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SAE H2 Compatibility Expert Team

• Representation from nationally funded research
programs funded to enable deployment of fuel
technologies

- Germany: MPA Stuttgart

- Japan: Kyushu University and AIST

- US: Sandia National Laboratories

• Collective learning through so-called "round
robin" testing campaign

- Development of capabilities and examination
of procedures to execute fatigue tests in
high-pressure hydrogen at low temperature

- Demonstrate test methodologies
at MPA, KU and SNL



Collective learning activity ("round robin"'

Test Test conditions Environment
Number of

tests

Slow strain rate
tension
(SSRT)

< 5 xl 0-5 s-1

Control
-40°C

90 MPa H2
-40°C

Notched
tension-tension

fatigue

Sa = 200 MPa
R = 0.1
1 Hz

Control
-40°C

3

90 MPa H2
-40°C

3

Smooth
tension-

compression fatigue

Sa = 320 MPa
R = -1
1 Hz

Control
-40°C

3

90 MPa H2
-40°C

3



Test criteria for hydrogen compatibility of
materials

SAE J2579, Appendix B.3 is essentially a set of
generic test criteria for evaluation of structural
metals for service in high-pressure gaseous
hydrogen

• Part 1: Definition of materials and environment
al test conditions

• Part 2: SSRT

• Part 3: Fatigue life test

• Part 4: Welds

In general, CSA CHMC1 is referenced for the test
methods (CHMC1 references ASTM standards)



Part 1: Definition of materials and environmental
test conditions: test temperature

Table B.3.1.4 from SAE J2579

Alloy type Test method Test temperature (K)

Austenitic stainless steel

N ickel-based alloys

Aluminum, magnesium
and copper alloys

Other alloys

SSRT 228 ±5

Fatigue life 228 ±5 and 293 ±5

SSRT and
Fatigue life

228 ±5

SSRT and
Fatigue life

293 ±5

SSRT and
Fatigue life

228 ±5 and 293 ±5



Summary of requirements-for compatibility

Test configuration

Slow strain rate
tension tests — SSRT

(3 tests)

Fatigue
life tests
(must satisfy

1 of 3
options)

Option 1 (3 tests):

Smooth, R= -1

Evaluation
parameter

Yield strength

Requirements of tests
performed in H2

Average ? Sy

Tensile strength Average ? Su

Strain hardening
capacity

Average > 1.07

Elongation Average ? 12%

Cycles to failure Each > 200,000 cycles

Option 2 (3 tests):

Notched, R = 0.1 Cycles to failure Each > 200,000 cycles

Option 3 (5 tests):

Notched, R = 0.1 Cycles to failure Each > 100,000 cycles

Note: Sy and Su are specified minimum yield and tensile strength respectively



Part 3: Fatigue life test: stress cycle
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Tensile properties are degraded in gaseous
hydrogen especially at low temperature
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Tensile strength properties are not degraded in
gaseous hydrogen for acceptable materials

Annealed austenitic stainless steel
600
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o_

300

200

100

Yield
Strength

Tensile
Strength

fatigue
test -
1/3Su _

2/3Sy

specified actual air hydrogen
minimum

• Common stress limitations
for fatigue design: minimum
of 2/3 Sy and 1/3 Su

• Yield and tensile strengths
are typically not affected by
hydrogen

• Maximum stress during
fatigue testing (J2579)
always greater than 1/3 Su



Fatigue life of smooth specimens is typically
infinite at stress of 1/3 Sumeas
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Notched specimens assess sensitivity to stress
concentration for typical maximum stress (1/3Su)
103 MPa H2
Notched specimens
R = 0.1
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Diverse range of austenitic stainless steels have
been evaluated, including high-strength alloys

material
Yield

(MPa)

Tensile

(MPa)
Cr Ni Mn N

Typical

allowable

stress (MPa)

316L 280 562 17.5 12 1.2 0.04 115

CW 316L 573 731 17.5 12 1.2 0.04 218

304L 497 721 18.3 8.2 1.8 0.56 195

XM-11 539 881 20.4 6.2 9.6 0.26 207

Nitronic 60 880 1018 16.6 8.3 8.0 0.16 218

SCF-260 1083 1175 19.1 3.3 17.4 0.64 333

Wide range of str ngth Wide r nge of Ni/Mn content



Fatigue life at low temperature appears to be
greater than at room temperature
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• Pressure has modest effect, if any, on fatigue life
• Temperature has either no effect or increases fatigue life
• Nitronic 60 is an exception for both pressure and temperature

106



High-strength materials can be evaluated by
method and enable higher stress designs

Strain-hardened austenitic stainless steel
800 
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Yield
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Tensile
Strength

 2/3Sy

fatigue =
test
1/3Su

specified actual air hydrogen
minimum

• 1/3 Su of high-strength
materials can be more then
specified minimum yield
strength of annealed
material

• Implicitly, increase of design
stress enables lower weight
and lower cost designs
without compromising
performance

- Justified by fatigue
performance



Open questions

Temperature for fatigue life testing

Most data suggest that austenitic stainless steels show longer
fatigue life at low temperature

Change temperature of fatigue test to room temperature only?

Welding

Additional requirements?

Additional testing requirements for aluminum alloys

Stress corrosion cracking (SCC) threshold

Test method and evaluation criteria for SCC being formulated
by High-Pressure Institute of Japan HPIS E 103:2018

Method seems equivalent to BO 7539-6

Criteria should be incorporated in SAE J2579

How to incorporate "new" materials into SAE J2579

Replace table B.2 and periodically update with tested
materials?



Timeline of SAE activities related to materials

Draft of SCC test Resolution on
for aluminum Table B.2

Publish Verification of

SAE J2579 fatigue test

revision 3 temperature

2019 2020

Present baseline Welds Verification of
test criteria to aluminum testing
GTR IWG criteria

Publish
SAE J2579
revision 4



Summary of test criteria in SAE J2579

Materials compatibility test method in SAE J2579 provides
performance-based metrics to evaluate materials for
hydrogen service

J2579 Appendix B.3 requirements for materials do not purport
to generate design data

Method consists for 4 parts

1: Materials definition

2: Slow strain rate tensile testing (3 tests)

3: Fatigue life testing (3-5 tests)

4: Evaluation of welds (if welded)

Tensile testing (SSRT) in H2 demonstrates that materials
satisfy the specified minimum properties consistent with
pressure application

Fatigue life testing in H2 demonstrates that materials have
fatigue performance consistent with baseline materials
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Pressure vessel steels fatigue tested at Sandia in
gaseous H2 at pressure of ?103 MPa (15 ksi)

Designation
Tensile strength Yield Strength

(MPa) (MPa)

Cr-Mo steels

SA-372 Grade J (A71)

SA-372 Grade J (1350)

SA-372 Grade J (A72)

SA-372 Grade J (AV60Z)

34CrMo4

839 642

871 731

908 784

890

1045

760

850

Ni-Cr-Mo steels

SA-372 Grade L

SA-372 Grade L-LS t

SA-723 Grade 1 — Class 1

SA-723 Grade 3 — Class 2

1149

873 t

1053

731 t

860 715

978 888

t Does not meet SA-372 (low strength)



Formulation of power law relationship for fatigue
crack growth
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Fatigue crack growth rates of SA-372 Grade J
R = 0.5
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Fatigue crack growth rates of SA-372 Grade J
R = 0.7
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0.1 Hz

Data not published?

Not from SNL

Designation
Tensile
strength
(MPa)

Yield
Strength
(MPa)

SA-372 Gr J (C16) 884 711

SA-372 Gr J (C57) 904 787

SA-372 Gr J (C58) 913 764
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Fatigue crack growth rates of Ni-Cr-Mo steels
R = 0.1
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Fatigue crack growth rates of Ni-Cr-Mo steels
R = 0.5
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Fatigue crack growth rates at R = 0.7
both Cr-Mo and Ni-Cr-Mo PV steels
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Basis for limiting strength
Hydrogen-assisted fatigue crack growth

• High-strength steels show transition to accelerated crack
growth related to baseline behavior (eg, stage 111)

— only observed in tests of high-strength steels:
tensile strength > 950 MPa

— Related to fracture resistance: as Kmax approaches KJH
(where KJH is measured as Jic from ASTM E1820 in gaseous hydrogen)

104 
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io9

Ni-Cr-Mo steels

106 MPa H2
R = 0.1
1 Hz

• Ni-Cr-Mo, Su = 873 MPa

• SA-723 Gr.1 CI.1, Su = 860 MPa

O SA-723 Gr.3 CI.2, Su = 978 MPa
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For PV steels with
Su > 950 MPa

• Accelerated fatigue
crack growth rate is
observed

• K JH < 30 MPa IT1112
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•
•
•

6 7 8 9 10

45 MPa H2
R = 0.1
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Basis for limiting strength
Fracture resistance rising load (Km)
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PV steels display low fracture
resistance in high strength
condition

For tensile strength < 950 MPa

KJH > 45 MPa M112

For tensile strength > 950 MPa

KJH < 30 MPa 1111/2

KAI = elastic-plastic plane-strain fracture
toughness in gaseous hydrogen (ASTM E1820)



Basis for limiting Kmax
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• R = 0.5, Su = 871 MPa
► R = 0.7, Su = 884 MPa
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Kmax (MPa m112)

100

"Stage Ill" fatigue crack growth
begins at Kmax < KJH

The proposed relationships do
not capture stage III

KJH 45-50 MPa m112

for tensile strength < 950 MPa

Kmax ~ 40 MPa I111/2 provides a
bound on the proposed
relationships to ensure
Kmax KJH for steels with tensile
strength < 950 MPa
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Basis for limiting Kmax
No evidence of transition to stage III for Kmax up to 40 MPa n11/2
in SA-372 Gr J steels
For steels shown below:

Measured KJH values in 103 MPa H2 are within the range of
47-61 MPa rr11/2 (5 measurements)
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r Review of fatiaue crack arowth rate for PV steels aenerallv,. .
shows consistency of fatigue response independent of
alloy and strength

Exception: tensile strength > 950 MPa shows transition to
stage III crack growth at low Kmax

.

Two-part power law was established to bound FCGR
behavior as a function of load ratio, R da c [1 + CHR

A1Cm
dN I_ 1 — R

Transition between "two parts" also
quantitatively established AlCc= 8.475 + 4.062R — 1.696R2

Proposed constraints for use of established relationships

Tensile strength < 950 MPa

Kmax 5 40 MPa r11112



Outlook: Pressure term can be added to extend
applicability to lower pressure and other steels

da _ C [1 + CH R1 mcn, ( f )
1/ 2

dN [ 1 — R i .f:re f )

f is fugacity (related to pressure) and fref is the reference
fugacity for which other terms were developed
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