work will involve exploring foil ignition times using ns and fs laser pulses.
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