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Outline

» Overview of EIGER

»Evolving HPC environment

»Writing performance portable code

»Overview of Gemma, EIGER’s successor

» RCS validation

» Conclusions and future work




®©
™
5
e
"

ized [,

ions GenERali

Interact

1C

Electromagneti

4‘ EIGER

53

A e e e s s

e e e e e e
e T e S T s
...Ir.ll'hlnhl-pmnnnsu\'-'-

N, =l A:“Mwﬁd ._.._

AN

A RERR
i
N




5

Evolving HPC environment

»“FORTRAN MPI” paradigm
> MPI inter- and intranode parallelism
> High processor clock speed

> High memory per processor

»“Heterogeneous” paradigm
> MPI internode parallelism
> Threading intranode parallelism
> Low processor clock speed

> Low memoty per processor

» Target HPC platforms
° Trinity

o Sierra




6 I Trinity: a mix of CPU and MIC nodes [5]

Compute (Intel “Haswell”) Compute (Intel Xeon Phi)
9436 Nodes (~11 PF) >9500 Nodes

~40 PF Total Performance and 2.1PiB of Total Memory

Gateway Nodes Lustre Routers Burst Buffer
(222 total, 114 Haswell) (576 total, 300 Haswell)
2x 648 Port IB Switches 25 }B o
GigE 3.28 TB/s BW
- 40 GigE
—— FDRIB

40 GigE Network

GigE Network

78 PB Usable ~1.6 TB/sec — 2 Filesystems




71 Sierra: CPU and GPU on a single node [6] L)

Compute Node Compute System
POWER Architecture Processor 2.1-2.7 PB Memory
NVIDIA Volita 120-150 PFLOPS
NVMe-compatible PCle 800 GB SSD 10 MW
> 512 GB DDR4 + HEBM
Coherent Shared Memory

Compute Rack
Standard 19°
Warm water cooling

> o
IBM POWER CPU NVIDIA VOLTA GPU
NVLink GPFS File System
“ Mellanox Interconnect :200:.8[50;:!;:\:3:8!
CPU-GPU / GPU-CPU Dual-rail EDR )
Interconnect Infiniband .
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Code development in the new HPC paradigm

»Ideal development includes
> Writing architecture independent source code

> Using multicore technology efficiently

»Trilinos’s Kokkos library
> Is an abstraction layer for execution and memory spaces

> Provides ability to take advantage of architecture’s features




Kokkos: an abstraction for execution and memory spaces

[7]
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10 I Introducing Kokkos loops to C++ code [7]

Pattern Policy
for (element = 0; element < numElements; ++element) {
total = O;
> for (qp = 0; qp < numQPs; ++qgp) {
;g total += dot(left[element][qpl, right[element] [qpl);
}
elementValues [element] = total;

parallel _for (N, [=] (const size_t i) {
/* loop body */
});




11 | Kokkos multidimensional arrays [7, 8]

View<int=*[3], LayoutLeft, CudaSpace> ¢ ("c", 10);




12 I Gemma: more than a C++ rewrite [1,9,10, 11,12, 13]
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Sparse approximate inverse preconditioner [14]




14

Gemma is portable, if not performant

+ CUDA:y=9.336E-07 x + 0.013 o
254 e CPU:y=9.005E-07 x + -0.025 /)"
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EIGER /| Gemma monostatic RCS validation for double
15 | ogive [15] %0°

Polarization: Horizontal
Frequency: 1.57 GHz
Wavelength: 0.191 m
Object length: 0.254 m .

Left ogive angle: 46.4°
Right ogive angle: 22.62°

~—— EMCC experiment
——— EIGER simulation
=== GEMMA simulation

270°




EIGER /| Gemma monostatic RCS validation for NASA =
| almond [15] o

Polarization: Horizontal
Frequency: 1.19 GHz
Wavelength: 0.251926 m
Object length: 0.253

180°

—— EMCC experiment
—— EIGER simulation
=== GEMMA simulation

270°



EIGER /| Gemma monostatic RCS validation for cone-
171 sphere [15] o0°

Polarization: Horizontal
Frequency: 869 MHz
Wavelength: 0.344986 m
Object length: 0.689 m

180°
Cone angle: 7°

— EMCC-experiment
—— FEKO simulation

—— EIGER simulation
=== GEMMA simulation

270°
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Conclusions and future work

» Gemma has captured some of the algorithmic features of EIGER in an
architecture independent way

»Increase Gemma’s feature set

»Improve performance of Gemma’s threaded algorithms

»Implement hybrid parallel MPI and threading for Gemma

»Investigate different algorithms for special cases
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