
1

Tackling UQ in DARMA, a Programming Model
for Task-Based Execution at Extreme-Scale

F. Rizzi , E. Phipps, D. Hollman, J. Lifflander, J. Wilke, A. Markosyan, H. Kolla,
N. Slattengren, K. Teranishi, J. Stewart, R. Clay and J. Bennett

Sandia National Laboratories

QUIET17 - SISSA - Italy

SAND2017-7549C

1

2

Motivation

2

3 . 1

1 exaFlops: (10e18) calculations per second, supposedly arriving by 2023-2024

As of June 2017:

1. Sunway TaihuLight (China): 10,649,600 cores -- 125 PFlops -- 15.4 MW
2. Tianhe-2 (MilkyWay-2) (China): 3,120,000 cores -- 54 PFlops -- 17.8 MW
3. Piz Daint (Switzerland): 361,760 cores -- 25 PFlops -- 2.2 MW
4. Titan (USA): 560,640 cores -- 27 PFlops -- 8.2 MW

Challenges:

Power consumption
Complex (heterogeneous) architectures
Unpredictable machines (resilience)
Managing communication/computation
Increasingly more dynamic workloads and machine performance

Can we ride the wave of current technology?

4 . 1

Moore's observation: number of transistors on a
chip doubles (nearly) every two years
Dennard scaling: power density remains
constant as transistors get smaller

Dennard scaling broke down ~2005-2007

Moore's trend is however alive and well

Clock speeds are plateauing due to power and
thermal limitations

This is what has broken down: not the ability to
etch smaller transistors, but the ability to drop
the voltage and the current they need to
operate reliably.

5 . 1

When you can't build outward any longer, build upward!

6 . 1

Clock frequency stalled, performance growth achieved by exponential
growth in the number of processing elements per chip and growing hardware

threading per core.

Increasing number of cores on the chip (expected to double every 18/24
months)

These trends motivate new programming abstractions that virtualize the
notion of a core (implicit parallelism) and threading APIs with expanded

semantics for thread control, placement, launching, and synchronization as
well as scalable runtimes to manage massive numbers of threads.

7 . 1

Locality: Management of data locality is a first order concern.
Move computation to data, not viceversa.

Heterogeneity: accelerators, implicit data movement, heterogeneous machines.

Asynchrony: SPMD/bulk-synchronous programming models presume
homogeneous performance across massively parallel systems. This will change.

Fault Tolerance: larger, more complex machines. Hundreds of millions of cores,
circuits with feature sizes as small as 7 nm, and lower voltages than today.

8

DARMA

8

9 . 1

(Distributed Asynchronous Resilient Models and Applications)

C++ abstraction layer for asynchronous many-task (AMT) runtimes

Provides a set of abstractions to facilitate the expression of tasking that map to a
variety of underlying AMT runtime system technologies.

Goals:

Enables exploration of a variety of underlying runtime system technologies without
changing application code.
Facilitate the expression of coarse-grained tasking.

10 . 1

Applications are decomposed into small, transferable units of work (many tasks) with
associated inputs (dependencies or data blocks) rather than simply decomposing at

the process level (MPI ranks).

Is the coarse-grained, distributed memory analog of instruction-level parallelism,
extending the concepts of data pre-fetching, out-of-order task execution based on

dependency analysis, and even branch prediction (speculative execution). Rather than
executing in a well-defined order, tasks execute when inputs become available.

An AMT model aims to leverage all available task and pipeline parallelism, rather just
relying on basic data parallelism for concurrency.

Enables the overlap of communication and computation as well as asynchronous load
balancing strategis

11 . 1

Broad survey of many AMT runtime systems

Deep dive on Charm++, Legion, Uintah

Programmability:
Does this runtime enable efficient expression of
workloads?

Performance:
How performant is this runtime for our
workloads on current platforms and how well
suited is this runtime to address future
architecture challenges?

Mutability:
What is the ease of adopting this runtime and
modifying it to suit our code needs?

12 . 1

AMT systems show great promise

No common user-level APIs

Need for best practices and standards

Survey recommendations led to DARMA

C++ abstraction layer for AMT runtimes

Requirements driven by Sandia ATDM
applications

A single user-level API

Support multiple AMT runtimes to begin
identification of best practices

13 . 1

14 . 1

15 . 1

16 . 1

AMT runtimes operate with a directed acyclic
graph (DAG)

Captures relationships between application
data and inter-dependent tasks

DAGs can be annotated to capture additional
information

Tasks’ read/write usage of data
Task needs a subset of data

Additional information enables runtime to
reason more completely about

When and where to execute a task
Whether to load balance

Existing runtimes leverage DAGs with varying
degrees of annotation

17 . 1

Serial code

Output: 42, 73

Explicit threads

Output: 42, 73

Using async-future:

Output: 42, 73

Direct extraction of concurrency based on the sequence of data usage
Conservative because it is "safe by default"
Enabling runtime-based approaches rather than auto-magic compilers
There is existing related research (e.g., Legion, OpenMP 4.5)

void get_foo(int& val) {
 /* some work... */
 val = 42; }
void get_bar(int& val) {
 /*...*/
 val = 73; }
void print(int a, int b) {
 cout << a << ", "
 << b << endl;
}
int main() {
 int foo, bar;
 get_foo(foo);
 get_bar(bar);
 print(foo, bar);
}

static int foo, bar;
void get_foo() {
 /* some work... */
 foo = 42; }
void get_bar() {
 /*...*/
 bar = 73; }
void print() {
 cout << foo << ", "
 << bar << endl;
}
int main() {
 auto thr_foo = std::thread(get_foo);
 auto thr_bar = std::thread(get_bar);
 thr_foo.join();
 thr_bar.join();
 print();
}

int get_foo() {
 /* some work... */
 return 42; }
int get_bar() {
 /* ... */
 return 73; }
void print(future a, future b) {
 cout << a.get() << ", "
 << b.get() << endl;
}
int main() {
 auto foo = std::async(get_foo);
 auto bar = std::async(get_bar);
 auto done = std::async(print,
 move(foo), move(bar));
 done.wait();
}

18 . 1

Serial code (quasi) DARMA code

The function signature itself (from the sequential implementation) can serve
as a concurrency specification!

mpass::async() detects dependencies of a task and their use (i.e., read or modify).
Concurrency with other tasks is implicitly specified by how the data is used
For simplicity, mpass::async() does **not** have a return value.
A backend task scheduler and runtime layer is needed to execute the DAG.

void get_foo(int& val) { /*...*/ val = 42; }
void get_bar(int& val) { /*...*/ val = 73; }
void print(int a, int b) {
 cout << a << ", " << b << endl;
}

int main() {
 int foo, bar;
 get_foo(foo);
 get_bar(bar);
 print(foo, bar);
}

void get_foo(int& val) { /*... */ val = 42; }
void get_bar(int& val) { /*...*/ val = 73; }
void print(int a, int b) {
 cout << a << ", " << b << endl;
}

int main() {
 async_ptr<int> foo, bar;
 mpass::async(get_foo, foo);
 mpass::async(get_bar, bar);
 mpass::async(print, foo, bar);
}

19 . 1

20 . 1

21 . 1

22 . 1

23 . 1

24 . 1

25 . 1

How are data collections/data structures described?
Asynchronous smart pointers wrap application data

Track meta-data used to build and annotate the DAG
Currently permissions information
Subsetting information under development

How are data partitioning and distribution expressed?
There is an explicit, hierarchical, logical decomposition of data
AccessHandle<T>

Does not span multiple memory spaces
Must be serialized to be transferred between memory spaces

AccessHandleCollection<T,R>
Expresses a collection of data
Can be mapped across memory spaces in a scalable manner

Distribution of data is up to individual backend runtime

26 . 1

How is parallelism achieved?
create_work

A task that doesn’t span multiple execution spaces
Sequential semantics: the order and manner (e.g., read, write) in which data
(AccessHandle) is used determines what tasks may be run in parallel

create_concurrent_work
Scalable abstraction to launch across distributed systems
A collection of tasks that must make simultaneous forward progress
Sequential semantics supported across different task collections based on order and
manner of AccessHandleCollection usage

How is synchronization expressed?
DARMA does not provide explicit temporal synchronization abstractions
DARMA does provide data coordination abstractions

publish/fetch semantics between participants in a task collection
Asynchronous collectives between participants in a task collection

27 . 1

28 . 1

void darma_main_task(std::vector<std::string> args) {

 auto answer = initial_access<int>();

 //set value of answer - must run first
 create_work([=]{ *answer = 42; });

 //read-only, can run in parallel with check below
 create_work(reads(answer), [=]{
 std::cout << "The answer is" << *answer << std::endl;
 });

 //read-only, can run in parallel with print above
 create_work(reads(answer), [=]{
 if (*answer != 42){
 darma_runtime::abort("the answer is incorrect");
 }
 });

}
DARMA_REGISTER_TOP_LEVEL_FUNCTION(darma_main_task);

29

UQ with DARMA

29

30 . 1

Uncertainties in inputs propagated to outputs:
Moments, reliability, PDFs of the outputs

Techniques:
Sampling methods: ex. Monte Carlo, Multi-level MC, Importance sampling.
Functional expansion-based methods: ex. PCe.

Need multiple evaluation of forward model (e.g. PDE).

Why is DARMA (AMT) good for UQ?
(Dynamic) parallelism: heterogeneity among samples
AMT model is a natural fit
Nested UQ evaluations
Adaptive UQ algorithms
Performance portability, expressiveness and productivity

31 . 1

Multiple Solves per Rank Single Solve per Rank

Two sample implementations

using vecD = vector<double>;

struct RunSamples {
 void operator()(
 Index1D<size_t> index, //...,
 AccessHandleCollection<vecD, Range1D> ahcdata) const
 {
 ahcdata[index].local_access().resize(solves_per_rank,0.0);

 for (uint i = 0; i < solves_per_rank; ++i){
 create_work([=]{
 // generate sample diffusivity
 // solve PDE for current germ sample
 // independently store QoI from this sample
 });
 }}
};
//
void darma_main_task(std::vector<std::string> args) {

const uint solves_per_rank = ...; //# of PDE solves per rank
const uint n_ranks = ...; //# of ranks

auto data = initial_access_collection<vecD>(Range1D(n_ranks));

create_concurrent_work<RunSamples>(data, ..., Range1D(n_ranks));
create_concurrent_work<Collect>(data, ..., Range1D(n_ranks));
}
DARMA_REGISTER_TOP_LEVEL_FUNCTION(darma_main_task);

using vecD = vector<double>;

struct RunSamples {
 void operator()(
 Index1D<size_t> index, //...,
 AccessHandleCollection<double, Range1D> ahcdata) const
 {
 // generate sample diffusivity
 //...
 // solve PDE for current germ sample
 // store QoI from this sample
 //...

 }
};

void darma_main_task(std::vector<std::string> args) {

const uint n_ranks = ...; //# of ranks

auto data = initial_access_collection<double>(Range1D(n_ranks));

create_concurrent_work<RunSamples>(data, ..., Range1D(n_ranks));
create_concurrent_work<Collect>(data, ..., Range1D(n_ranks));
}
DARMA_REGISTER_TOP_LEVEL_FUNCTION(darma_main_task);

32 . 1

33 . 1

Top-level Task Core Function
void darma_main_task(std::vector<std::string> args) {

auto vLevelsH = initial_accesss<vector<Level>>();
create_work<initialize>(vLevelsH, ...);

auto converged = initial_accesss<bool>();
auto iter = initial_accesss<uint>();
create_work([=]{
 converged.set_value(false); iter.set_value(1);
});

create_work_while([=]{
 return converged.get_value()==false && iter.get_value()<=maxIter;
}).do_([=]
{
 // Collect Samples
 collectSamples<runFunctor>(vLevelsH, ...);

 // compute stats, set new # of samples, check convergence
 create_work<checkStats>(vLevelsH, tolerance, converged, ...);
 iter.get_reference()++;
});

// compute estimator
create_work<MLestimator>(vLevelsH, mlmcEst);
create_work([=]{
 cout << " ML Value = " << mlmcEst.get_value() << endl;
});

}
DARMA_REGISTER_TOP_LEVEL_FUNCTION(darma_main_task);

struct runFunctor{
 void operator()(
 Index1D index, uint iteration,
 int l, int l_offset, uint N,
 AccessHandleCollection<Storage> storeAHC, ...) const
 {
 const auto contextSize = index.max_value + 1;
 auto storage_h = storeAHC[index].local_access();

 uint myN = std::ceil(N/contextSize);
 for (uint i = 0; i < myN; ++i){

 create_work([=]
 {
 // generate sample of stochastic diffusivity
 create_work([=]{
 // PDE solve for l level (fine)
 });
 create_work([=]{
 // PDE solve for l-1 level (coarser)
 });

 // store target QoI for fine Q_l
 // store target QoI for coarse Q_lm1
 // store target QoI: Y = Q_l - Q_lm1;
 });
 }}
};
}

34 . 1

35 . 1

Leverage data reusability (in progress):

Reuse data produced by some tasks to accelerate convergence for other similar tasks.

Tradeoff between data movement and execution time.

Benchmarking for distributed backends

Optimize load balancing methods for UQ applications

36 . 1

https://share-ng.sandia.gov/darma/

Sandia National Laboratories is a multimission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-NA0003525.

37 . 1

Questions? Comments?

Thank you for your attention!

