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Regular MHD

0,B=-VxE

c*(VxB - ,J)

Usually drop this term and
close with a simple ohms law

E+uxB=mnl
Advection
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Diffusion -
0,B=-V TyxB
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(This approach currently taken our
Lab ICF design codes)

Can'’t propagate field
through vacuum so its
assigned a high resistivity
and a choice is made on
the density this switches
to plasma.

Density can’t be
arbitrarily low as MHD
breaks down and E=nJ

could support unrealistic
currents

AN

Sort of OK for Z targets —
an unknown for Z-Next
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Incorporate Electron Inertia

| follow the formalism developed
for Gorgon by Mark Sherlock cast
in terms of the electron equation of

Electron inertia:
(Allows physical transition to low densities)

@tJ — goa)se (E — 77J) motion
/\ meit—ﬂz—e[E—kw}c: B — v (9 — vg)
, — —
J= E J™ 3" _Ate. 0’ E These terms equate to the form on
n 0™pe the left, with ion motion assumed
small and vxB handled elsewhere.

9 n.e? Rate at which current can ramp

-, =—= up is now tied to electron mass dp _ ( F ) ( P )

pe — =—g| F4+— & | — et — —
mego — can’t go super-luminal ek P Vg

Cast in terms of electron momentum

Advocated for many years by _
we can cap electron velocity

Matt Martin / C. Seyler




Density Kg/m®

Simple test case:
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Field solver on static plasma
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lterative Matrix Diffusion Solve ) i

Integrate diffusion equation via fully implicit
iterative sparse matrix inversion (typical of many
ICF MHD codes)

0.B=-Vx iv x B Assign a vacuum resistivity to transport field over
t Jn vacuum. (100 ohm-m on anything at floor
density)

Use Numerical Recipes “linbcg” bi-conjugate
gradient solver (itol=1,tol=1.e-5)

Current density at ~20MA Associated Magnetic Field
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Contrast diffusion solve with Gorgon Wave- ) e
Diffusion solve

0,B=-VxE
A2
0,E =c*(VxB - 1,J)
Current Densities at ~20MA E= T]-l
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For this comparison vacuum resistivity set to be the same between the different solves




Density Kg/m®

With wave-diffusion equation
solve can drop that vacuum
resistivity significantly further
without any penalty
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linbcg matrix solve won’t run with
that high a vacuum resistivity.
lteration doesn’t converge and
blows up the solution.
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Wave-diffusion equation retains an
electric field so relatively straight
forward to couple to additional
current density equations
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Current density saturates in low
density material and ~speed of
light drift velocity, and alters
distribution of current
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Contrast current distributions with and

Density Kg/m®

without low density shelf
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Differences in current
distribution more
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Contrast for Eddy Data — Be Liner compressing a liquid
deuterium fill to enable radiography of stagnation
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Data: P. Knapp

No difference in 1D eddy
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Other sensitivities are evident in stagnation data ) e
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For 1D Maglif Implosion — contrast electron inertial and QL igj'j?lfgﬂes
standard resistivity treatment

No Difference in Steep density gradient on outer
Implosion Trajectory edge negates differences
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Maglif in reality is
very unlikely to be a
1D mass profile.

Lineout through trailing mass

What we really care
about is how current
can be distributed
through low density
plasma distributed
by instability growth.

Height / mm
N

)“\/MNWHM\A/W\

Better treating
current distribution
in these profiles
may directly affect
how we grow
instabilities of
deliver current to
small radius at
stagnation
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Affect of Nernst on Maglif
stagnation
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The Magnetized Liner Inertial Fusion (MagLIF) concept

Imploding
Be tube

or “liner” Stagnation

column 6-8 mm

Gaseous
D, fuel
0.7 mgl/cc

Magnetization Laser Compression
B=10T Heating

*S.A. Slutz et. al., PoP (2010)

S.A. Slutz and R. A. Vesey, PRL (2012)
M.R. Gomez et. al., PRL (2014)

P.F. Schmit et. al., PRL (2014)

A.B. Sefkow, et. al. ,PoP (2014)

M.R. Gomez, et. al., PoP (2015)

S.B. Hansen, et. al. , PoP (2015)

R.D. McBride, et. al., PoP (2016)




During 3D disruption,
time resolved imaging
would enable tracking
of emission to lower
radius (lack of bounce)

However “lack of
bounce” is not a
unique indication of
disruption. It can be
conflated with poor
thermal transport
inhibition.
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Diameter / microns

Nernst has similar effect to reducing magnetization and limiting burn
duration in a Maglif stagnation

1D profiles of inner surface trajectory through neutron pulse
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Implications for Current Scaling

Reduce charge and shift to AR 9 liner
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Nernst Magnetic field advection is
leading to roll over in yield

2.79mm outer radius, 10mm tall standard Maglif target
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