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 J-BE 0 2ct
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Usually drop this term and 
close with a simple ohms law 

E + u x B = hJ  

Regular MHD 
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Advection 

Diffusion 

Can’t propagate field 

through vacuum so its 

assigned a high resistivity 

and a choice is made on 

the density this switches 

to plasma. 

 

Density can’t be 

arbitrarily low as MHD 

breaks down and E=hJ 

could support unrealistic 

currents 

(This approach currently taken our 

Lab ICF design codes) 

Sort of OK for Z targets – 

an unknown for Z-Next 



Incorporate Electron Inertia 
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Electron inertia: 
(Allows physical transition to low densities) 
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Rate at which current can ramp 

up is now tied to electron mass 

– can’t go super-luminal 

I follow the formalism developed 

for Gorgon by Mark Sherlock cast 

in terms of the electron equation of 

motion 

Advocated for many years by 

Matt Martin / C. Seyler 

These terms equate to the form on 

the left, with ion motion assumed 

small and vxB handled elsewhere. 

Cast in terms of electron momentum 

we can cap electron velocity 



Simple test case: 
Field solver on static plasma 
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Static beryllium density profile 

“inspired by Maglif” 

Uniformly 10eV (no heating) 

Calculate conductivities from 

Lee-Moore-Desjarlais tables.  
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Iterative Matrix Diffusion Solve 
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BB 
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Integrate diffusion equation via fully implicit 

iterative sparse matrix inversion (typical of many 

ICF MHD codes) 

Assign a vacuum resistivity to transport field over 

vacuum. (100 ohm-m on anything at floor 

density) 

Use Numerical Recipes “linbcg” bi-conjugate 

gradient solver (itol=1,tol=1.e-5) 
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Contrast diffusion solve with Gorgon Wave-
Diffusion solve 
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 J-BE 0 2ct

E = hJ  

BB 
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Current carried by finite 

vacuum resistivity 

For this comparison vacuum resistivity set to be the same between the different solves 
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Current Densities at ~20MA 
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With wave-diffusion equation 

solve can drop that vacuum 

resistivity significantly further 

without any penalty 

linbcg matrix solve won’t run with 

that high a vacuum resistivity.  

Iteration doesn’t converge and 

blows up the solution. 
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Wave-diffusion equation retains an 

electric field so relatively straight 

forward to couple to additional 

current density equations 

Current density saturates in low 

density material and ~speed of 

light drift velocity, and alters 

distribution of current 
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Differences in current 

distribution more 

evident for lower density 

halo 1.e-5 Kg/m3 

Contrast current distributions with and 

without low density shelf 
No Shelf 

With Shelf 



Contrast for Eddy Data – Be Liner compressing a liquid 

deuterium fill to enable radiography of stagnation 

Data: P. Knapp 
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Other sensitivities are evident in stagnation data 

2% Uncertainty in current 

can alter compression at 

stagnation 

Raising floor density changes late 

time compression – aside from 

resistivity treatments, how confident 

are we in how we treat lower density 

material in general 
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For 1D Maglif Implosion – contrast electron inertial and 

standard resistivity treatment 
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No Difference in 

Implosion Trajectory 

Steep density gradient on outer 

edge negates differences 
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Lineout through trailing mass Maglif in reality is 

very unlikely to be a 

1D mass profile. 

 

What we really care 

about is how current 

can be distributed 

through low density 

plasma distributed 

by instability growth.   

 

Better treating 

current distribution 

in these profiles 

may directly affect 

how we grow 

instabilities of 

deliver current to 

small radius at 

stagnation 



Affect of Nernst on Maglif 

stagnation 



*S.A. Slutz et. al., PoP (2010) 

 S.A. Slutz and R. A. Vesey, PRL (2012) 

 M.R. Gomez et. al., PRL (2014) 

 P.F. Schmit et. al., PRL (2014) 

 A.B. Sefkow, et. al. ,PoP (2014) 

 M.R. Gomez, et. al., PoP (2015) 

 S.B. Hansen, et. al. , PoP (2015) 

 R.D. McBride, et. al., PoP (2016) 
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Magnetization 

B = 10 T 

Laser 

Heating 
Compression 

Gaseous 

D2 fuel 

0.7 mg/cc 

Stagnation 

column 6-8 mm 

Imploding 

Be tube 

or “liner” 

The Magnetized Liner Inertial Fusion (MagLIF) concept 
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Time resolved 
compresses post peak  

Fuel Volume effective 
diameter 

During 3D disruption, 
time resolved imaging 
would enable tracking 
of emission to lower 
radius (lack of bounce)  

However “lack of 
bounce” is not a 
unique indication of 
disruption.  It can be 
conflated with poor 
thermal transport 
inhibition. 

Diameters through 3D disruption 

Diameters through 1D compression 
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from crystal imager) 
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Nernst has similar effect to reducing magnetization and limiting burn 
duration in a Maglif stagnation 

1D profiles of inner surface trajectory through neutron pulse 
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Reduce charge and shift to AR 9 liner 
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Implications for Current Scaling 

10T 20T 



Nernst Magnetic field advection is 
leading to roll over in yield 

2.79mm outer radius, 10mm tall standard Maglif target 
10T Applied Bz 
0.7 Kg/m3 Gas Density 

Yield vs Preheat Energy 

Implications for scaling 
of performance with 
increased preheat 
energy (if you don’t 
push up fuel density 
and Bz field with that 
preheat energy) 


