SAND2017- 7549C

Tackling UQ in DARMA, a Programming Modei
for Task-Based Execution at Extreme-Scale

F. Rizzi , E. Phipps, D. Hollman, J. Lifflander, J. Wilke, A. Markosyan, H. Kolla,
N. Slattengren, K. Teranishi, J. Stewart, R. Clay and J. Bennett

Sandia National Laboratories

QUIETL17 - SISSA - Italy

Sandia
National
Laboratories

Motivation

1 exaFlops: (10e18) calculations per second, supposedly arriving by 2023-2024
As of June 2017:

1. Sunway TaihuLight (China): 10,649,600 cores -- 125 PFlops -- 15.4 MW
2. Tianhe-2 (MilkyWay-2) (China): 3,120,000 cores -- 54 PFlops -- 17.8 MW
3. Piz Daint (Switzerland): 361,760 cores -- 25 PFlops -- 2.2 MW

4. Titan (USA): 560,640 cores -- 27 PFlops -- 8.2 MW

Challenges:

e Power consumption

e Complex (heterogeneous) architectures

e Unpredictable machines (resilience)

e Managing communication/computation

e Increasingly more dynamic workloads and machine performance

Can we ride the wave of current technology?

Moore's observation: number of transistors on a

chip doubles (nearly) every two years fE47
Dennard scaling: power density remains T
constant as transistors get smaller 1E45

v * Transistors
" (thousands)

- Single-thread
. performance
(SpeclINT)

Dennard scaling broke down ~2005-2007 1E4

1E+3
Moore's trend is however alive and well

: ; « Typical power

1E+2 (watts)

Clock speeds are plateauing due to powerand ,,
thermal limitations el

Thls IS What has brOken down. nOt the ablllty to 1E-11970 1975 1980 1985 1990 1995 2000 2005 2010 2015
etch smaller transistors, but the ability to drop

the voltage and the current they need to

operate reliably.

When you can't build outward any longer, build upward!

Clock frequency stalled, performance growth achieved by exponential
growth in the number of processing elements per chip and growing hardware
threading per core.

Increasing number of cores on the chip (expected to double every 18/24
months)

These trends motivate new programming abstractions that virtualize the
notion of a core (implicit parallelism) and threading APIs with expanded
semantics for thread control, placement, launching, and synchronization as
well as scalable runtimes to manage massive numbers of threads.

Locality: Management of data locality is a first order concern.
Move computation to data, not viceversa.

Heterogeneity: accelerators, implicit data movement, heterogeneous machines.

Asynchrony: SPMD/bulk-synchronous programming models presume
homogeneous performance across massively parallel systems. This will change.

Fault Tolerance: larger, more complex machines. Hundreds of millions of cores,
circuits with feature sizes as small as 7 nm, and lower voltages than today.

DARMA

(Distributed Asynchronous Resilient Models and Applications)

C++ abstraction layer for asynchronous many-task (AMT

') runtimes

Provides a set of abstractions to facilitate the expression of tas

King that map to a

variety of underlying AMT runtime system technologies.

Goals:

e Enables exploration of a variety of underlying runtime system technologies without

changing application code.
e Facilitate the expression of coarse-grained tasking.

Applications are decomposed into small, transferable units of work (many tasks) with
associated inputs (dependencies or data blocks) rather than simply decomposing at
the process level (MPI ranks).

Is the coarse-grained, distributed memory analog of instruction-level parallelism,
extending the concepts of data pre-fetching, out-of-order task execution based on
dependency analysis, and even branch prediction (speculative execution). Rather than
executing in a well-defined order, tasks execute when inputs become available.

An AMT model aims to leverage all available task and pipeline parallelism, rather just
relying on basic data parallelism for concurrency.

Enables the overlap of communication and computation as well as asynchronous load
balancing strategis

Broad survey of many AMT runtime systems

Deep dive on Charm++, Legion, Uintah

SAND2015-8312
Unlimited Release
Printed September 2015

D ro g ramma b | l |ty: ASC ATDM Level 2 Milestone #5325:

Asynchronous Many-Task Runtime System
Analysis and Assessment for Next
Generation Platforms

Does this runtime enable efficient expression of

Hemanth Kolla, Gregory Sjaardema, Nicole Slattengren, Keita Teranishi, Jeremiah Wilke
(DHARMA Programming Model and Runtime System Research),
Matt B , Ken Franko, Paul Lin (Applications),

ivier (Perf

en Ol (Performance Analysis)

an Gran
> andia National Laboratories
W O r O a S ° Laxmikant Kale, Nikhil Jain, Eric Mikida (Charm++)

University of lllinois, Urbana Champaign

Alex Aiken, Mike Bauer, Wonchan Lee, Elliott Slaughter, Sean Treichler (Legion)
Stanford University

Martin Berzins, Todd Harman, Alan Humphrey, John Schmidt, Dan Sunderland (Uintah)
University of Utah

Performance:
How performant is this runtime for our
workloads on current platforms and how well

suited is this runtime to address future
architecture challenges?

@ Sandia National Laboratories

Mutability:
What is the ease of adopting this runtime and
modifying it to suit our code needs?

AMT systems show great promise

]
No common user-level APls

SAND2015-8312
Unlimited Release
Printed September 2015

Need for best practices and standards psc w2 e s
Analysis and Assessment for Next
Generation Platforms

Janine Bennett (Pl), Robert Clay (PM), Gavin Baker, Marc Gamell, David Hollman, Samuel Knight,

L]
Hemanth Kolla, Gregory Sjaardema, Nicole Slattengren, Keita Teranishi, Jeremiah Wilke
(DHARMA Programming Model and Runtime System Research),
Matt Bettencourt, Steve Bova, Ken Franko, Paul Lin (Applications),

Ryan Grant, Si Hammond, Stephen Olivier (Performance Analysis)
Sandia National Laboratories

Laxmikant Kale, Nikhil Jain, Eric Mikida (Charm++)
University of lllinois, Urbana Champaign

[] [] Alex Aiken, Mike Bauer, Wonchan Lee, Elliott Slaughter, Sean Treichler (Legion)
Stanford University
++ apsStraction layer 1or rfuntimes
University of Utah

Pat McCormick and Samuel Gutierrez (Tools)
Los Alamos National Laboratory

Martin Schulz, Abhinav Bhatele, David Boehme, Peer-Timo Bremer, Todd Gamblin (Tools)
Lawrence Livermore National Laboratory

Requirements driven by Sandia ATDM

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
awholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-AC04-94AL85000.

L] L]
a p p I C a tl O n S Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

A single user-level API

Support multiple AMT runtimes to begin
identification of best practices

Common API Front End API

across runtimes (Application User)

Translation Layer

Common API Back End API

2Cross runtimes (Specification for Runtime)

Common API Front End API
across runtimes (Application User)

Translation Layer

Common API Back End API

2Cross runtimes (Specification for Runtime)

TN

Not all runtimes provide

the same functionality

Common API Front End API

across runtimes (Application User)

Translation Layer

Common API Back End API

3Cross runtimes (Specification for Runtime)

Challenge: design a back
end API that maps to a
variety of runtimes

AMT runtimes operate with a directed acyclic
graph (DAG)

Captures relationships between application
data and inter-dependent tasks

DAGs can be annotated to capture additional
information

= Tasks’ read/write usage of data

= Task needs a subset of data

Additional information enables runtime to
reason more completely about

= When and where to execute a task

= Whether to load balance

Existing runtimes leverage DAGs with varying
degrees of annotation

subset

Serial code

void get foo(int& val) ({

val = 42; }
void get bar(int& val) ({

val = 73; }
void print(int a, int b)
cout << a << ", "
<< b << endl;
}
int main() {
int foo, bar;
get foo(foo);
get bar(bar);
print(foo, bar);

Output: 42, 73

{

Explicit threads

static int foo, bar;
void get foo() {

foo = 42; }
void get bar() {

bar = 73; }
void print() {
cout << foo << ", "
<< bar << endl;
}
int main() {
auto thr foo =
auto thr bar =
thr foo.join();
thr bar.join();
print();

Output: 42, 73

std: :thread(get foo);
std: :thread(get bar);

Using async-future:

int get foo() {

return 42; }
int get bar() {

return 73; }

void print(future a, future b) {
cout << a.get() << ", "

<< b.get() << endl;

}

int main() {
auto foo = ::async(get foo);
auto bar = std::async(get bar);
auto done = std::async(print,

move (foo), move(bar));

done.wait();

Output: 42, 73

e Direct extraction of concurrency based on the sequence of data usage
e Conservative because it is "safe by default”
e Enabling runtime-based approaches rather than auto-magic compilers
e Thereis existing related research (e.g., Legion, OpenMP 4.5)

The function signature itself (from the sequential implementation) can serve

dS a CONCU

Serial code

void get foo(int& val) { val
void get bar(int& val) ({ val
void print(int a, int b) {

cout << a << ", " << b << endl;

}

int main() {
int foo, bar;
get foo(foo);
get bar (bar);
print (foo, bar);

e mpass: :async () detects depenc
e Concurrency with other tasks isimp

rrency specification!

(quasi) DARMA code

void get foo(int& val) {
void get bar(int& val) {
void print(int a, int b) {
cout << a << ", " << b << endl;

}

int main() {
async_ptr<int> foo, bar;
mpass: :async(get foo, foo);
mpass: :async(get bar, bar);
mpass: :async(print, foo, bar);

encies of a task and their use (i.e., read or modify).
icitly specified by how the data is used

e Forsimplicity, mpass: :async() d

oes **not** have a return value.

e A backend task scheduler and runtime layer is needed to execute the DAG.

App in DARMA

HEElEEE)
- _m_'

J

App in DARMA App in a runtime

tial Semantics

HE@EEEE

App in DARMA App in a runtime App on a hardware

Time
nodel node?2

ntial Semantics

HE@EEEE

(e
N
E
~—
)
B
____/

Common API Front End API
across runtimes (Application User)

Translation Layer

Common API Back End API

(Specification for Runtime)

across runtimes

Captures data-task
dependency information

e\
Runtime controls construction and

_ execution of the DAG

22.

Common API Front End API
across runtimes (Application User)

Translation Layer

Common API Back End API

3Cross runtimes (Specification for Runtime)

/

Provide abstractions to simplify
capturing of data-task dependencies

23.

Common API Front End API

across runtimes (Application User)

Translation Layer

Common API Back End API

3Cross runtimes (Specification for Runtime)

fully prototype
distributed development
tool

How are data collections/data structures described?
e Asynchronous smart pointers wrap application data
= Track meta-data used to build and annotate the DAG
o Currently permissions information
o Subsetting information under development
How are data partitioning and distribution expressed?
e Thereis an explicit, hierarchical, logical decomposition of data
" AccessHandle<T>
o Does not span multiple memory spaces
o Must be serialized to be transferred between memory spaces
m AccessHandleCollection<T,R>
o Expresses a collection of data
o Can be mapped across memory spaces in a scalable manner
e Distribution of data is up to individual backend runtime

How is parallelism achieved?

create work

= Atask that doesn’t span multiple execution spaces

= Sequential semantics: the order and manner (e.g., read, write) in which data
(AccessHandle) is used determines what tasks may be run in parallel

create concurrent work

= Scalable abstraction to launch across distributed systems

= A collection of tasks that must make simultaneous forward progress

= Sequential semantics supported across different task collections based on order and
manner of AccessHandleCollection usage

How is synchronization expressed?

DARMA does not provide explicit temporal synchronization abstractions

DARMA does provide data coordination abstractions

= publish/fetch semantics between participants in a task collection

= Asynchronous collectives between participants in a task collection

Example Program
AccessHandle<int> my data;

darma::create work([=]{
my data.set value(29);

})s

darma::create work(
reads(my data), [=]{
cout << my data.get value();
}
)

darma::create work(
reads(my data), [=]{
cout << my data.get value();

}
i

darma::create work([=]{
my data.set value(31);
1)

DAG (Directed Acyclic Graph)

Sequential
Semantics

%

Modify
my data

el N

Read Read
my data my_data

] N X, P A
\ Modify ’

my data ’

\
\ l
\ /

] 1

These two tasks are concurrent

and can be run in parallel by a
DARMA backend!

27 .

void darma main task(std::vector<std::string> args)

auto answer = initial access<int>();

create work([=]{ *answer = 42; });

create work(reads(answer), [=]{
std: :cout << "The answer is" << *answer << std:

create work(reads(answer), [=]{
1if (*answer != 42){
darma runtime::abort("the answer is incorrect");

}

})

}
DARMA REGISTER TOP LEVEL FUNCTION(darma main task);

UQ with DARMA

Uncertainties in inputs propagated to outputs:

Moments, reliability, PDFs of the outputs

Techniques:

Sampling methods: ex. Monte Carlo, Multi-level MC, Importance sampling.

Functional expansion-based methods: ex. PCe.

Need multiple evaluation of forward model (e.g. PDE).

Why is DARMA (AMT) good for UQ?

(Dynamic) parallelism: heterogeneity among samples
AMT model is a natural fit

Nested UQ evaluations

Adaptive UQ algorithms

Performance portability, expressiveness and productivity

Two sample implementations

Multiple Solves per Rank

using vecD = vector<double>;

struct RunSamples {
void operator () (
Index1lD<size t> index,
AccessHandleCollection<vecD, RangelD> ahcdata) const

{

ahcdata[index].local access().resize(solves per rank,0.0);

for (uint i = 0; i < solves per rank; ++i){
create work([=]{

void darma_main_task(std::vector<std::string> args) {

const uint solves_per rank =
const uint n_ranks

auto data = initial access collection<vecD>(RangelD(n_ranks));

create concurrent work<RunSamples>(data, ..., RangelD(n_ranks));
create concurrent work<Collect>(data, ..., RangelD(n ranks));

}
DARMA REGISTER TOP LEVEL FUNCTION(darma main_ task);

Single Solve per Rank

using vecD = vector<double>;

struct RunSamples {
void operator () (
Index1lD<size t> index,
AccessHandleCollection<double, RangelD> ahcdata) const

void darma_main_ task(std::vector<std::string> args) ({

const uint n ranks 5000
auto data = initial access collection<double>(RangelD(n_ranks));

create concurrent work<RunSamples>(data, ..., RangelD(n_ranks));
create concurrent work<Collect>(data, ..., RangelD(n ranks));

}
DARMA REGISTER TOP LEVEL FUNCTION(darma main_ task);

Normalized Time

1.0 -
0.8'_
0.6
0.4
0.2-
—— n=25
—d— N=50
0.1{ —#— n=10000
| —w— n=20000
| =---- Ideal Scaling
0.05 - - 1 1 -
200 500 1k 2k 3k

cores

Top-level Task

void darma main_ task(std::vector<std::string> args)

auto vLevelsH = initial accesss<vector<Level>>();
create work<initialize>(vLevelsH, ...);

auto converged = initial accesss<bool>();
auto iter = initial accesss<uint>();
create work([=]{
converged.set value(false); iter.set value(l);

}) i

create work while([=]{

return converged.get value()==false && iter.get value()<=maxIter;
}).do_([=]
{

collectSamples<runFunctor>(vLevelsH,

create work<checkStats>(vLevelsH, tolerance, converged, ...);
iter.get reference()++;

})i

create work<MLestimator>(vLevelsH, mlmcEst);
create work([=]{
cout << " ML Value = " << mlmcEst.get value() << endl;

})i

}
DARMA REGISTER TOP LEVEL FUNCTION(darma main task);

Core Function

struct runFunctor({
void operator () (

{

Index1D index, uint iteration,
int 1, int 1 offset, uint N,
AccessHandleCollection<Storage> storeAHC, ...) const

const auto contextSize = index.max value + 1;
auto storage h = storeAHC[index].local access();

uint myN = std::ceil(N/contextSize);
for (uint i = 0; i < myN; ++i){

create work([=]

{

create work([=1]{

)

create work([=]{

)i

Time (sec)

—a— knl-gcc

100 1 —-#- knl-icc
80 - —— has-gcc
i ‘ — — _'
60 - . 4- has-icc
R . \\\ ldeal
40 -
20 1
101 S
10 20 40 380

nodes

e Leverage data reusability (in progress):
= Reuse data produced by some tasks to accelerate convergence for other similar tasks.
= Tradeoff between data movement and execution time.

e Benchmarking for distributed backends

e Optimize load balancing methods for UQ applications

e https://share-ng.sandia.gov/darma/

e Sandia National Laboratories is a multimission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-NA0003525.

Questions? Comments?

Thank you for your attention!

